Global Mapping of GDP at 1 km2 Using VIIRS Nighttime Satellite Imagery
<p>(<b>a</b>) NTL for mainland China, (<b>b</b>) GHS SMOD data for mainland China, (<b>c</b>) GHS population data for mainland China, (<b>d</b>) NTL for Afghanistan, (<b>e</b>) GHS SMOD data for Afghanistan, (<b>f</b>) GHS population data for Afghanistan.</p> "> Figure 2
<p>Procedures for processing population, SMOD, and NTL data.</p> "> Figure 3
<p>Sample result from iForest outlier detection. Outlier identified in Iran that there is (<b>a</b>) very high NTL value and (<b>b</b>) low population density in the coastal region.</p> "> Figure 4
<p>Gridded GDP product at 1 km<sup>2</sup> level.</p> "> Figure 5
<p>Lorenz curve for Gini and 20:20 ratios estimation. Calculation of (<b>a</b>) NTL-Gini and (<b>b</b>) NTL-2020 ratios based on the Lorenz curve, and (<b>c</b>) sample Lorenz curve for China based on the cumulative distribution of population and GDP.</p> "> Figure 6
<p>(<b>a</b>) Scatterplot of Organisation for Economic Co-operation and Development (OECD) regional GDP and sum of NTL values within districts, and (<b>b</b>) scatterplot of OECD regional GDP and district-level NTL GDP (<span class="html-italic">n</span> = 246 subnational districts).</p> "> Figure 7
<p>Comparisons of population distribution, electricity accessibility [<a href="#B47-ijgi-08-00580" class="html-bibr">47</a>], Gridded GDP at the 1 km<sup>2</sup> level [<a href="#B48-ijgi-08-00580" class="html-bibr">48</a>], and NTL GDP data around Kampala, Uganda. (<b>a</b>) Population data, (<b>b</b>) electricity access data, (<b>c</b>) GDP data from Gridded global datasets, (<b>d</b>) NTL-based GDP.</p> "> Figure 8
<p>Validation of NTL-based Gini coefficient and 20:20 ratios based on root mean square error (RMSE) and mean absolute error (MAE) for all countries, low-income countries, lower-middle income countries, upper-middle income countries, and high-income countries.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collections
2.2. Data Pre-Processing
2.3. GDP and Inequality
3. Results
3.1. Subnational GDP Validation
3.2. Inequality Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Country | NTL-Gini | NTL-2020 |
---|---|---|
American Samoa | 0.010 | 1.057 |
Solomon Islands | 0.018 | 1.100 |
San Marino | 0.035 | 1.161 |
Cyprus | 0.039 | 1.202 |
New Caledonia | 0.053 | 1.291 |
Belize | 0.054 | 1.353 |
Guam | 0.078 | 1.498 |
Bermuda | 0.079 | 1.409 |
Tonga | 0.082 | 1.789 |
Qatar | 0.103 | 1.580 |
Spain | 0.109 | 1.747 |
Cayman Islands | 0.120 | 2.619 |
Virgin Islands (U.S.) | 0.121 | 1.788 |
Libya | 0.123 | 1.854 |
Trinidad and Tobago | 0.123 | 1.901 |
Italy | 0.131 | 2.010 |
Greece | 0.137 | 1.844 |
Israel | 0.141 | 1.994 |
Liechtenstein | 0.149 | 2.013 |
Belgium | 0.152 | 2.268 |
Saudi Arabia | 0.156 | 2.141 |
Singapore | 0.158 | 2.099 |
Bosnia and Herzegovina | 0.167 | 2.466 |
Finland | 0.167 | 2.420 |
Iceland | 0.168 | 4.659 |
Malta | 0.168 | 2.175 |
Chile | 0.171 | 2.431 |
Bahamas, The | 0.173 | 2.877 |
Kuwait | 0.181 | 2.563 |
Albania | 0.189 | 2.698 |
Bahrain | 0.190 | 2.540 |
Barbados | 0.190 | 4.441 |
Uruguay | 0.197 | 2.965 |
Argentina | 0.198 | 2.878 |
St. Vincent and the Grenadines | 0.202 | 3.381 |
Kyrgyz Republic | 0.202 | 3.158 |
Jamaica | 0.204 | 2.934 |
France | 0.206 | 3.050 |
Hong Kong SAR, China | 0.212 | 2.718 |
Sierra Leone | 0.214 | 2.793 |
