Land Suitability for Coffee (Coffea arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS
"> Figure 1
<p>Geographical location of the Amazonas region, Peru.</p> "> Figure 2
<p>Flow chart of the methodology used for the analysis of the suitability of the territory for coffee growing in the Amazonas region, Peru.</p> "> Figure 3
<p>Hierarchical structure of criteria and sub-criteria considered in the analysis of coffee suitability in the Amazonas region, Peru.</p> "> Figure 4
<p>Suitability map of the climatological (<b>a</b>–<b>f</b>), edaphological (<b>g</b>–<b>k</b>), physiographic (<b>l</b>–<b>n</b>) and socioeconomic (<b>o</b>–<b>r</b>) sub-criteria for coffee growth in the Amazonas region, Peru.</p> "> Figure 5
<p>Suitability maps for coffee diseases and pests in the Amazonas region, Peru.</p> "> Figure 6
<p>Suitability map (<b>a</b>) Climatological, (<b>b</b>) Edaphological, (<b>c</b>) Physiographic, (<b>d</b>) Socioeconomic, and (<b>e</b>) Coffee growing diseases and pests in the Amazonas region, Peru.</p> "> Figure 7
<p>Suitability map of the territory for coffee production: (<b>a</b>) without restrictions and (<b>b</b>) with restrictions due to diseases and pests in the Amazonas region, Peru.</p> "> Figure 8
<p>Current coffee growing areas and land suitability modeled in the Amazonas region, Peru.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Scheme
2.3. Identification and Selection of Criteria, Sub-Criteria and Restrictions
2.4. Resources and Mapping
2.5. Multiple Criteria Evaluation (MCE) and Analytical Hierarchy Process (AHP)
2.6. Obtaining Sub-Models and Suitability Model for Coffee Growing
3. Results
3.1. Criteria Weighting for the Analysis of Land Suitability
3.2. Sub-Criteria Maps Generated According to Land Suitability Thresholds
3.3. Suitability Sub-Model (Criteria) Maps
3.4. Land Suitability Models for Coffee Growing
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ICO. Trade Statistics-February 2020. Available online: http://www.ico.org/ (accessed on 2 April 2020).
- dos Anjos, F.; Belik, W.; Velleda-Caldas, N. La caficultura en Brasil: Evolución, situación actual y nuevos retos cara al futuro. Mundo Agrar. 2011, 12, 28. [Google Scholar]
- MINAGRI. El Café Peruano. Available online: http://minagri.gob.pe/portal/485-feria-scaa/10775-el-cafe-peruano (accessed on 16 April 2020).
- MINAGRI. Requerimientos Agroclimáticos del Cultivo de Café: Ficha Técnica N° 11; Ministerio de Agricultura y Riego: Lima, Perú, 2019. [Google Scholar]
- ICO. Exports of Coffee by Exporting Countries. Available online: http://www.ico.org/trade_statistics.asp?section=Statistics (accessed on 2 April 2020).
- Pham, Y.; Reardon-Smith, K.; Mushtaq, S.; Cockfield, G. The impact of climate change and variability on coffee production: A systematic review. Clim. Chang. 2019, 156, 609–630. [Google Scholar] [CrossRef]
- PNUMA. La agricultura, vulnerable al cambio climático. In Boletín El PNUMA en América Latina y el Caribe; PNUMA: Ciudad de Panamá, Panamá, 2014; Volume 2. [Google Scholar]
- CEPAL; CAC-SICA. Impactos Potenciales del Cambio Climático Sobre el Café en Centroamérica 2014; Comisión Económica para América Latina y el Caribe y Consejo Agropecuario Centroamericano del Sistema de la Integración Centroamericano: Ciudad de México, México, 2014. [Google Scholar]
- Arizpe, N.; Orellana, R.; Conde, E.; Hernández, J.; Villers, M. Impacts of climatic change on coffee flowering and fruit development in Veracruz, Mexico. Interciencia 2009, 34, 322–329. [Google Scholar]
- Jaramillo, J.; Chabi-Olaye, A.; Kamonjo, C.; Jaramillo, A.; Vega, F.E.; Poehling, H.-M.; Borgemeister, C. Thermal Tolerance of the Coffee Berry Borer Hypothenemus hampei: Predictions of Climate Change Impact on a Tropical Insect Pest. PLoS ONE 2009, 4, e6487. [Google Scholar] [CrossRef] [Green Version]
- Rojas S., Á.; Hartman U., K.; Almonacid M., R. El impacto de la producción de café sobre la biodiversidad, la transformación del paisaje y las especies exóticas invasoras. Ambient. Desarro. 2012, 16, 93–104. [Google Scholar]
- Chen, J. GIS-based multi-criteria analysis for land use suitability assessment in City of Regina. Environ. Syst. Res. 2014, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Akinci, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Sediyama, G.C.; Ferreira De Melo Junior, J.C.; Rosa, A.; Santos, D.; Ribeiro, A.; Heil Costa, M.; Hamakawa, P.J.; Nogueira Da Costa, J.M.; Cláudio Costa, L. Climatologial zoning for arabic coffee (Coffea arabica L.) in the state of Minas Gerais, Brazil. Rev. Bras. Agrometeorol. 2001, 9, 501–509. [Google Scholar]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Mendas, A.; Delali, A. Integration of MultiCriteria Decision Analysis in GIS to develop land suitability for agriculture: Application to durum wheat cultivation in the region of Mleta in Algeria. Comput. Electron. Agric. 2012, 83, 117–126. [Google Scholar] [CrossRef]
- Dedeoğlu, M.; Dengiz, O. Generating of land suitability index for wheat with hybrid system aproach using AHP and GIS. Comput. Electron. Agric. 2019, 167, 105062. [Google Scholar] [CrossRef]
