A Theoretical Approach for Forecasting Different Types of Drought Simultaneously, Using Entropy Theory and Machine-Learning Methods
<p>Situation of the intended stations in Iran.</p> "> Figure 2
<p>Schematic form of adaptive neuro-fuzzy inference system (ANFIS) merging with the algorithms differential evolution (DE), genetic algorithm (GA) and particle swarm optimization (PSO).</p> "> Figure 3
<p>The variation of forecasts and observations for the JDI prediction in all of the stations; The numbers of the subplots refer to the stations including Anar (<b>1</b>), Biarjmand (<b>2</b>), Boshrouyeh (<b>3</b>), East Isfahan (<b>4</b>), Isfahan (<b>5</b>), Kabootarabad (<b>6</b>), Kashan (<b>7</b>), Marvast (<b>8</b>), Naein (<b>9</b>) and Yazd (<b>10</b>).</p> "> Figure 4
<p>The variation of forecasts and observations for the MSPI prediction in all of the stations; The numbers of the subplots refer to the stations including Anar (<b>1</b>), Biarjmand (<b>2</b>), Boshrouyeh (<b>3</b>), East Isfahan (<b>4</b>), Isfahan (<b>5</b>), Kabootarabad (<b>6</b>), Kashan (<b>7</b>), Marvast (<b>8</b>), Naein (<b>9</b>) and Yazd (<b>10</b>).</p> "> Figure 5
<p>Scatter plots in comparing the performances of the gamma test and entropy theory for MSPI and JDI prediction (Marvast station).</p> "> Figure 6
<p>Taylor diagrams of the model prediction; Total evaluation of JDI’s predictions by inputs of gamma test (<b>1</b>) and entropy theory (<b>2</b>) and total evaluation of MSPI’s predictions by inputs of gamma test (<b>3</b>) and entropy theory (<b>4</b>).</p> "> Figure 7
<p>Violin plots of the errors; Total evaluation of JDI’s prediction error resulted by inputs of gamma test (<b>1</b>) and entropy theory (<b>2</b>) and total evaluation of MSPI’s prediction error resulted by inputs of gamma test (<b>3</b>) and entropy theory (<b>4</b>).</p> "> Figure 7 Cont.
<p>Violin plots of the errors; Total evaluation of JDI’s prediction error resulted by inputs of gamma test (<b>1</b>) and entropy theory (<b>2</b>) and total evaluation of MSPI’s prediction error resulted by inputs of gamma test (<b>3</b>) and entropy theory (<b>4</b>).</p> "> Figure 8
<p>Root mean squared error (RMSE) values in drought classes; JDI’s prediction resulted by inputs of gamma test (<b>1</b>) and entropy theory (<b>2</b>) and MSPI’s prediction resulted by inputs of gamma test (<b>3</b>) and entropy theory (<b>4</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Indices
2.2.1. Joint Deficit Index (JDI)
2.2.2. Multivariate Standardized Precipitation Index
2.3. Input Determination Methods
2.3.1. Gamma Test
2.3.2. Entropy Theory
2.4. Models
2.4.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)
2.4.2. Differential Evolution (DE) Algorithm
2.4.3. Genetic Algorithm (GA)
2.4.4. Particle Swarm Optimization (PSO) Algorithm
2.4.5. Group Method of Data Handling (GMDH)
2.4.6. Generalized Regression Neural Network (GRNN)
2.4.7. Least Squares Support Vector Machine (LSSVM)
2.5. Performance Evaluation Scales
3. Results
3.1. Input Selection
3.2. Results of JDI Prediction
3.3. Results of MSPI Prediction
3.4. Models’ Comparisons
3.5. Evaluation of the Models’ Accuracy in Drought Classes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbaspour, M.; Sabetraftar, A. Review of cycles and indices of drought and their effect on water resources, ecological, biological, agricultural, social and economical issues in Iran. Int. J. Environ. Stud. 2005, 62, 709–724. [Google Scholar] [CrossRef]
