Spatial Distribution of China’s Industrial Output Values under Global Warming Scenarios RCP4.5 and RCP8.5
<p>Geographic map of China.</p> "> Figure 2
<p>Schematic presentation of the research design.</p> "> Figure 3
<p>Kernel density estimation values of industrial output in 2000 (<b>a</b>) and 2010 (<b>b</b>); variation of kernel density estimation values of industrial output from 2000 to 2010 (<b>c</b>).</p> "> Figure 3 Cont.
<p>Kernel density estimation values of industrial output in 2000 (<b>a</b>) and 2010 (<b>b</b>); variation of kernel density estimation values of industrial output from 2000 to 2010 (<b>c</b>).</p> "> Figure 4
<p>Spatial distribution diagrams of the proportions of China’s industrial output in 2010 under the scenarios of normal condition (<b>a</b>), RCP4.5 (<b>b</b>), and RCP8.5 (<b>c</b>).</p> "> Figure 4 Cont.
<p>Spatial distribution diagrams of the proportions of China’s industrial output in 2010 under the scenarios of normal condition (<b>a</b>), RCP4.5 (<b>b</b>), and RCP8.5 (<b>c</b>).</p> "> Figure 5
<p>Spatial distribution diagrams of the proportions of China’s industrial output from 2030 to 2050 under scenarios RCP4.5 ((<b>a</b>) for 2030_RCP4.5 and (<b>c</b>) for 2050_RCP4.5) and RCP8.5 ((<b>b</b>) for 2030_RCP8.5 and (<b>d</b>) for 2050_RCP8.5).</p> "> Figure 5 Cont.
<p>Spatial distribution diagrams of the proportions of China’s industrial output from 2030 to 2050 under scenarios RCP4.5 ((<b>a</b>) for 2030_RCP4.5 and (<b>c</b>) for 2050_RCP4.5) and RCP8.5 ((<b>b</b>) for 2030_RCP8.5 and (<b>d</b>) for 2050_RCP8.5).</p> ">
Abstract
:1. Introduction
2. Data Sources and Research Methods
2.1. Data Sources
2.2. Research Methods
2.2.1. Research Design
- (3)
- In combination with the spatial data of the current industrial output value (2010), the spatial distribution of the current 1-km industrial output value is analyzed using the kernel density method.
- (4)
- Spatial distribution simulation of China’s industrial output under different climate change scenarios.
2.2.2. CMIP5 Multi-Mode Coupling
2.2.3. Spatialization and Distribution of the Current Industrial Output Value
2.2.4. Spatialization Method for the Future Industrial Output Value under Scenarios RCP4.5 and RCP8.5
3. Research Results
3.1. Analysis of CMIP5 Multi-Mode Coupling Results
3.2. Spatialization Feature Analysis of the Current Industrial Output Value
3.3. Industrial Output Spatialization under Scenarios RCP4.5 and RCP8.5
3.4. Annual Change Analysis of Industrial Output under Different Climate Scenarios
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Hewison, D.; Kuras, M. Book reviews. J. Anal. Psychol. 2005, 50, 395–403. [Google Scholar] [CrossRef]
- Ahn, S.E.; Steiguer, J.E.D.; Palmquist, R.B.; Holmes, T.P. Economic Analysis of the Potential Impact of Climate Change on Recreational Trout Fishing in the Southern Appalachian Mountains: An Application of a Nested Multinomial Logit Model. Clim. Chang. 2000, 45, 493–509. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Zargar, S.M.; Sharma, M.; Sood, M. Traditional Knowledge: A Therapeutic Potential in the Scenario of Climate Change for Sustainable Development. Development 2018, 61, 140–148. [Google Scholar] [CrossRef]
- Jajer, J. Climate and Energy System; China Meteorological Press: Beijing, China, 1988. (In Chinese) [Google Scholar]
- Thornes, J.E. The impact of weather and climate on transport in the UK. Prog. Phys. Geogr. Earth Environ. 1992, 16, 187–208. [Google Scholar] [CrossRef]
- Mall, R.K.; Singh, R.; Gupta, A.; Srinivasan, G.; Rathore, L.S. Impact of Climate Change on Indian Agriculture: A Review. Clim. Chang. 2007, 82, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Lehr, U.; Nieters, A.; Drosdowski, T. Extreme Weather Events and the German Economy: The Potential for Climate Change Adaptation; Springer International Publishing: Basel, Switzerland, 2016. [Google Scholar]