- Bagherzadeh, A.; Gholizadeh, A. Modeling land suitability evaluation for wheat production by parametric and TOPSIS approaches using GIS, northeast of Iran. Model. Earth Syst. Environ. 2016, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lara Estrada, L.; Rasche, L.; Schneider, U.A. Modeling land suitability for Coffea arabica L. in Central America. Environ. Model. Softw. 2017, 95, 196–209. [Google Scholar] [CrossRef]
- Mighty, M.A. Site suitability and the analytic hierarchy process: How GIS analysis can improve the competitive advantage of the Jamaican coffee industry. Appl. Geogr. 2015, 58, 84–93. [Google Scholar] [CrossRef]
- Arango-Argoti, M.A. Zonificación Agroecológica del Café en Puerto Rico y Análisis Estructural y de Composición de Especies Arbóreas Presentes en el Agroecosistema Cafetero. Master’s Thesis, Department of Crops and Agro-Environmental Sciences, College of Agricultural Sciences, Universidad de Puerto Rico, Recinto de Mayagüez (RUM), Mayagüez, Puerto Rico, 2007. [Google Scholar]
- González González, H.A.; Hernández Santana, J.R. Zonificación agroecológica del Coffea arabica en el municipio Atoyac de Álvarez, Guerrero, México. Investig. Geogr. 2016, 2016, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Pilevar, A.R.; Matinfar, H.R.; Sohrabi, A.; Sarmadian, F. Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming. Ecol. Indic. 2020, 110, 105887. [Google Scholar] [CrossRef]
- Tashayo, B.; Honarbakhsh, A.; Akbari, M.; Eftekhari, M. Land suitability assessment for maize farming using a GIS-AHP method for a semi-arid region, Iran. J. Saudi Soc. Agric. Sci. 2020, 19, 332–338. [Google Scholar] [CrossRef]
- Ostovari, Y.; Honarbakhsh, A.; Sangoony, H.; Zolfaghari, F.; Maleki, K.; Ingram, B. GIS and multi-criteria decision-making analysis assessment of land suitability for rapeseed farming in calcareous soils of semi-arid regions. Ecol. Indic. 2019, 103, 479–487. [Google Scholar] [CrossRef]
- Ali, S.; Techato, K.; Taweenkun, J.; Gyawali, S. Assessment of land use suitability for natural rubber using GIS in the U-tapao River basin, Thailand. Kasetsart J. Soc. Sci. 2020, 41, 110–117. [Google Scholar] [CrossRef]
- Store, R.; Kangas, J. Integrating spatial multi-criteria evaluation and expert knowledge for GIS-based habitat suitability modelling. Landsc. Urban Plan. 2001, 55, 79–93. [Google Scholar] [CrossRef]
- Rono, F.; Mundia, C.C. GIS Based Suitability Analysis for Coffee Farming in Kenya. Int. J. Geomat. Geosci. 2016, 6, 1722–1733. [Google Scholar]
- Lipa Quisbel, G.H.; Goyzueta Hancco, Y. Zonificación y Modelamiento Agroecológico Para el Cultivo de café (Coffea Arábica l.) Utilizando la Tecnología de SIG y Teledetección en el CIP Tambopata–Sandia–Puno. Bachelor’s Thesis, Escuela Profesional de Ingeniería Agronómica, Ciencias de la Ingeniería, Universidad Nacional Del Antiplano, Puno, Perú, 2018. [Google Scholar]
- GRA; IIAP. Zonificación Ecológica y Económica (ZEE) del Departamento de Amazonas; Gobierno Regional de Amazonas (GRA) and Instituto de Investigaciones de la Amazonía Peruana (IIAP): Iquitos, Perú, 2010. [Google Scholar]
- MINAGRI. Región de Amazonas; Ministerio de Agricultura y riego: Lima, Perú, 2009. [Google Scholar]
- INEI. Resultados definitivos de los Censos Nacionales 2017: Amazonas. In Censos Nacionales 2017: XII de Población, VII de Vivienda y III de Comunidades Indígenas; INEI: Lima, Perú, 2017; pp. 1–11347. [Google Scholar]
- Díaz Vargas, C.; Carmen Willems, M. Línea de Base del Sector Cafe en el Perú. Documento de Trabajo; PNUD y PROMPERÚ: Lima, Perú, 2017. [Google Scholar]
- Moran-Centen, J.C.; Benavides-González, Á. Diagnóstico de suelos en cultivos de café (Coffea arabica L.), maíz (Zea mays L.) y frijol (Phaseolus vulgaris L.), comunidad de Santa Julia, El Crucero, Managua. La Calera 2015, 15, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Torres, A.; Massa-Sánchez, P. Producción de café y variables climáticas: El caso de Espíndola, Ecuador. Economía 2015, 15, 117–137. [Google Scholar]
- García Lópéz, J.C.; Posada Suárez, H.E.; Salazar Villareal, F.A. Factores de producción que influyen en la respuesta de genotipos de coffea arabica L. Bajo diversas condiciones ambientales de Colombia. Cenicafé 2015, 66, 30–57. [Google Scholar]
- Arcilla-Pulgarín, J. Factores que determinan la productividad del cafetal. In Sistemas de producción de café en Colombia; Arcilla, P.J., Farfán, V.F., Moreno, B.A., Salazar, G.L.F., Hincapié, G.E., Eds.; Cenicafé: Chinchiná, Colombia, 2007; pp. 62–86. ISBN 9789589819302. [Google Scholar]
- Kuit, M.; Jasen, D.M.; Van Thiet, N. Manual for Arabica Cultivation; Tan Lam Agricultural Product Joint Stock Company: Khe Sanh, Vietnam, 2004. [Google Scholar]
- SENASA. Monitoreo de Plagas en Café por Constantes Lluvias en la Región Amazonas. Available online: https://www.senasa.gob.pe/senasacontigo/senasa-monitoreo-de-plagas-en-cafe-por-constantes-lluvias-en-la-region-amazonas/ (accessed on 1 September 2020).