- Bazrafshan, J.; Nadi, M.; Ghorbani, K. Comparison of Empirical Copula-Based Joint Deficit Index (JDI) and Multivariate Standardized Precipitation Index (MSPI) for Drought Monitoring in Iran. Water Resour. Manag. 2015, 29, 2027–2044. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; Jin, J.; Ning, S.; Wang, Y.; Wu, C. Spatio-Temporal Evolution Analysis of Drought Based on Cloud Transformation Algorithm over Northern Anhui Province. Entropy 2020, 22, 106. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, M.; Hayes, M.; Wood, D. Standradized Precipitation Index User Guide; World Meteorological Organization: Geneva, Switzerland, 2012; Volume 21, pp. 1333–1348. [Google Scholar] [CrossRef] [Green Version]
- Kao, S.C.; Govindaraju, R.S. A copula-based joint deficit index for droughts. J. Hydrol. 2010, 380, 121–134. [Google Scholar] [CrossRef]
- Mirabbasi, R.; Anagnostou, E.N.; Fakheri-Fard, A.; Dinpashoh, Y.; Eslamian, S. Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. J. Hydrol. 2013, 492, 35–48. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Ma, M.; Ren, L.; Singh, V.P.; Tu, X.; Jiang, S.; Liu, Y. Evaluation and application of the SPDI-JDI for droughts in Texas, USA. J. Hydrol. 2015, 521, 34–45. [Google Scholar] [CrossRef]
- Bazrafshan, J.; Hejabi, S.; Rahimi, J. Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI). Water Resour. Manag. 2014, 28, 1045–1060. [Google Scholar] [CrossRef]
- Bateni, M.M.; Behmanesh, J.; De Michele, C.; Bazrafshan, J.; Rezaie, H. Composite agrometeorological drought index accounting for seasonality and autocorrelation. J. Hydrol. Eng. 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- Aghelpour, P.; Bahrami-Pichaghchi, H.; Kisi, O. Comparison of three different bio-inspired algorithms to improve ability of neuro fuzzy approach in prediction of agricultural drought, based on three different indexes. Comput. Electron. Agric. 2020, 170, 105279. [Google Scholar] [CrossRef]
- Moreira, E.E.; Pires, C.L.; Pereira, L.S. SPI drought class predictions driven by the North Atlantic Oscillation index using log-linear modeling. Water 2016, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Belayneh, A.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural networks and wavelet support vector regression models. J. Hydrol. 2014, 508, 418–429. [Google Scholar] [CrossRef]
- Deo, R.C.; Kisi, O.; Singh, V.P. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model. Atmos. Res. 2017, 184, 149–175. [Google Scholar] [CrossRef] [Green Version]
- Mokhtarzad, M.; Eskandari, F.; Jamshidi Vanjani, N.; Arabasadi, A. Drought forecasting by ANN, ANFIS, and SVM and comparison of the models. Environ. Earth Sci. 2017, 76, 729. [Google Scholar] [CrossRef]
- Zahraie, B.; Nasseri, M.; Nematizadeh, F. Exploring spatiotemporal meteorological correlations for basin scale meteorological drought forecasting using data mining methods. Arab. J. Geosci. 2017, 10, 419. [Google Scholar] [CrossRef]
- Chen, M.; Ning, S.; Cui, Y.; Jin, J.; Zhou, Y.; Wu, C. Quantitative assessment and diagnosis for regional agricultural drought resilience based on set pair analysis and connection entropy. Entropy 2019, 21, 373. [Google Scholar] [CrossRef] [Green Version]
- Deo, R.C.; Şahin, M. Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia. Atmos. Res. 2015, 161, 65–81. [Google Scholar] [CrossRef]
- Maca, P.; Pech, P. Forecasting SPEI and SPI drought indices using the integrated artificial neural networks. Comput. Intell. Neurosci. 2016, 2016, 3868519. [Google Scholar] [CrossRef] [Green Version]
- Soh, Y.W.; Koo, C.H.; Huang, Y.F.; Fung, K.F. Application of artificial intelligence models for the prediction of standardized precipitation evapotranspiration index (SPEI) at Langat River Basin, Malaysia. Comput. Electron. Agric. 2018, 144, 164–173. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.P.; Wang, G. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin. Sci. Total Environ. 2018, 622, 710–720. [Google Scholar] [CrossRef]
