Vegetation Phenological Changes in Multiple Landforms and Responses to Climate Change
<p>Study area.</p> "> Figure 2
<p>The normalized difference vegetation index (NDVI) time series curves of a certain pixel in 2001 in the study area.</p> "> Figure 3
<p>Spatial distribution of the multi-annual mean vegetation phenology in Shaanxi and its relationship with the altitude from 2001 to 2016.</p> "> Figure 3 Cont.
<p>Spatial distribution of the multi-annual mean vegetation phenology in Shaanxi and its relationship with the altitude from 2001 to 2016.</p> "> Figure 4
<p>Spatial distribution of the inter-annual variation of the vegetation phenology in Shaanxi from 2001 to 2016 (d/a: day per year).</p> "> Figure 5
<p>Spatial distribution of the correlation coefficients between the start of the growing season (SOS) and precipitation/temperature. (<b>a</b>–<b>c</b>) indicate the precipitation from February to April; (<b>d</b>–<b>f</b>) indicate the temperature from February to April.</p> "> Figure 6
<p>Spatial distribution of the correlation coefficients between the end of the growing season (EOS) and precipitation/temperature/sunshine and their histograms in Shaanxi. (<b>a</b>–<b>c</b>) indicate the precipitation from September to November; (<b>d</b>–<b>f</b>) indicate the temperature from September to November, respectively; (<b>g</b>–<b>i</b>) indicate the sunshine from May to July.</p> "> Figure 7
<p>Spatial distribution of the correlation coefficients between the LOS and precipitation/temperature/sunshine and their histograms in Shaanxi. (<b>a</b>–<b>f</b>) indicate the precipitation from April to September; (<b>g</b>–<b>l</b>) indicate the temperature from April to September; (<b>m</b>–<b>o</b>) indicate the sunshine from May to July.</p> ">
Abstract
:1. Introduction
- (1)
- What is the Spatio-temporal variation pattern of the vegetation phenology?
- (2)
- How do climatic factors, such as temperature, precipitation, and light, affect phenological changes?
2. Data and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. NDVI
2.2.2. Meteorological Data
2.2.3. Topographic Data
2.3. Remote-Sensing Vegetation Phenology Extraction
2.3.1. Reconstruction of the Vegetation Index Time Series Curve
2.3.2. Extraction of Phenological Parameters
2.4. Trend and Correlation Analysis
3. Results
3.1. Spatial Distribution Patterns of the Multi-Annual Average Vegetation Phenology
3.2. Spatial Distribution Patterns of Interannual Phenological Changes
3.3. The Response of the Vegetation Phenology to Climatic Factors
3.3.1. The Response of the SOS to Precipitation and Temperature
3.3.2. The Response of the EOS to Precipitation, Temperature, and Sunshine Hours
3.3.3. The Response of the LOS to the Precipitation, Temperature, and Sunshine
4. Discussion
5. Conclusions
- (1)
- The phenology varied with latitude. The SOS in the south was earlier, whereas that in the north was later.
- (2)
- In the whole region, the SOS was gradually being advanced, while the LOS was being prolonged, but in the MUD, the SOS was being delayed, and the LOS was being shortened. The variation in the phenology had spatial heterogeneity among different geomorphological areas.