- de Camargo, M.B.P. The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia 2010, 69, 239–247. [Google Scholar] [CrossRef]
- Astigarra, A. ¿Cómo Afecta el Clima en la Producción del Café? Available online: http://www.amcce.org.mx/letras-de-cafe/post/como-afecta-el-clima-en-la-produccion-del-cafe (accessed on 16 April 2020).
- Rena, A.; Barros, R.; Maestri, M.; Söndahl, M. Coffe. In Handbook of Environmental Physiology of Fruit Crops; Schaffer, B., Andersen, P., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 101–122. [Google Scholar]
- Ortoloni, A. Parâmetros Climáticos ea Cafeicultura; Instituto Brasileiro do Café; Grupo Executivo de Racionalizaçao da Cafeicultura: Río de Janeiro, Brasil, 1970. [Google Scholar]
- Descroix, F.; Snoeck, J. Environmental Factors Suitable for Coffee Cultivation. In Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, Traders, and Researchers; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; pp. 164–177. ISBN 9783527307319. [Google Scholar]
- García-Benavides, J. Clima agrícola del cafeto (C. Arabica) y zonas potenciales en los andes de Venezuela. Agron. Trop. 1968, 18, 57–85. [Google Scholar]
- Descroix, F.; Wintgens, J.N. Establishing a Coffee Plantation. In Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, Traders, and Researchers; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; pp. 178–245. ISBN 9783527307319. [Google Scholar]
- Carvajal, J.F. Cafeto Cultivo y Fertilización, 2nd ed.; Instituto Internacional de la Potasa: Bema, Suiza, 1984. [Google Scholar]
- Alegre, C. Climates et caféiers d’Arabie. Agronomie Tropicale 1959, 14, 23–58. [Google Scholar]
- Haarer, A.E. Modern Coffee Production; Leonard Hill Limited London: London, UK, 1956. [Google Scholar]
- Sadeghian, S. La acidez del suelo una limitante común para la producción de café. In Avances Técnicos Cenicafé; Centro Nacional de Investigaciones de Café: Caldas, Colombia, 2016. [Google Scholar]
- Willson, K.C. Climate and Soil. In Coffee: Botany Biochemistry and Production of Beans an Beverage; Clifford, M.N., Willson, K.C., Eds.; Springer: New York, NY, USA, 1985; pp. 97–107. [Google Scholar]
- Rosas Arellano, J.; Escamilla Prado, E.; Ruiz Rosado, O. Relación de los nutrimentos del suelo con las características físicas y sensoriales del café orgánico. Terra Latinoam. 2008, 26, 375–384. [Google Scholar]
- USDA. Keys to Soil Taxonomy, 12th ed.; Natural Resources Conservation Service: Washington, DC, USA, 2014; ISBN 016085427X. [Google Scholar]
- Rojas, O. Determinación del potencial agroecológico para el cultivo del café (Coffea arabica) en Costa Rica. Turrialba 1990, 40, 1–7. [Google Scholar]
- Mesa, N. Selección de Suelos Para el Cafeto; Instituto Cubano del Libro: La Habana, Cuba, 1974; p. 51. [Google Scholar]
- Molina, E. El análisis de suelo y su Interpretación; Amino Grow Internacional: San Pedro, Costa Rica, 2011. [Google Scholar]
- Verheye, W. Management of agricultural land: Chemical and fertility aspects. Encycl. Life Suport Syst. 2017, 4, 1–32. [Google Scholar]
- Alvarado-Soto, M.; Rojas-Cuberto, G. El Cultivo y Beneficiado del Café, 1st ed.; Universidad Estatal a Distancia: San José, Costa Rica, 2007. [Google Scholar]
- Nzeyimana, I.; Hartemink, A.E.; Geissen, V. GIS-based multi-criteria analysis for Arabica coffee expansion in Rwanda. PLoS ONE 2014, 9, e107449. [Google Scholar] [CrossRef] [PubMed]
- Toranzo, J. ¿Cómo orientar una plantación? Frutic. Divers. 2007, 53, 42–46. [Google Scholar]
- Pramanik, M.K. Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Model. Earth Syst. Environ. 2016, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yalew, S.G.; van Griensven, A.; Mul, M.L.; van der Zaag, P. Land suitability analysis for agriculture in the Abbay basin using remote sensing, GIS and AHP techniques. Model. Earth Syst. Environ. 2016, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- MINAM. Ley N° 26834–Ley de Áreas Naturales Protegidas; Ministerio del Ambiente: Lima, Perú, 2017. [Google Scholar]
- Georgiou, S.; Imbach, P.; Anzueto, F.; del Carmen, C.; Avelino, J. Indicadores Meteorológicos y Climáticos de la Roya del Café; CATIE, ANACAFE, CIRAD, PROMECAFE: Costa Rica, 2014. [Google Scholar]
- Leguizamón-Caycedo, J.; Orozco-Gallego, L.; Gómez-Gómez, L. Periodos de incubación (Pi) y de latencia (PL) de la roya del cafeto en la zona cafetera central de Colombia. Cenicafé 1998, 49, 325–339. [Google Scholar]
- Miguel-Chuaire, L.C. La broca del Café, un Insecto Que se Desarrolla de Acuerdo con la Temperatura y la Altitud; Cenicafé: Manizales, Colombia, 2010; ISSN 2145-9053. [Google Scholar]