- Mohammadi, B.; Guan, Y.; Aghelpour, P.; Emamgholizadeh, S.; Pillco Zolá, R.; Zhang, D. Simulation of Titicaca Lake Water Level Fluctuations Using Hybrid Machine Learning Technique Integrated with Grey Wolf Optimizer Algorithm. Water 2020, 12, 3015. [Google Scholar] [CrossRef]
- Kisi, O.; Gorgij, A.D.; Zounemat-Kermani, M.; Mahdavi-Meymand, A.; Kim, S. Drought forecasting using novel heuristic methods in a semi-arid environment. J. Hydrol. 2019, 578, 124053. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Singh, R.P. Application of heuristic approaches for prediction of hydrological drought using multi-scalar streamflow drought index. Water Resour. Manag. 2019, 33, 3985–4006. [Google Scholar] [CrossRef]
- Ahmadi, A.; Han, D.; Karamouz, M.; Remesan, R. Input data selection for solar radiation estimation. Hydrol. Process. 2009, 23, 2754–2764. [Google Scholar] [CrossRef]
- Remesan, R.; Shamim, M.A.; Han, D. Model data selection using gamma test for daily solar radiation estimation. Hydrol. Process. 2008, 22, 4301–4309. [Google Scholar] [CrossRef]
- Ashrafzadeh, A.; Ghorbani, M.A.; Biazar, S.M.; Yaseen, Z.M. Evaporation process modelling over northern Iran: Application of an integrative data-intelligence model with the krill herd optimization algorithm. Hydrol. Sci. J. 2019, 64, 1843–1856. [Google Scholar] [CrossRef]
- Khaledian, M.R.; Isazadeh, M.; Biazar, S.M.; Pham, Q.B. Simulating Caspian Sea surface water level by artificial neural network and support vector machine models. Acta Geophys. 2020, 68, 553–563. [Google Scholar] [CrossRef]
- Rahimi, J.; Ebrahimpour, M.; Khalili, A. Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran. Theor. Appl. Climatol. 2013, 112, 409–418. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Evans, D.; Jones, A.J. A proof of the Gamma test. Proc. R. Soc. A Math. Phys. Eng. Sci. 2002, 458, 2759–2799. [Google Scholar] [CrossRef]
- Moghaddamnia, A.; Ghafari Gousheh, M.; Piri, J.; Amin, S.; Han, D. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv. Water Resour. 2009, 32, 88–97. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Niu, J.; Liao, D. Entropy-based investigation on the precipitation variability over the Hexi Corridor in China. Entropy 2017, 19, 660. [Google Scholar] [CrossRef] [Green Version]
- Reza, F.M. An Introduction to Information Theory; Courier Corporation: North Chelmsford, MA, USA, 1994; ISBN 0486682102. [Google Scholar]
- Mohammadi, B.; Linh, N.T.T.; Pham, Q.B.; Ahmed, A.N.; Vojteková, J.; Guan, Y.; Abba, S.I.; El-Shafie, A. Adaptive neuro-fuzzy inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series. Hydrol. Sci. J. 2020, 65. [Google Scholar] [CrossRef]
- Jang, J.S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Halabi, L.M.; Mekhilef, S.; Hossain, M. Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation. Appl. Energy 2018, 213, 247–261. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems; MT Press: Berkeley, CA, USA, 2019. [Google Scholar]
- Jahani, B.; Mohammadi, B. A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran. Theor. Appl. Climatol. 2019, 137, 1257–1269. [Google Scholar] [CrossRef]
- Jaramillo, J.H.; Bhadury, J.; Batta, R. On the use of genetic algorithms to solve location problems. Comput. Oper. Res. 2002, 29, 761–779. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. New optimizer using particle swarm theory. In Proceedings of the International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995. [Google Scholar]