- (3)
- The responses of the phenology to climatic factors were very complex. In the north, the SOS was mainly affected by the temperature in February, and the EOS was mainly affected by the precipitation in November. In the south, the SOS was mainly affected by the precipitation in March, and the EOS was affected by the temperature in October.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller-Rushing, A.J.; Weltzin, J. Phenology as a tool to link ecology and sustainable decision making in a dynamic environment. New Phytol. 2009, 184, 743–745. [Google Scholar] [CrossRef] [PubMed]
- Helmut, L.P.D. Phenology and Seasonality Modeling. Ecol. Stud. 1974, 120, 461. [Google Scholar]
- Jeong, S.J.; Chang-Hoi, H.O.; Gim, H.J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Boil. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Zheng, J.; Ge, Q.; Hao, Z. Impacts of climate warming on plants phenophases in China for the last 40 years. Chin. Sci. Bull. 2002, 47. [Google Scholar]
- Piao, S.L.; Liu, Q.; Chen, A.P.; Janssens, I.A.; Fu, Y.S.; Dai, J.H.; Liu, L.L.; Lian, X.; Shen, M.G.; Zhu, X.L. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Boil. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Keeling, C.D.; Chin, J.F.S.; Whorf, T.P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 1996, 382, 146–149. [Google Scholar] [CrossRef]
- Pe?Uelas, J.; Filella, I. Phenology. Responses to a warming world. Science 2001, 294, 793–795. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, J.; Li, X.; Cheng, G.; Ma, M.; Zhu, G.; Arain, M.A.; Black, T.A.; Jassal, R.S. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 2019, 10, 2389. [Google Scholar] [CrossRef]
- Williams, S.E.; Bolitho, E.E.; Fox, S. Climate change in Australian tropical rainforests: An impending environmental catastrophe. Proc. Boil. Sci. 2003, 270, 1887–1892. [Google Scholar] [CrossRef]
- Lee, S.-D. Global Warming Leading to Phenological Responses in the Process of Urbanization, South Korea. Sustainability 2017, 9, 2203. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Badeck, F.W.; Bondeau, A.K.; Doktor, D.; Lucht, W.; Schaber, J. Responses of spring phenology to climate change [Review]. New Phytol. 2004, 162, 295–309. [Google Scholar] [CrossRef]
- Schwartz, M.D. Green-wave phenology. Nature 1998, 394, 839–840. [Google Scholar] [CrossRef]
- Bradley, N.L.; Leopold, A.C.; Ross, J.; Huffaker, W. Phenological changes reflect climate change in Wisconsin. Proc. Natl. Acad. Sci. USA 1999, 96, 9701–9704. [Google Scholar] [CrossRef] [Green Version]
- Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659. [Google Scholar] [CrossRef]
- Saxe, H.; Johnsen, Ø.; Ryan, M.G.; Vourlitis, G. Tansley Review No. 123. Tree and Forest Functioning in Response to Global Warming. New Phytol. 2010, 149, 369–399. [Google Scholar] [CrossRef]
- Linkosalo, T.; Häkkinen, R.; Terhivuo, J.; Tuomenvirta, H.; Hari, P. The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agric. For. Meteorol. 2009, 149, 453–461. [Google Scholar] [CrossRef]
- Delbart, N.; Picard, G.; Toan, T.L.; Kergoat, L.; Quegan, S.; Woodward, I.; Dye, D.; Fedotova, V. Spring phenology in boreal Eurasia over a nearly century time scale. Glob. Chang. Boil. 2010, 14, 603–614. [Google Scholar] [CrossRef]
- Nordli, O.; Wielgolaski, F.E.; Bakken, A.K.; Hjeltnes, S.H.; Mage, F.; Sivle, A.; Skre, O. Regional trends for bud burst and flowering of woody plants in Norway as related to climate change. Int. J. Biometeorol. 2008, 52, 625–639. [Google Scholar] [CrossRef]