- Marshall, N.A.; Tobin, R.C.; Marshall, P.A.; Gooch, M.; Hobday, A.J. Social Vulnerability of Marine Resource Users to Extreme Weather Events. Ecosystems 2013, 16, 797–809. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Griffiths, A.; Winn, M. Extreme Weather Events and the Critical Importance of Anticipatory Adaptation and Organizational Resilience in Responding to Impacts. Bus. Strategy Environ. 2012, 21, 17–32. [Google Scholar] [CrossRef]
- Wedawatta, G.; Ingirige, B. A conceptual framework for understanding resilience of construction SMEs to extreme weather events. Built Environ. Proj. Asset Manag. 2016, 6, 428–443. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathi, P.; Singh, K.K.; Mishra, A.N. Impact of climate change on agriculture in eastern Uttar Pradesh and Bihar states (India). Mausam 2011, 62, 171–178. [Google Scholar]
- Muoz-Rojas, M.; Abd-Elmabod, S.K.; Zavala, L.M.; Rosa, D.D.L.; Jordán, A. Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: A case study in Northern Egypt. Agric. Ecosyst. Environ. 2017, 238, 142–152. [Google Scholar] [CrossRef]
- Awoye, O.H.R.; Pollinger, F.; Agbossou, E.K.; Paeth, H. Dynamical-statistical projections of the climate change impact on agricultural production in Benin by means of a cross-validated linear model combined with Bayesian statistics. Agric. For. Meteorol. 2017, 234–235, 80–94. [Google Scholar] [CrossRef]
- Gigantesco, A.; Giuliani, M. Quality of life in mental health services with a focus on psychiatric rehabilitation practice. Annali dell’Istituto Superiore di Sanita 2011, 47, 363. [Google Scholar]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Li, S.; He, F.; Zhang, X.; Zhou, T. Evaluation of global historical land use scenarios based on regional datasets on the Qinghai-Tibet Area. Sci. Total Environ. 2019, 657, 1615–1628. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Liu, L.; Zhang, J. Zoning by land types based on SOFM network:A case study on transect of eastern Tibetan Plateau. Geogr. Res. 2013, 32, 839–847. [Google Scholar]
- Min, Z.; Weiming, C.; Chenghu, Z.; Manchun, L.; Nan, W.; Qiangyi, L. GDP Spatialization and Economic Differences in South China Based on NPP-VIIRS Nighttime Light Imagery. Remote Sens. 2017, 9, 673. [Google Scholar]
- Tobler, W.R. Smooth pycnophylactic interpolation for geographical regions. Publ. Am. Stat. Assoc. 1979, 74, 519–530. [Google Scholar] [CrossRef]
- Rase, W.D. Volume-preserving interpolation of a smooth surface from polygon-related data. J. Geogr. Syst. 2001, 3, 199–213. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Jiang, Z.; Zhao, L.; Zhao, P. Methods of Population Spatialization Based on the Classification Information of Buildings from China’s First National Geoinformation Survey in Urban Area: A Case Study of Wuchang District, Wuhan City, China. Sensors 2018, 18, 2558. [Google Scholar] [CrossRef] [Green Version]
- Du, G.; Zhang, S. Spatializing population data of jilin province. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011. [Google Scholar]
- Wang, L.; Wang, S.; Zhou, Y.; Liu, W.; Hou, Y.; Zhu, J.; Wang, F. Mapping population density in China between 1990 and 2010 using remote sensing. Remote Sens. Environ. 2018, 210, 269–281. [Google Scholar] [CrossRef]
- Li, X.; Yeh, G.O. Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS. Landsc. Urban Plan. 2004, 69, 335–354. [Google Scholar] [CrossRef]
- Doulamis, N.; Voulodimos, A.; Preka, D.; Ioannidis, C.; Fritsch, D. An efficient framework for spatiotemporal 4D monitoring and management of real property. In Proceedings of the High-Level Joint FIG/World Bank Conference on Sustainable Real Estate Markets—Policy Framework and Necessary Reforms, Athens, Greece, 19 September 2016. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Gao, C.; Nyongesa, A.M.; Polong, F. Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble. Nat. Hazards 2018, 90, 901–920. [Google Scholar] [CrossRef]