- Ángel-Calle, C.A. Mancha de hierro. In Enfermedades del cafeto en Colombia; Gil-Vallejo, L.F., Castro Caicedo, B.L., Cadena Gómez, G., Eds.; Cenicafé: Medellín, Colombia, 2003; p. 224. ISBN 958-97218-5-0. [Google Scholar]
- Buchhorn, M.; Smets, B.; Bertels, L.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Fritz, S. Copernicus Global Land Service: Land Cover 100 m: Epoch 2015: Globe. Available online: https://zenodo.org/record/3243509#.Xxrb254zaUk (accessed on 10 May 2020).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- McNally, A. NASA/GSFC/HSL FLDAS Noah Land Surface Model L4 Global Monthly Climatology 0.1 × 0.1 Degree (MERRA-2 and CHIRPS); Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2018. [Google Scholar]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Marcos V., Ó. Sequía: Definiciones, tipologías y métodos de cuantificación. Investig. Geográficas 2001, 26, 59–80. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Gómez-González, R.; Palma-López, D.J.; Obrador-Olan, J.J.; Ruiz-Rosado, O. Densidad radical y tipos de suelos en los que se produce café (Coffea arabica L.) en Chiapas, México. Ecosistemas y Recur. Agropecu. 2018, 5, 203–215. [Google Scholar] [CrossRef]
- Hoyle, F. Managing Soil Organic Matter: A Practical Guide; Paterson, J., Ed.; Grains Research and Development Corporation: Kingston, Australia, 2013; ISBN 9781921779565. [Google Scholar]
- Ingram, J.S.I.; Fernandes, E.C.M. Managing carbon sequestration in soils: Concepts and terminology. Agric. Ecosyst. Environ. 2001, 87, 111–117. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Rojas Briceño, N.B.; Barboza Castillo, E.; Maicelo Quintana, J.L.; Oliva Cruz, S.M.; Salas López, R. Deforestación en la Amazonía peruana: Índices de cambios de cobertura y uso del suelo basado en SIG. Boletín Asoc. Geógrafos Españoles 2019, 81, 1–34. [Google Scholar] [CrossRef]
- MTC. Descarga de Datos Espaciales-Transporte Terrestre por Carretera. Available online: https://portal.mtc.gob.pe/estadisticas/descarga.html (accessed on 6 September 2020).
- MINEDU. Descarga de Información Espacial del MED. Available online: http://sigmed.minedu.gob.pe/descargas/ (accessed on 6 September 2020).
- SERNANP. Visor de las Áreas Naturales Protegidas. Available online: http://geo.sernanp.gob.pe/visorsernanp/ (accessed on 6 September 2020).
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Hossain, M.S.; Das, N.G. GIS-based multi-criteria evaluation to land suitability modelling for giant prawn (Macrobrachium rosenbergii) farming in Companigonj Upazila of Noakhali, Bangladesh. Comput. Electron. Agric. 2010, 70, 172–186. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytical Hierarchy Process; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Model. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Temiz, I.; Calis, G. Selection of Construction Equipment by using Multi-criteria Decision Making Methods. Procedia Eng. 2017, 196, 286–293. [Google Scholar] [CrossRef]
- Chakraborty, S.; Banik, D. Design of a material handling equipment selection model using analytic hierarchy process. Int. J. Adv. Manuf. Technol. 2006, 28, 1237–1245. [Google Scholar] [CrossRef]
- Leiva E., S.T. Sostenibilidad de las Fincas Cafetaleras a Través del Manejo Integrado de la Broca del Café (Hipotenemus hampei) en el Distrito de Huambo, Rodríguez de Mendoza, Amazonas. Master’s Thesis, MAestría en Gestión para el Desarrollo Sustentable, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachpoyas, Amazonas, 2016. [Google Scholar]
- Ochoa, P.A.; Chamba, Y.M.; Arteaga, J.G.; Capa, E.D. Estimation of suitable areas for coffee growth using a GIS approach and multicriteria evaluation in regions with scarce data. Appl. Eng. Agric. 2017, 33, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Duc, T.T. Using GIS and AHP technique for land-use suitability analysis. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences; Japan-Vietnam Geoinformatics Consortium Institute for Environment and Resources: Ho Chi Minh, Vietnam, 2006; pp. 1–6. [Google Scholar]
- Calle-Yunis, C.R.; Salas-López, R.; Oliva-Cruz, S.M.; Barboza-Castillo, E.; Silva-López, J.O.; Iliquín-Trigoso, D.; Rojas-Briceño, N.B. Land suitability for sustainable aquaculture of rainbow trout (Oncorhynchus mykiss) in molinopampa (Peru) based on RS, GIS, and AHP. ISPRS Int. J. Geo-Inf. 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- GEOBOSQUES. Bosque y Perdida de Bosque. Available online: http://geobosques.minam.gob.pe/geobosque/view/perdida.php (accessed on 25 September 2020).