- Pudas, E.; Leppälä, M.; Tolvanen, A.; Poikolainen, J.; Venäläinen, A.; Kubin, E. Trends in phenology of Betula pubescens across the boreal zone in Finland. Int. J. Biometeorol. 2008, 52, 251–259. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Boil. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Fu, Y.H.; Shilong, P.; Hongfang, Z.; Su-Jong, J.; Xuhui, W.; Yann, V.; Philippe, C.; Janssens, I.A. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob. Chang. Biol. 2015, 20, 3743–3755. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Delzon, S.; Dufrêne, E.; Pontailler, J.Y.; Louvet, J.M.; Kremer, A.; Michalet, R. Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agric. For. Meteorol. 2009, 149, 735–744. [Google Scholar] [CrossRef]
- Miller-Rushing, A.J.; Primack, R.B. Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 2008, 89, 332–341. [Google Scholar] [CrossRef]
- Sparks, T.; Carey, P.D.; Combes, J. First leafing dates of trees in Surrey between 1947 and 1996. Lond. Nat. 1997, 76, 15–20. [Google Scholar]
- Cong, N.; Wang, T.; Nan, H.; Ma, Y.; Wang, X.; Myneni, R.B.; Piao, S. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Glob. Chang. Boil. 2013, 19, 881–891. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L.; Solomon, S.; Qin, D. Climate change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. Intergov. Panel Clim. Chang. Clim. Chang. 2007, 18, 95–123. [Google Scholar]
- Yun, J.; Jeong, S.J.; Ho, C.H.; Park, C.E.; Kim, J. Influence of winter precipitation on spring phenology in boreal forests. Glob. Chang. Boil. 2018, 24, 5176–5187. [Google Scholar] [CrossRef]
- Fu, Y.H.; Piao, S.; Vitasse, Y.; Zhao, H.; De Boeck, H.J.; Liu, Q.; Yang, H.; Weber, U.; Janssens, I.A. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation. Glob. Chang. Biol. 2015, 21, 2687–2697. [Google Scholar] [CrossRef]
- Jin, H.; Jonsson, A.M.; Olsson, C.; Lindstrom, J.; Jonsson, P.; Eklundh, L. New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes. Int. J. Biometeorol. 2019, 63, 763–775. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.J.; Schaik, C.P.V. Light and the Phenology of Tropical Trees. Am. Nat. 1994, 143, 192–199. [Google Scholar] [CrossRef]
- Zimmerman, J.K.; Wright, S.J. Flowering and Fruiting Phenologies of Seasonal and Aseasonal Neotropical Forests: The Role of Annual Changes in Irradiance. J. Trop. Ecol. 2007, 23, 231–251. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B. Phenology of tropical forests: patterns, causes, and consequences. Can. J. Bot. 1995, 73, 164–174. [Google Scholar] [CrossRef]
- Morisette, J.T.; Richardson, A.D.; Knapp, A.K.; Fisher, J.I.; Graham, E.A.; Abatzoglou, J.; Wilson, B.E.; Breshears, D.D.; Henebry, G.M.; Hanes, J.M.; et al. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front. Ecol. Environ. 2009, 7, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Ge, Q.; Dai, J.; Zheng, J. The Progress of Phenology Studies and Challenges to Modern Phenology Research in China. Bull. Chin. Acad. Sci. 2010, 25, 310–316. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Chang. Boil. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Liu, L.L.; Liang, L.; Schwartz, M.D.; Donnelly, A.; Wang, Z.; Schaaf, C.B.; Liu, L.Y. Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest. Remote Sens. Environ. 2015, 160, 156–165. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Zhang, L.; Li, X.; Zang, S. Satellite monitoring of boreal forest phenology and its climatic responses in Eurasia. Int. J. Remote Sens. 2017, 38, 5446–5463. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, L.; Lin, A.; Liu, Z.; Qu, S. Variations in land surface phenology and their response to climate change in Yangtze River basin during 1982-2015. Theor. Appl. Clim. 2019, 137, 1659–1674. [Google Scholar] [CrossRef]
- Ren, S.; Yi, S.; Peichl, M.; Wang, X. Diverse Responses of Vegetation Phenology to Climate Change in Different Grasslands in Inner Mongolia during 2000-2016. Remote Sens. 2018, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Zheng, Z.; Jiang, N.; Zhang, D. A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agric. For. Meteorol. 2018, 248, 177–184. [Google Scholar] [CrossRef]