- Mohammadi, B.; Ahmadi, F.; Mehdizadeh, S.; Guan, Y.; Pham, Q.B.; Linh, N.T.T.; Tri, D.Q. Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling. Water Resour. Manag. 2020, 34, 3387–3409. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G. Heuristic self-organization in problems of engineering cybernetics. Automatica 1970, 6, 207–219. [Google Scholar] [CrossRef]
- Aghelpour, P.; Varshavian, V. Evaluation of stochastic and artificial intelligence models in modeling and predicting of river daily flow time series. Stoch. Environ. Res. Risk Assess. 2020, 34, 33–50. [Google Scholar] [CrossRef]
- Ashrafzadeh, A.; Kişi, O.; Aghelpour, P.; Biazar, S.M.; Masouleh, M.A. Comparative study of time series models, support vector machines, and GMDH in forecasting long-term evapotranspiration rates in northern Iran. J. Irrig. Drain. Eng. 2020, 146, 4020010. [Google Scholar] [CrossRef]
- Aghelpour, P.; Guan, Y.; Bahrami-Pichaghchi, H.; Mohammadi, B.; Kisi, O.; Zhang, D. Using the MODIS Sensor for Snow Cover Modeling and the Assessment of Drought Effects on Snow Cover in a Mountainous Area. Remote Sens. 2020, 12, 3437. [Google Scholar] [CrossRef]
- Araghinejad, S. Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering; Springer Science and Business Media: Berlin, Germany, 2014; Volume 67. [Google Scholar]
- Houichi, L.; Dechemi, N.; Heddam, S.; Achour, B. An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel. J. Hydroinform. 2013, 15, 147–154. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Mohammadi, B.; Mehdizadeh, S. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agric. Water Manag. 2020, 237, 106145. [Google Scholar] [CrossRef]
- Moazenzadeh, R.; Mohammadi, B. Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature. Geoderma 2019, 353, 152–171. [Google Scholar] [CrossRef]
- Mohammadi, B.; Aghashariatmadari, Z. Estimation of solar radiation using neighboring stations through hybrid support vector regression boosted by Krill Herd algorithm. Arab. J. Geosci. 2020, 13, 1–16. [Google Scholar] [CrossRef]
- Guan, Y.; Mohammadi, B.; Pham, Q.B.; Adarsh, S.; Balkhair, K.S.; Rahman, K.U.; Linh, N.T.T.; Tri, D.Q. A novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm model. Theor. Appl. Climatol. 2020, 142, 349–367. [Google Scholar] [CrossRef]
- Biazar, S.M.; Fard, A.F.; Singh, V.P.; Dinpashoh, Y.; Majnooni-Heris, A. Estimation of Evaporation from Saline-Water with More Efficient Input Variables. Pure Appl. Geophys. 2020, 177, 5599–5619. [Google Scholar] [CrossRef]
- Biazar, S.M.; Fard, A.F.; Singh, V.P.; Dinpashoh, Y.; Majnooni-Heris, A. Estimation of evaporation from saline water. Environ. Monit. Assess. 2020, 192, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Aghelpour, P.; Mohammadi, B.; Biazar, S.M. Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA. Theor. Appl. Climatol. 2019, 138, 1471–1480. [Google Scholar] [CrossRef]
Station | X | Y | Z | Period | Mean | St. Dev. (a) | Max. (b) | Min. (c) | Skew. (d) | Annual Mean | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P (e) (mm) | T (f) (°C) | P (mm) | T (°C) | P (mm) | T (°C) | P (mm) | T (°C) | P (mm) | T (°C) | P (mm) | T (°C) | |||||
Anar | 30.88 | 55.25 | 1408.80 | 1986–2017 | 5.88 | 20.32 | 10.69 | 8.93 | 92.10 | 35.50 | 0.00 | 0.70 | 2.86 | −0.08 | 70.56 | 20.32 |
Biarjmand | 36.05 | 55.83 | 1106.20 | 1992–2017 | 10.14 | 16.36 | 13.77 | 9.71 | 85.30 | 32.10 | 0.00 | −4.40 | 2.48 | −0.11 | 121.68 | 16.36 |
Boshrouyeh | 33.90 | 57.45 | 885.00 | 1988–2017 | 7.17 | 21.09 | 11.39 | 10.33 | 78.70 | 36.60 | 0.00 | −5.80 | 2.21 | −0.15 | 86.04 | 21.09 |
East Isfahan | 32.67 | 51.87 | 1543.00 | 1980–2017 | 8.44 | 15.42 | 12.56 | 9.55 | 86.00 | 31.70 | 0.00 | −2.60 | 2.20 | −0.03 | 101.28 | 15.42 |