- Jaramillo Robledo, Á.; Guzmán-Martínez, O. Relación entre la temperatura y crecimiento en Coffea arabica L., variedad Caturra. Cenicafé 1984, 57–65. [Google Scholar]
- Montoya, E.; Jaramillo, Á. Efecto De La Temperatura En La Producción De Café. Cenicafé 2016, 67, 58–65. [Google Scholar]
- Avelino, J.; Barboza, B.; Araya, J.C.; Fonseca, C.; Davrieux, F.; Guyot, B.; Cilas, C. Effects of slope exposure, altitude and yield on coffee quality in two altitudeterroirs of Costa Rica, Orosi and Santa María de Dota. J. Sci. Food Agric. 2005, 85, 1869–1876. [Google Scholar] [CrossRef]
- Guambi, L.A.D.; Cedeño, S.R.V.; Talledo, D.S.F. Calidad organoléptica de cafés arábigos en relación a las variedades y altitudes de las zonas de cultivo, Ecuador. Rev. Iberoam. Tecnol. Postcosecha 2017, 18, 67–77. [Google Scholar]
- Liebig, T.I. Abundance of Pests and Diseases in Arabica Coffee Production Systems in Uganda-Ecological Mechanisms and Spatial Analysis in the face of Climate Change; Doktorarbeit, Gartenbauwissenschaften, Universität Hannover: Hanovre, Germany, 2017. [Google Scholar]
- Villarreyna, A.R.A. Efecto de la Sombra Sobre las Plagas y Enfermedades, a Través del Microclima, Fenología y Estado Fisiológico del Cafeto. Available online: https://agritrop.cirad.fr/581152/ (accessed on 8 October 2019).
Sub-Criteria/Criteria | Optimal (3) | Suboptimal (2) | Unsuitable (1) | Adapted From |
---|---|---|---|---|
Climatological | ||||
Average annual temperature (°C) | 18–23 | 15–18; 23–26 | >26; <15 | [20,21,22,41,42] |
Annual mean min temperature (°C) | >18 | 10–18 | <10 | [43,44] |
Annual mean max temperature (°C) | <25 | 25–30 | >30 | [45] |
Mean annual rainfall (mm) | 1600–1800 | 1100–1600; 1800–2000 | <1100; >2000 | [4,46,47,48,49] |
Relative humidity (%) | 70–90 | 65–70 | <65; >90 | [22,42] |
Dry periods (%) | 80–100 | 40–80 | 0–40 | [50] |
Edaphological | ||||
pH | 5–6.5 | 4.5–5; 6.5–7.5 | <4.5; >7.5 | [4,51,52] |
Texture (texture class) 1 | L, SCL, SiCL | CL, SL, SC, SiL, SiC | S, C, Si, LS | [53,54] |
Stoniness (%) | 0–6 | 6–15 | <15 | [55,56] |
SOM (%) | >3 | 2–3 | <2 | [4,57] |
CEC (cmol+/Kg) | >25 | 15–25 | <15 | [58] |
Physiographic | ||||
Elevation (m a.s.l.) | 1400–1800 | 900–1400; 1800–2500 | <900; >2500 | [4,20,23] |
Terrain slope (%) | 0–12 | 12–25 | >25 | [59,60] |
Terrain aspect | N, NE, NW | E, W | S, SW, SE | [61] |
Socioeconomic | ||||
LULC 2 | 40 | 20 | 30, 50, 60, 80, 90, 112, 114, 116, 122, 124, 126 | [62,63] |
Distance to water network (km) | 0–1 | 1–5 | >5 | [62,63] |
Distance to road network (km) | 0–2 | 2–5 | >5 | [62,63] |
PNA | Out | Buffer zone | Within | [64] |
Annual mean temperature conditions (°C) for diseases and pests | ||||
Coffee leaf rust (H. vastatrix) | 22–26 | 17–22 | <17; >26 | [65,66] |
Coffee berry borer (H. hampei) | >21 | 18–21 | <19 | [67] |
Leaf spot (C. coffeicola) | 22–30 | 19–22 | <19; >30 | [68] |
1/9 | 1/8 | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimal | Very weak | Weak | Slightly weak | Equal importance | Moderate | Strong | Very strong | Extreme | ||||||||
Least important | Most important |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Criterion | Weight (%) | Rank | Sub-Criterion | Rank | Weight (%) | Standardized Weight (%) | Standardized Rank |