- Qian, X.; Song, W.; Zhu, H. A 1-km grid dataset of industrial output value in China (2010). China Sci. Data 2018, 3, 1–13. [Google Scholar]
- Gramacki, A. Nonparametric Kernel Density Estimation and Its Computational Aspects; Springer International Publishing: Berlin, Germany, 2018; pp. 25–62. [Google Scholar] [CrossRef]
- Qahtan, A.; Wang, S.; Zhang, X. KDE-Track: An Efficient Dynamic Density Estimator for Data Streams. IEEE Trans. Knowl. Data Eng. 2017, 29, 642–655. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Sui, Y.; Lang, X.; Jiang, D. Time of emergence of climate signals over China under the RCP4.5 scenario. Clim. Chang. 2014, 125, 265–276. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213. [Google Scholar] [CrossRef] [Green Version]
Industrial Sector | |||
---|---|---|---|
Mining and Quarrying | Manufacturing | Electricity, Water, and Gas | Construction |
Coal and lignite mining, peat extraction, oil and gas extraction services, activities incidental to oil and gas extraction, etc. | Food and beverage manufacturing, tobacco products manufacturing, textile manufacturing, other transportation equipment manufacturing, furniture manufacturing, recycling, etc. | Electricity, gas, steam and hot water supply, collection, purification, and distribution of water | Construction |
Data Category | Data Type | Year | Data Description |
---|---|---|---|
Land use data | Land use grid data | 1990, 2000, 2010 | Spatial resolution: 1 km |
Meteorological data | Site data, multi-mode data | 2000, 2010, 1850–2100 | Temporal resolution: year |
Vegetation data | EVI | 2000, 2010 | Temporal resolution: month |
DEM | DEM | 2010 | Spatial resolution: 1 km |
Economic data | Industrial output | 2000, 2010 | Temporal resolution: year |
Driving factor data | Population, GDP, rivers, roads, urban settlements, rural settlements, urbanization rate | 1987–2016 | Temporal resolution: year |
Air Temperature | Precipitation | |||
---|---|---|---|---|
Mode | RMSE | RMSE’ | RMSE | RMSE’ |
CMCC-CM | 2.96 | 0.00 | 560.24 | 0.20 |
MIROC-ESM | 5.14 | 0.74 | 519.79 | 0.11 |
MIROC5 | 2.91 | −0.02 | 498.51 | 0.07 |
MPI-ESM-LR | 2.80 | −0.05 | 436.89 | −0.07 |
MRI-CGCM3 | 4.04 | 0.37 | 344.92 | −0.26 |
MME | 2.95 | 0.00 | 362.15 | −0.23 |
2010 | 2020 | 2030 | 2050 | |||||
---|---|---|---|---|---|---|---|---|
Total Output Value (100 million yuan) | Average Proportion (‱) | Total Output Value (100 million yuan) | Average Proportion (‱) | Total Output Value (100 million yuan) | Average Proportion (‱) | Total Output Value (100 million yuan) | Average Proportion (‱) | |
Normal scenario | 157,902.4 | 0.505 | ||||||
RCP4.5 | 168,947.9 | 0.536 | 364,338.8 | 0.275 | 386,182.8 | 0.236 | 442,109.3 | 0.184 |
RCP8.5 | 171,140.2 | 0.536 | 344,795.1 | 0.278 | 395,037.1 | 0.236 | 456,056.6 | 0.184 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Q.; Song, W. Spatial Distribution of China’s Industrial Output Values under Global Warming Scenarios RCP4.5 and RCP8.5. ISPRS Int. J. Geo-Inf. 2020, 9, 724. https://doi.org/10.3390/ijgi9120724
Xue Q, Song W. Spatial Distribution of China’s Industrial Output Values under Global Warming Scenarios RCP4.5 and RCP8.5. ISPRS International Journal of Geo-Information. 2020; 9(12):724. https://doi.org/10.3390/ijgi9120724
Chicago/Turabian StyleXue, Qian, and Wei Song. 2020. "Spatial Distribution of China’s Industrial Output Values under Global Warming Scenarios RCP4.5 and RCP8.5" ISPRS International Journal of Geo-Information 9, no. 12: 724. https://doi.org/10.3390/ijgi9120724
APA StyleXue, Q., & Song, W. (2020). Spatial Distribution of China’s Industrial Output Values under Global Warming Scenarios RCP4.5 and RCP8.5. ISPRS International Journal of Geo-Information, 9(12), 724. https://doi.org/10.3390/ijgi9120724