Isfahan | 32.62 | 51.67 | 1550.40 | 1951–2017 | 10.41 | 16.45 | 15.59 | 9.26 | 148.20 | 32.00 | 0.00 | −3.40 | 2.51 | −0.05 | 124.92 | 16.45 |
Kabootarabad | 32.52 | 51.85 | 1545.00 | 1992–2017 | 9.41 | 17.93 | 13.54 | 9.58 | 69.00 | 33.20 | 0.00 | −2.10 | 1.81 | −0.04 | 112.92 | 17.93 |
Kashan | 33.98 | 51.45 | 982.30 | 1967–2017 | 11.10 | 19.82 | 16.38 | 10.29 | 124.10 | 37.50 | 0.00 | −5.10 | 2.51 | −0.08 | 133.20 | 19.82 |
Marvast | 30.50 | 54.25 | 1546.60 | 1997–2017 | 5.34 | 19.85 | 10.14 | 8.93 | 64.80 | 34.20 | 0.00 | 3.60 | 2.69 | −0.03 | 64.08 | 19.85 |
Naein | 32.85 | 53.08 | 1549.00 | 1993–2017 | 7.87 | 18.66 | 12.44 | 9.35 | 85.60 | 34.30 | 0.00 | −3.40 | 2.55 | −0.10 | 94.44 | 18.66 |
Yazd | 31.90 | 54.28 | 1237.20 | 1953–2017 | 4.72 | 19.59 | 8.76 | 9.56 | 69.20 | 36.10 | 0.00 | −1.10 | 3.11 | −0.08 | 56.64 | 19.59 |
SPI Classes | Probability Limits | Description |
---|---|---|
SPI ≥ 2 | ≥97% | Extremely wet |
2 > SPI ≥ 1.5 | 93.3–97.7% | Severely wet |
1.5 > SPI ≥ 1 | 84.1–93.3% | Moderately wet |
1 > SPI > −1 | 15.9–84.1% | Normal |
−1 ≥ SPI > −1.5 | 6.7–15.9% | Moderately dry |
−1.5 ≥ SPI > −2 | 2.3–6.7% | Severely dry |
−2 ≥ SPI | 2.3% ≥ | Extremely dry |
Station | Variable | Time Lags (i) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
Anar | P(a)t-i | ●∆ | ∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ● | ●∆ | ||
T(b)t-i | ∆ | ●∆ | ● | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ●∆ | |
JDIt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | |
Biarjmand | Pt-i | ●∆ | ●∆ | ∆ | ●∆ | ∆ | ∆ | ∆ | ∆ | ∆ | |||
Tt-i | ●∆ | ∆ | ∆ | ∆ | ●∆ | ∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ∆ | |
JDIt-i | ∆ | ●∆ | ∆ | ●∆ | ∆ | ∆ | ●∆ | ●∆ | ∆ | ∆ | ∆ | ∆ | |
Boshrouyeh | Pt-i | ●∆ | ●∆ | ●∆ | ∆ | ∆ | ●∆ | ●∆ | ● | ||||
Tt-i | ● | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | |||||
JDIt-i | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | |
East of Isfahan | Pt-i | ●∆ | ●∆ | ● | ∆ | ∆ | ∆ | ∆ | ●∆ | ● | ∆ | ●∆ | |
Tt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ●∆ | ∆ | ●∆ | ●∆ | ●∆ | ||
JDIt-i | ●∆ | ∆ | ∆ | ∆ | ∆ | ●∆ | ●∆ | ∆ | ●∆ | ●∆ | ●∆ | ●∆ | |
Isfahan | Pt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | |
Tt-i | ●∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ●∆ | ∆ | ●∆ | ∆ | ∆ | |
JDIt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | |
Kabootarabad | Pt-i | ●∆ | ∆ | ● | ∆ | ∆ | ●∆ | ∆ | ●∆ | ●∆ | ∆ | ||
Tt-i | ∆ | ●∆ | ●∆ | ●∆ | ● | ● | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | |
JDIt-i | ∆ | ∆ | ●∆ | ●∆ | ●∆ | ∆ | ∆ | ∆ | ●∆ | ∆ | ∆ | ●∆ | |
Kashan | Pt-i | ∆ | ●∆ | ●∆ | ∆ | ∆ | ∆ | ●∆ | ●∆ | ●∆ | |||
Tt-i | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ●∆ | |
JDIt-i | ●∆ | ●∆ | ●∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ●∆ | ●∆ | ∆ | ●∆ | |
Marvast | Pt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ● | ● | ●∆ | ||||
Tt-i | ●∆ | ●∆ | ∆ | ∆ | ∆ | ● | ●∆ | ●∆ | ●∆ | ∆ | ∆ | ∆ | |
JDIt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | |
Naein | Pt-i | ●∆ | ∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | |
Tt-i | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | |||
JDIt-i | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | |
Yazd | Pt-i | ●∆ | ●∆ | ●∆ | ∆ | ●∆ | ∆ | ●∆ | ∆ | ∆ | ∆ | ●∆ | |
Tt-i | ●∆ | ∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | |
JDIt-i | ∆ | ●∆ | ∆ | ∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ |
Station | Variable | Time Lags (i) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
Anar | P(a)t-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | |
T(b)t-i | ∆ | ● | ∆ | ∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | |||
MSPIt-i | ∆ | ●∆ | ●∆ | ●∆ | ● | ●∆ | ●∆ | ● | ● | ●∆ | ●∆ | ● | |