---|---|---|---|---|---|---|---|
Climatological | 28.31 | 2 | Average annual temperature | 1 | 22.37 | 5.59 | 5 |
Annual mean min temperature | 6 | 10.76 | 2.69 | 18 | |||
Annual mean max temperature | 4 | 15.28 | 3.82 | 16 | |||
Mean annual rainfall | 2 | 21.4 | 5.35 | 9 | |||
Relative humidity | 5 | 12.65 | 3.16 | 17 | |||
Dry periods | 3 | 17.56 | 4.39 | 13 | |||
Edaphological | 25.03 | 3 | pH | 1 | 29.22 | 7.31 | 3 |
Texture | 2 | 19.06 | 4.77 | 11 | |||
Stoniness | 4 | 16.60 | 4.15 | 14 | |||
SOM | 5 | 16.32 | 4.08 | 15 | |||
CEC | 3 | 18.80 | 4.70 | 12 | |||
Physiographic | 18.31 | 4 | Elevation | 1 | 53.06 | 13.27 | 1 |
Slope | 2 | 24.18 | 6.05 | 5 | |||
Aspect | 3 | 22.75 | 5.69 | 6 | |||
Socioeconomic | 28.35 | 1 | LULC | 1 | 32.72 | 8.18 | 2 |
Distance to water network | 4 | 20.22 | 5.06 | 10 | |||
Distance to road network | 3 | 21.94 | 5.49 | 8 | |||
PNAs | 2 | 25.12 | 6.28 | 4 | |||
Coffee diseases and pests | H. vastatrix | 1 | 46.70 | 46.70 | |||
H. hampei | 2 | 32.00 | 32.00 | ||||
C. coffeicola | 3 | 21.20 | 21.20 |
Criteria | Sub-Criteria | Unsuitable (1) | Suboptimal (2) | Optimal (3) | |||
---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | ||
Climatological | Average annual temperature | 11,288.36 | 26.8% | 18,820.54 | 44.8% | 11,941.44 | 28.4% |
Annual mean min temperature | 15,327.46 | 36.5% | 16,004.79 | 38.1% | 10,718.09 | 25.5% | |
Annual mean max temperature | 6560.06 | 15.6% | 18,396.65 | 43.7% | 17,093.63 | 40.7% | |
Mean annual rainfall | 24,823.10 | 59.0% | 14,909.98 | 35.5% | 2317.26 | 5.5% | |
Relative humidity | 961.53 | 2.3% | 6691.22 | 15.9% | 34,397.59 | 81.8% | |
Dry periods | 17,030.31 | 40.5% | 15,581.36 | 37.1% | 9438.67 | 22.4% | |
Edaphological | pH | 1952.54 | 4.6% | 15,700.48 | 37.3% | 24,397.35 | 58.1% |
Texture | 5220.09 | 12.4% | 3206.76 | 7.6% | 33,623.52 | 80.0% | |
Stoniness | 2508.18 | 6.0% | 14,451.71 | 34.4% | 25,090.48 | 59.7% | |
SOM | 323.33 | 0.8% | 2724.96 | 6.5% | 39,002.08 | 92.8% | |
CEC | 10,587.31 | 25.2% | 18,945.12 | 45.1% | 12,517.94 | 29.8% | |
Physiographic | Elevation | 23,272.66 | 55.6% | 14,455.07 | 34.5% | 4322.61 | 10.3% |
Slope | 11,601.59 | 27.7% | 17,004.65 | 40.6% | 13,444.10 | 32.1% | |
Aspect | 13,846.48 | 33.1% | 9824.54 | 23.5% | 18,379.31 | 43.9% | |
Socioeconomic | LULC | 32,124.14 | 76.4% | 969.22 | 2.3% | 8957.02 | 21.3% |
Distance to water network | 1043.89 | 2.5% | 14,035.28 | 33.4% | 26,971.21 | 64.1% | |
Distance to road network | 29,454.62 | 70.0% | 5208.86 | 12.4% | 7386.86 | 17.6% | |
PNAs | 6005.71 | 14.3% | 6246.28 | 14.9% | 29,798.38 | 70.9% | |
Coffee diseases and pests | H. vastatrix | 11,972.41 | 28.5% | 6287.24 | 15.0% | 23,790.69 | 56.6% |
H. hampei | 15,287.29 | 36.4% | 10,933.68 | 26.0% | 15,829.36 | 37.6% | |
C. coffeicola | 14,147.37 | 33.6% | 6570.14 | 15.6% | 21,332.83 | 50.7% |
Criteria | Unsuitable (1) | Suboptimal (2) | Optimal (3) | |||
---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | |
Climatological | 5821.57 | 13.84 | 34,787.52 | 82.73 | 1441.25 | 3.43 |
Edaphological | 195.94 | 0.47 | 16,306.93 | 38.78 | 25,547.50 | 60.75 |