- Cheng, M.; Jin, J.; Zhang, J.; Jiang, H.; Wang, R. Effect of climate change on vegetation phenology of different land-cover types on the Tibetan Plateau. Int. J. Remote Sens. 2018, 39, 470–487. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T.; Kutzbach, J.E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA 2007, 104, 5738–5742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaowei, Z.; Yong, G.; Honghua, Q. Fundamental Relief Types and Their Classification Index Used in Provincial Geographic Conditions Monitoring in Shaanxi. Stand. Surv. Mapp. 2012, 28, 13–16. [Google Scholar]
- Song, C.-Q.; Ke, L.-H.; You, S.-C.; Liu, G.-H.; Zhong, X.-K. Comparison of Three NDVI Time-series Fitting Methods based on TIMESAT—Taking the Grassland in Northern Tibet as Case. Remote Sens. Technol. Appl. 2011, 26, 147–155. [Google Scholar]
- Goward, S.N.; Markham, B.; Dye, D.G.; Dulaney, W.; Yang, J. Normalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sens. Environ. 1992, 35, 257–277. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Myneni, R.B. Variation in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20084. [Google Scholar] [CrossRef]
- Haiying, Y.; Eike, L.; Jianchu, X. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar]
- Kafaki, S.B.; Mataji, A.; Hashemi, S.A. Monitoring growing season length of deciduous broad leaf forest derived from satellite data in Iran. Am. J. Environ. Sci. 2009, 5, 647–652. [Google Scholar] [CrossRef] [Green Version]
- Keenan, T.F. Phenology: Spring greening in a warming world. Nature 2015, 526, 48–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, A.D.; Anderson, R.S.; Arain, M.A.; Barr, A.G.; Bohrer, G.; Chen, G.; Chen, J.M.; Ciais, P.; Davis, K.J.; Desai, A.R. Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis. Glob. Chang. Boil. 2012, 18, 566–584. [Google Scholar] [CrossRef] [Green Version]
- Wolkovich, E.M.; Cook, B.I.; Allen, J.M.; Crimmins, T.M.; Betancourt, J.L.; Travers, S.E.; Pau, S.; Regetz, J.; Davies, T.J.; Kraft, N.J.B.; et al. Warming experiments underpredict plant phenological responses to climate change. Nature 2012, 485, 494–497. [Google Scholar] [CrossRef]
- Cooke, J.E.K.E.; Maria, E.; Junttila, O. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ. 2012, 35, 1707–1728. [Google Scholar] [CrossRef]
- Wareing, P.F. Photoperiodism in Woody Plants. Annu. Rev. Plant Physiol. 1956, 7, 191–214. [Google Scholar] [CrossRef]
SOS | EOS | LOS | ||||
---|---|---|---|---|---|---|
mean | std | mean | std | mean | std | |
Shaanxi | 120.68 | 28.36 | 280.04 | 18.47 | 160.36 | 29.33 |
Mu Us Desert | 132.58 | 36.80 | 291.07 | 12.59 | 158.49 | 46.64 |
Loess Plateau | 134.16 | 27.72 | 289.65 | 11.97 | 155.50 | 28.21 |
Guanzhong Plain | 101.02 | 27.31 | 274.90 | 25.70 | 173.88 | 26.66 |
Qinling Mountain | 113.43 | 16.87 | 270.24 | 16.27 | 156.81 | 25.48 |
Hanjiang Basin | 88.10 | 15.21 | 271.81 | 15.29 | 183.72 | 23.14 |
Daba Mountain | 109.51 | 17.96 | 267.08 | 17.13 | 157.57 | 25.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Bai, J.; Ma, G.; Yan, J. Vegetation Phenological Changes in Multiple Landforms and Responses to Climate Change. ISPRS Int. J. Geo-Inf. 2020, 9, 111. https://doi.org/10.3390/ijgi9020111
Han H, Bai J, Ma G, Yan J. Vegetation Phenological Changes in Multiple Landforms and Responses to Climate Change. ISPRS International Journal of Geo-Information. 2020; 9(2):111. https://doi.org/10.3390/ijgi9020111
Chicago/Turabian StyleHan, Hongzhu, Jianjun Bai, Gao Ma, and Jianwu Yan. 2020. "Vegetation Phenological Changes in Multiple Landforms and Responses to Climate Change" ISPRS International Journal of Geo-Information 9, no. 2: 111. https://doi.org/10.3390/ijgi9020111
APA StyleHan, H., Bai, J., Ma, G., & Yan, J. (2020). Vegetation Phenological Changes in Multiple Landforms and Responses to Climate Change. ISPRS International Journal of Geo-Information, 9(2), 111. https://doi.org/10.3390/ijgi9020111