Biarjmand | Pt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ∆ | |
Tt-i | ● | ●∆ | ∆ | ●∆ | ●∆ | ● | ●∆ | ●∆ | ●∆ | ●∆ | ● | ||
MSPIt-i | ●∆ | ●∆ | ∆ | ●∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ●∆ | ●∆ | ●∆ | |
Boshrouyeh | Pt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ●∆ | |
Tt-i | ●∆ | ● | ● | ●∆ | |||||||||
MSPIt-i | ● | ●∆ | ∆ | ●∆ | ● | ●∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ||
East of Isfahan | Pt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ● | ● |
Tt-i | ●∆ | ● | ● | ●∆ | ∆ | ●∆ | ● | ● | ●∆ | ● | ●∆ | ||
MSPIt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ● | ∆ | ∆ | ∆ | |
Isfahan | Pt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ● | ●∆ | ● | ● | ●∆ | |
Tt-i | ● | ∆ | ∆ | ●∆ | ∆ | ∆ | ∆ | ∆ | ● | ●∆ | ∆ | ∆ | |
MSPIt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ●∆ | ●∆ | ●∆ | |
Kabootarabad | Pt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ● | ∆ | |
Tt-i | ● | ● | ● | ●∆ | ● | ●∆ | ●∆ | ● | ● | ● | ●∆ | ● | |
MSPIt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | |
Kashan | Pt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ∆ | ●∆ |
Tt-i | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | |||||
MSPIt-i | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | |
Marvast | Pt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ● | ● | ●∆ | ● | |
Tt-i | ∆ | ∆ | ● | ∆ | ∆ | ∆ | ∆ | ●∆ | ∆ | ||||
MSPIt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | |
Naein | Pt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ●∆ | ∆ | ●∆ | ●∆ | ●∆ |
Tt-i | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | ∆ | |||||
MSPIt-i | ∆ | ∆ | ∆ | ●∆ | ●∆ | ●∆ | ∆ | ∆ | ∆ | ●∆ | ∆ | ∆ | |
Yazd | Pt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ∆ | ●∆ | ●∆ | ●∆ | |
Tt-i | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ● | ●∆ | ●∆ | ●∆ | ●∆ | |
MSPIt-i | ●∆ | ∆ | ●∆ | ∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ | ●∆ |
Station | Input Definer | ANFIS | ANFIS-DE | ANFIS-GA | ANFIS-PSO | GMDH | GRNN | LSSVM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | WI | MAE | RMSE | WI | MAE | RMSE | WI | MAE | RMSE | WI | MAE | RMSE | WI | MAE | RMSE | WI | MAE | RMSE | WI | ||
Anar | Gamma | 0.562 | 0.760 | 0.760 | 0.525 | 0.654 | 0.778 | 0.543 | 0.676 | 0.762 | 0.576 | 0.743 | 0.776 | 0.415 | 0.534 | 0.855 | 0.559 | 0.690 | 0.678 | 0.461 | 0.605 | 0.803 |
Entropy | 0.576 | 0.921 | 0.678 | 0.512 | 0.664 | 0.776 | 0.513 | 0.667 | 0.778 | 0.503 | 0.696 | 0.784 | 0.398 | 0.523 | 0.862 | 0.544 | 0.675 | 0.683 | 0.468 | 0.618 | 0.797 | |
Biarjmand | Gamma | 0.673 | 0.900 | 0.681 | 0.591 | 0.741 | 0.725 | 0.574 | 0.735 | 0.727 | 0.610 | 0.798 | 0.738 | 0.543 | 0.693 | 0.793 | 0.710 | 0.850 | 0.548 | 0.615 | 0.749 | 0.697 |
Entropy | 0.682 | 0.867 | 0.731 | 0.582 | 0.765 | 0.728 | 0.575 | 0.746 | 0.730 | 0.624 | 0.825 | 0.712 | 0.531 | 0.677 | 0.790 | 0.750 | 0.890 | 0.497 | 0.607 | 0.743 | 0.713 | |
Boshrouyeh | Gamma | 0.675 | 1.166 | 0.501 | 0.652 | 0.802 | 0.502 | 0.693 | 0.818 | 0.501 | 0.729 | 0.871 | 0.450 | 0.607 | 0.722 | 0.505 | 0.674 | 0.818 | 0.434 | 0.721 | 0.850 | 0.520 |
Entropy | 0.784 | 1.149 | 0.484 | 0.471 | 0.593 | 0.731 | 0.502 | 0.642 | 0.719 | 0.584 | 0.749 | 0.687 | 0.338 | 0.456 | 0.864 | 0.661 | 0.777 | 0.564 | 0.491 | 0.644 | 0.739 | |
East Isfahan | Gamma | 0.626 | 1.207 | 0.674 | 0.517 | 0.723 | 0.699 | 0.524 | 0.737 | 0.694 | 0.594 | 0.826 | 0.644 | 0.466 | 0.653 | 0.780 | 0.649 | 0.851 | 0.536 | 0.531 | 0.731 | 0.670 |
Entropy | 0.696 | 1.198 | 0.567 | 0.559 | 0.758 | 0.685 | 0.555 | 0.747 | 0.696 | 0.609 | 0.815 | 0.664 | 0.453 | 0.645 | 0.792 | 0.661 | 0.824 | 0.553 | 0.541 | 0.734 | 0.684 | |