Physiographic | 10,844.19 | 25.79 | 28,027.54 | 66.65 | 3178.6 | 7.56 |
Socioeconomic | 7951.14 | 18.91 | 25,819.26 | 61.40 | 8278.79 | 19.69 |
Coffee diseases and pests | 11,972.41 | 28.47 | 14,248.57 | 33.88 | 15,829.40 | 37.64 |
Province/Region | Suitability for Growing Coffee | Area (%) Covered by the Suitability of the Restrictions | |||||||
---|---|---|---|---|---|---|---|---|---|
Optimal (3) | Suboptimal (2) | Unsuitable (1) | |||||||
level | km2 | % | km2 | % | km2 | % | km2 | % | |
Bagua | Optimal (3) | 913.99 | 15.6 | 640.02 | 15.8 | 268.82 | 19.1 | 5.15 | 1.3 |
Suboptimal (2) | 4935.27 | 84.2 | 3419.35 | 84.2 | 1140.62 | 80.9 | 375.26 | 95.6 | |
Unsuitable (1) | 11.95 | 0.2 | 0.00 | 0.0 | 0.00 | 0.0 | 11.95 | 3.0 | |
Total | 5861.20 | 100.0 | 4059.37 | 100.0 | 1409.44 | 100.0 | 392.35 | 100.0 | |
Bongará | Optimal (3) | 539.96 | 17.9 | 10.54 | 6.2 | 173.22 | 15.0 | 356.20 | 21.0 |
Suboptimal (2) | 2465.92 | 81.6 | 159.78 | 93.8 | 982.27 | 85.0 | 1323.87 | 78.1 | |
Unsuitable (1) | 15.12 | 0.5 | 0.00 | 0.0 | 0.00 | 0.0 | 15.12 | 0.9 | |
Total | 3020.99 | 100.0 | 170.32 | 100.0 | 1155.49 | 100.0 | 1695.18 | 100.0 | |
Chachapoyas | Optimal (3) | 282.70 | 6.3 | 0.00 | 0.0 | 20.63 | 5.4 | 262.07 | 6.4 |
Suboptimal (2) | 4199.83 | 93.2 | 15.83 | 100.0 | 359.14 | 94.6 | 3824.76 | 93.0 | |
Unsuitable (1) | 24.58 | 0.5 | 0.00 | 0.0 | 0.00 | 0.0 | 24.58 | 0.6 | |
Total | 4507.11 | 100.0 | 15.83 | 100.0 | 379.77 | 100.0 | 4111.40 | 100.0 | |
Condorcanqui | Optimal (3) | 913.90 | 5.1 | 378.96 | 3.7 | 534.89 | 7.2 | 0.0 | |
Suboptimal (2) | 16,795.54 | 94.0 | 9836.85 | 96.3 | 6854.64 | 92.7 | 104.05 | 39.7 | |
Unsuitable (1) | 164.43 | 0.9 | 1.34 | 0.0 | 4.82 | 0.07 | 158.27 | 60.3 | |
Total | 17,873.87 | 100.0 | 10,217.15 | 100.0 | 7394.36 | 100.0 | 262.32 | 100.0 | |
Luya | Optimal (3) | 295.73 | 9.5 | 0.74 | 1.0 | 250.81 | 38.3 | 44.18 | 1.9 |
Suboptimal (2) | 2800.44 | 90.3 | 70.63 | 99.0 | 403.76 | 61.7 | 2326.01 | 98.0 | |
Unsuitable (1) | 4.22 | 0.1 | 0.00 | 0.0 | 0.04 | 0.0 | 4.18 | 0.2 | |
Total | 3100.39 | 100.0 | 71.38 | 100.0 | 654.61 | 100.0 | 2374.36 | 100.0 | |
Rodríguez de Mendoza | Optimal (3) | 1130.93 | 30.4 | 26.81 | 27.7 | 817.78 | 48.5 | 286.33 | 14.8 |
Suboptimal (2) | 2557.60 | 68.9 | 70.02 | 72.3 | 868.90 | 51.5 | 1618.45 | 83.8 | |
Unsuitable (1) | 25.94 | 0.7 | 0.00 | 0.0 | 0.00 | 0.0 | 25.94 | 1.3 | |
Total | 3714.47 | 100.0 | 96.83 | 100.0 | 1686.68 | 100.0 | 1930.72 | 100.0 | |
Utcubamba | Optimal (3) | 725.96 | 18.3 | 151.11 | 12.9 | 561.85 | 39.5 | 13.01 | 0.9 |
Suboptimal (2) | 3197.67 | 80.5 | 1022.06 | 87.1 | 862.30 | 60.5 | 1313.27 | 95.5 | |
Unsuitable (1) | 49.24 | 1.2 | 0.15 | 0.0 | 0.00 | 0.0 | 49.09 | 3.6 | |
Total | 3972.87 | 100.0 | 1173.32 | 100.0 | 1424.15 | 100.0 | 1375.36 | 100.0 | |
Total For Amazonas | Optimal (3) | 4803.17 | 11.4 | 1208.18 | 7.6 | 2628.00 | 18.6 | 966.92 | 8.0 |
Suboptimal (2) | 36,952.27 | 87.9 | 14,594.52 | 92.3 | 11,471.63 | 81.3 | 10,885.68 | 89.7 | |
Unsuitable (1) | 295.47 | 0.7 | 1.49 | 0.01 | 4.86 | 0.03 | 289.11 | 2.4 | |
Total | 42,050.40 | 100.0 | 15,804.19 | 100.0 | 14,104.50 | 100.0 | 12,141.71 | 100.0 |