Isfahan | Gamma | 0.773 | 0.924 | 0.770 | 0.573 | 0.771 | 0.788 | 0.566 | 0.768 | 0.784 | 0.609 | 0.823 | 0.764 | 0.534 | 0.721 | 0.803 | 0.706 | 0.904 | 0.630 | 0.572 | 0.770 | 0.777 |
Entropy | 0.823 | 1.072 | 0.696 | 0.570 | 0.777 | 0.786 | 0.588 | 0.799 | 0.782 | 0.629 | 0.839 | 0.756 | 0.534 | 0.734 | 0.794 | 0.707 | 0.901 | 0.618 | 0.574 | 0.774 | 0.772 | |
Kabootarabad | Gamma | 0.648 | 0.887 | 0.638 | 0.599 | 0.770 | 0.611 | 0.590 | 0.764 | 0.614 | 0.601 | 0.808 | 0.622 | 0.491 | 0.656 | 0.739 | 0.630 | 0.746 | 0.611 | 0.573 | 0.740 | 0.620 |
Entropy | 0.698 | 0.854 | 0.727 | 0.525 | 0.684 | 0.712 | 0.551 | 0.724 | 0.704 | 0.527 | 0.706 | 0.755 | 0.391 | 0.555 | 0.823 | 0.583 | 0.733 | 0.599 | 0.511 | 0.669 | 0.703 | |
Kashan | Gamma | 0.604 | 0.829 | 0.650 | 0.489 | 0.658 | 0.698 | 0.486 | 0.656 | 0.717 | 0.521 | 0.724 | 0.664 | 0.440 | 0.619 | 0.761 | 0.634 | 0.786 | 0.236 | 0.474 | 0.643 | 0.716 |
Entropy | 0.652 | 0.840 | 0.652 | 0.491 | 0.676 | 0.701 | 0.495 | 0.696 | 0.690 | 0.574 | 0.792 | 0.638 | 0.455 | 0.615 | 0.745 | 0.585 | 0.720 | 0.543 | 0.490 | 0.656 | 0.691 | |
Marvast | Gamma | 0.794 | 1.134 | 0.702 | 0.648 | 0.814 | 0.785 | 0.611 | 0.766 | 0.805 | 0.755 | 0.957 | 0.712 | 0.461 | 0.576 | 0.884 | 0.845 | 1.021 | 0.598 | 0.661 | 0.812 | 0.711 |
Entropy | 0.872 | 1.092 | 0.699 | 0.628 | 0.768 | 0.782 | 0.623 | 0.780 | 0.783 | 0.655 | 0.856 | 0.749 | 0.421 | 0.542 | 0.899 | 0.849 | 1.003 | 0.615 | 0.682 | 0.843 | 0.689 | |
Naein | Gamma | 0.764 | 0.985 | 0.669 | 0.694 | 0.874 | 0.533 | 0.689 | 0.858 | 0.539 | 0.697 | 0.890 | 0.599 | 0.557 | 0.711 | 0.732 | 0.748 | 0.907 | 0.469 | 0.655 | 0.831 | 0.620 |
Entropy | 0.877 | 0.958 | 0.615 | 0.573 | 0.737 | 0.734 | 0.607 | 0.803 | 0.679 | 0.787 | 1.121 | 0.507 | 0.444 | 0.582 | 0.837 | 0.746 | 0.881 | 0.368 | 0.558 | 0.723 | 0.706 | |
Yazd | Gamma | 0.748 | 0.815 | 0.721 | 0.548 | 0.689 | 0.609 | 0.476 | 0.615 | 0.735 | 0.445 | 0.595 | 0.808 | 0.461 | 0.611 | 0.770 | 0.522 | 0.657 | 0.693 | 0.451 | 0.601 | 0.777 |
Entropy | 0.851 | 0.724 | 0.734 | 0.507 | 0.651 | 0.713 | 0.478 | 0.627 | 0.754 | 0.475 | 0.628 | 0.760 | 0.399 | 0.551 | 0.835 | 0.528 | 0.669 | 0.687 | 0.431 | 0.578 | 0.798 |
Station | Input Definer | ANFIS | ANFIS-DE | ANFIS-GA | ANFIS-PSO | GMDH | GRNN | LSSVM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | WI | MAE | RMSE | WI | MAE | RMSE | WI | MAE | RMSE | WI | MAE | RMSE | WI | MAE | RMSE | WI | MAE | RMSE | WI | ||
Anar | Gamma | 0.582 | 0.742 | 0.886 | 0.466 | 0.627 | 0.894 | 0.487 | 0.677 | 0.869 | 0.530 | 0.768 | 0.848 | 0.381 | 0.498 | 0.943 | 0.671 | 0.910 | 0.674 | 0.574 | 0.834 | 0.768 |
Entropy | 0.596 | 0.793 | 0.833 | 0.417 | 0.562 | 0.919 | 0.434 | 0.590 | 0.910 | 0.562 | 0.853 | 0.787 | 0.271 | 0.409 | 0.964 | 0.668 | 0.884 | 0.712 | 0.510 | 0.767 | 0.816 | |
Biarjmand | Gamma | 0.684 | 0.882 | 0.829 | 0.467 | 0.639 | 0.879 | 0.474 | 0.656 | 0.870 | 0.584 | 0.818 | 0.820 | 0.420 | 0.564 | 0.917 | 0.699 | 0.899 | 0.636 | 0.481 | 0.639 | 0.873 |
Entropy | 0.694 | 0.824 | 0.859 | 0.487 | 0.656 | 0.876 | 0.501 | 0.655 | 0.876 | 0.570 | 0.737 | 0.843 | 0.398 | 0.568 | 0.911 | 0.731 | 0.942 | 0.531 | 0.487 | 0.648 | 0.872 | |
Boshrouyeh | Gamma | 1.235 | 1.086 | 0.772 | 0.395 | 0.535 | 0.910 | 0.386 | 0.528 | 0.912 | 0.459 | 0.649 | 0.869 | 0.325 | 0.476 | 0.938 | 0.772 | 1.068 | 0.465 | 0.436 | 0.600 | 0.873 |
Entropy | 1.357 | 1.080 | 0.779 | 0.448 | 0.609 | 0.875 | 0.446 | 0.606 | 0.876 | 0.535 | 0.821 | 0.807 | 0.397 | 0.571 | 0.897 | 0.752 | 1.042 | 0.471 | 0.537 | 0.734 | 0.799 | |
East Isfahan | Gamma | 0.586 | 0.905 | 0.781 | 0.379 | 0.552 | 0.898 | 0.377 | 0.549 | 0.900 | 0.416 | 0.615 | 0.875 | 0.322 | 0.498 | 0.916 | 0.526 | 0.701 | 0.774 | 0.365 | 0.530 | 0.901 |
Entropy | 0.654 | 0.881 | 0.770 | 0.376 | 0.563 | 0.894 | 0.365 | 0.539 | 0.902 | 0.453 | 0.648 | 0.869 | 0.327 | 0.499 | 0.910 | 0.532 | 0.674 | 0.823 | 0.372 | 0.541 | 0.899 | |
Isfahan | Gamma | 0.637 | 0.686 | 0.879 | 0.354 | 0.505 | 0.929 | 0.352 | 0.507 | 0.929 | 0.384 | 0.544 | 0.919 | 0.333 | 0.492 | 0.932 | 0.550 | 0.711 | 0.829 | 0.357 | 0.507 | 0.928 |
Entropy | 0.683 | 0.763 | 0.864 | 0.352 | 0.508 | 0.928 | 0.357 | 0.511 | 0.928 | 0.383 | 0.551 | 0.915 | 0.330 | 0.492 | 0.935 | 0.560 | 0.723 | 0.821 | 0.364 | 0.514 | 0.924 | |
Kabootarabad | Gamma | 0.623 | 0.776 | 0.821 | 0.427 | 0.575 | 0.863 | 0.457 | 0.639 | 0.830 | 0.529 | 0.790 | 0.726 | 0.347 | 0.474 | 0.908 | 0.502 | 0.704 | 0.736 | 0.429 | 0.596 | 0.841 |
Entropy | 0.666 | 0.665 | 0.859 | 0.421 | 0.573 | 0.862 | 0.447 | 0.577 | 0.866 | 0.424 | 0.552 | 0.888 | 0.335 | 0.454 | 0.919 | 0.486 | 0.677 | 0.761 | 0.430 | 0.591 | 0.843 | |
Kashan | Gamma | 0.707 | 0.613 | 0.799 | 0.434 | 0.586 | 0.742 | 0.432 | 0.600 | 0.737 | 0.456 | 0.608 | 0.758 | 0.479 | 0.620 | 0.707 | 0.452 | 0.603 | 0.747 | 0.425 | 0.574 | 0.788 |
Entropy | 0.588 | 0.688 | 0.758 | 0.347 | 0.502 | 0.842 | 0.342 | 0.501 | 0.844 | 0.380 | 0.537 | 0.826 | 0.326 | 0.464 | 0.866 | 0.425 | 0.551 | 0.782 | 0.333 | 0.494 | 0.844 | |
Marvast | Gamma | 0.590 | 0.882 | 0.783 | 0.382 | 0.490 | 0.916 | 0.368 | 0.463 | 0.924 | 0.428 | 0.634 | 0.877 | 0.296 | 0.389 | 0.951 | 0.802 | 0.953 | 0.633 | 0.395 | 0.492 | 0.910 |
Entropy | 0.640 | 0.819 | 0.796 | 0.382 | 0.477 | 0.920 | 0.382 | 0.477 | 0.920 | 0.416 | 0.547 | 0.908 | 0.280 | 0.374 | 0.955 | 0.741 | 0.906 | 0.680 | 0.379 | 0.479 | 0.913 | |
Naein | Gamma | 0.643 | 0.888 | 0.805 | 0.590 | 0.770 | 0.770 | 0.576 | 0.765 | 0.775 | 0.634 | 0.827 | 0.761 | 0.456 | 0.637 | 0.855 | 0.679 | 0.838 | 0.668 | 0.613 | 0.802 | 0.743 |
Entropy | 0.724 | 0.892 | 0.767 | 0.362 | 0.528 | 0.910 | 0.363 | 0.518 | 0.915 | 0.521 | 0.773 | 0.829 | 0.290 | 0.458 | 0.938 | 0.692 | 0.847 | 0.651 | 0.382 | 0.550 | 0.897 | |
Yazd | Gamma | 0.592 | 0.666 | 0.805 | 0.306 | 0.462 | 0.897 | 0.306 | 0.462 | 0.897 | 0.300 | 0.502 | 0.881 | 0.253 | 0.389 | 0.929 | 0.465 | 0.603 | 0.764 | 0.306 | 0.458 | 0.896 |
Entropy | 0.633 | 0.627 | 0.844 | 0.307 | 0.463 | 0.897 | 0.305 | 0.461 | 0.900 | 0.293 | 0.460 | 0.901 | 0.257 | 0.419 | 0.917 | 0.470 | 0.610 | 0.764 | 0.305 | 0.458 | 0.897 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghelpour, P.; Mohammadi, B.; Biazar, S.M.; Kisi, O.; Sourmirinezhad, Z. A Theoretical Approach for Forecasting Different Types of Drought Simultaneously, Using Entropy Theory and Machine-Learning Methods. ISPRS Int. J. Geo-Inf. 2020, 9, 701. https://doi.org/10.3390/ijgi9120701
Aghelpour P, Mohammadi B, Biazar SM, Kisi O, Sourmirinezhad Z. A Theoretical Approach for Forecasting Different Types of Drought Simultaneously, Using Entropy Theory and Machine-Learning Methods. ISPRS International Journal of Geo-Information. 2020; 9(12):701. https://doi.org/10.3390/ijgi9120701
Chicago/Turabian StyleAghelpour, Pouya, Babak Mohammadi, Seyed Mostafa Biazar, Ozgur Kisi, and Zohreh Sourmirinezhad. 2020. "A Theoretical Approach for Forecasting Different Types of Drought Simultaneously, Using Entropy Theory and Machine-Learning Methods" ISPRS International Journal of Geo-Information 9, no. 12: 701. https://doi.org/10.3390/ijgi9120701
APA StyleAghelpour, P., Mohammadi, B., Biazar, S. M., Kisi, O., & Sourmirinezhad, Z. (2020). A Theoretical Approach for Forecasting Different Types of Drought Simultaneously, Using Entropy Theory and Machine-Learning Methods. ISPRS International Journal of Geo-Information, 9(12), 701. https://doi.org/10.3390/ijgi9120701