Province/Region | Suitability | 0.5–1 ha | 1–2 ha | 2–3.5 ha | 3.5–5 ha | 5–10 ha | >10 ha | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | ||
Bagua | Ex | 0.02 | 0.3 | 0.09 | 1.7 | 0.0 | 0.0 | 0.08 | 1.5 | 0.16 | 3.0 | 4.82 | 93.6 |
VO | 0.42 | 0.2 | 0.52 | 0.2 | 0.4 | 0.1 | 0.52 | 0.2 | 1.88 | 0.7 | 264.72 | 98.5 | |
Bongará | Ex | 0.76 | 0.2 | 1.53 | 0.4 | 0.95 | 0.3 | 0.82 | 0.2 | 2.99 | 0.8 | 348.61 | 97.9 |
VO | 0.18 | 0.1 | 0.56 | 0.3 | 0.47 | 0.3 | 0.45 | 0.3 | 0.98 | 0.6 | 170.52 | 98.4 | |
Chachapoyas | Ex | 2.90 | 1.1 | 5.41 | 2.1 | 4.12 | 1.6 | 3.66 | 1.4 | 6.85 | 2.6 | 237.46 | 90.6 |
VO | 0.16 | 0.8 | 0.35 | 1.7 | 0.58 | 2.8 | 0.46 | 2.2 | 1.31 | 6.4 | 17.72 | 85.9 | |
Condorcanqui | Ex | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0 |
VO | 2.07 | 0.4 | 3.70 | 0.7 | 6.95 | 1.3 | 8.86 | 1.7 | 16.59 | 3.1 | 495.58 | 92.7 | |
Luya | Ex | 1.40 | 3.2 | 2.76 | 6.3 | 1.76 | 4.0 | 1.16 | 2.6 | 3.13 | 7.1 | 33.16 | 75.1 |
VO | 0.41 | 0.2 | 1.29 | 0.5 | 0.97 | 0.4 | 0.93 | 0.4 | 2.12 | 0.8 | 245.07 | 97.7 | |
Rodríguez de Mendoza | Ex | 0.45 | 0.2 | 0.83 | 0.3 | 1.76 | 0.6 | 1.58 | 0.6 | 4.58 | 1.6 | 277.15 | 96.8 |
VO | 0.29 | 0.0 | 0.78 | 0.1 | 1.36 | 0.2 | 1.82 | 0.2 | 4.11 | 0.5 | 808.79 | 98.9 | |
Utcubamba | Ex | 0.22 | 1.7 | 0.36 | 2.8 | 0.28 | 2.2 | 0.26 | 2.0 | 0.41 | 3.1 | 11.28 | 86.7 |
VO | 0.98 | 0.2 | 4.67 | 0.8 | 3.19 | 0.6 | 3.04 | 0.5 | 6.43 | 1.1 | 543.28 | 96.7 | |
Total for Amazonas | Ex | 5.75 | 0.6 | 10.99 | 1.1 | 8.86 | 0.9 | 7.56 | 0.8 | 18.11 | 1.9 | 912.48 | 94.4 |
VO | 4.51 | 0.2 | 11.88 | 0.5 | 13.90 | 0.5 | 16.08 | 0.6 | 33.43 | 1.3 | 2545.68 | 96.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salas López, R.; Gómez Fernández, D.; Silva López, J.O.; Rojas Briceño, N.B.; Oliva, M.; Terrones Murga, R.E.; Iliquín Trigoso, D.; Barboza Castillo, E.; Barrena Gurbillón, M.Á. Land Suitability for Coffee (Coffea arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS. ISPRS Int. J. Geo-Inf. 2020, 9, 673. https://doi.org/10.3390/ijgi9110673
Salas López R, Gómez Fernández D, Silva López JO, Rojas Briceño NB, Oliva M, Terrones Murga RE, Iliquín Trigoso D, Barboza Castillo E, Barrena Gurbillón MÁ. Land Suitability for Coffee (Coffea arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS. ISPRS International Journal of Geo-Information. 2020; 9(11):673. https://doi.org/10.3390/ijgi9110673
Chicago/Turabian StyleSalas López, Rolando, Darwin Gómez Fernández, Jhonsy O. Silva López, Nilton B. Rojas Briceño, Manuel Oliva, Renzo E. Terrones Murga, Daniel Iliquín Trigoso, Elgar Barboza Castillo, and Miguel Ángel Barrena Gurbillón. 2020. "Land Suitability for Coffee (Coffea arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS" ISPRS International Journal of Geo-Information 9, no. 11: 673. https://doi.org/10.3390/ijgi9110673
APA StyleSalas López, R., Gómez Fernández, D., Silva López, J. O., Rojas Briceño, N. B., Oliva, M., Terrones Murga, R. E., Iliquín Trigoso, D., Barboza Castillo, E., & Barrena Gurbillón, M. Á. (2020). Land Suitability for Coffee (Coffea arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS. ISPRS International Journal of Geo-Information, 9(11), 673. https://doi.org/10.3390/ijgi9110673