Nepal | 0.215 | 2.863 |
Jordan | 0.216 | 2.728 |
Japan | 0.220 | 3.224 |
Korea, Rep. | 0.222 | 3.103 |
Dominican Republic | 0.223 | 3.647 |
United Kingdom | 0.224 | 3.161 |
Latvia | 0.226 | 3.747 |
Armenia | 0.227 | 2.915 |
Puerto Rico | 0.228 | 3.541 |
New Zealand | 0.233 | 4.454 |
Morocco | 0.235 | 3.296 |
Serbia | 0.239 | 4.004 |
Malaysia | 0.245 | 3.873 |
Turkmenistan | 0.254 | 3.671 |
Togo | 0.254 | 3.840 |
Mongolia | 0.256 | 4.181 |
Montenegro | 0.259 | 5.175 |
Iran, Islamic Rep. | 0.259 | 3.299 |
Czech Republic | 0.262 | 3.669 |
Egypt, Arab Rep. | 0.262 | 3.541 |
Canada | 0.263 | 4.361 |
Bangladesh | 0.265 | 4.117 |
Switzerland | 0.266 | 4.482 |
Belarus | 0.268 | 4.785 |
Ireland | 0.269 | 4.082 |
Brazil | 0.276 | 5.263 |
Germany | 0.277 | 4.293 |
Australia | 0.279 | 4.875 |
Peru | 0.279 | 6.108 |
Pakistan | 0.280 | 4.334 |
Lebanon | 0.280 | 3.699 |
Tajikistan | 0.282 | 4.011 |
Ecuador | 0.288 | 5.204 |
Portugal | 0.289 | 9.392 |
Hungary | 0.291 | 5.646 |
Tunisia | 0.294 | 4.615 |
Turkey | 0.296 | 4.884 |
United States | 0.297 | 6.125 |
Andorra | 0.299 | 113.727 |
Costa Rica | 0.299 | 5.939 |
Algeria | 0.301 | 4.461 |
Antigua and Barbuda | 0.302 | 35.927 |
Luxembourg | 0.304 | 18.170 |
Bolivia | 0.307 | 6.176 |
North Macedonia | 0.308 | 4.890 |
Comoros | 0.311 | 7.412 |
South Africa | 0.311 | 6.693 |
Colombia | 0.311 | 7.124 |
Côte d’Ivoire | 0.312 | 4.120 |
China | 0.314 | 4.654 |
Uzbekistan | 0.314 | 5.460 |
Oman | 0.316 | 4.982 |
Venezuela, RB | 0.316 | 4.780 |
West Bank and Gaza | 0.317 | 6.818 |
Mexico | 0.317 | 6.849 |
Mauritius | 0.318 | 5.428 |
United Arab Emirates | 0.319 | 5.260 |
Cuba | 0.320 | 5.631 |
Sweden | 0.320 | 7.993 |
Mali | 0.321 | 5.199 |
Guyana | 0.322 | 5.355 |
Paraguay | 0.324 | 5.810 |
Indonesia | 0.326 | 5.033 |
Guinea-Bissau | 0.326 | 5.975 |
Bulgaria | 0.332 | 14.342 |
Georgia | 0.335 | 7.281 |
Lesotho | 0.336 | 7.861 |
Liberia | 0.336 | 4.940 |
Austria | 0.337 | 7.776 |
Poland | 0.343 | 6.219 |
Isle of Man | 0.345 | 94.870 |
Panama | 0.353 | 17.050 |
Dominica | 0.356 | 5.079 |
Lithuania | 0.362 | 11.281 |
Honduras | 0.366 | 7.189 |
Iraq | 0.367 | 9.034 |
Suriname | 0.368 | 8.129 |
Denmark | 0.369 | 7.777 |
El Salvador | 0.371 | 7.590 |
Ghana | 0.371 | 6.551 |
Slovak Republic | 0.374 | 6.704 |
Myanmar | 0.375 | 6.744 |
India | 0.381 | 7.201 |
Syrian Arab Republic | 0.383 | 9.901 |
Gambia, The | 0.388 | 7.404 |
Ukraine | 0.399 | 6.813 |
Russian Federation | 0.399 | 10.015 |
Azerbaijan | 0.402 | 8.961 |
Croatia | 0.409 | 27.197 |
Vanuatu | 0.409 | 5.782 |
St. Lucia | 0.411 | 15.134 |
Grenada | 0.416 | 7.682 |
Nicaragua | 0.417 | 14.450 |
Brunei Darussalam | 0.423 | 19.773 |
Thailand | 0.428 | 9.299 |
Burkina Faso | 0.428 | 8.286 |
Benin | 0.429 | 8.287 |
Haiti | 0.439 | 10.196 |
Fiji | 0.446 | 15.726 |
Ethiopia | 0.456 | 8.087 |
Congo, Rep. | 0.456 | 33.783 |
Cameroon | 0.457 | 12.810 |
Senegal | 0.460 | 11.864 |
Equatorial Guinea | 0.463 | 33.041 |
Angola | 0.466 | 21.985 |
Moldova | 0.468 | 10.032 |
Djibouti | 0.468 | 81.186 |
Niger | 0.472 | 9.449 |
Botswana | 0.473 | 12.043 |
Rwanda | 0.477 | 9.348 |
Norway | 0.477 | 69.563 |
Vietnam | 0.477 | 10.579 |
Slovenia | 0.479 | 55.003 |
Central African Republic | 0.480 | 9.520 |
Philippines | 0.481 | 11.231 |
Kazakhstan | 0.487 | 14.438 |
Madagascar | 0.490 | 9.834 |
Sudan | 0.499 | 17.698 |
Mauritania | 0.511 | 14.726 |
Tanzania | 0.514 | 13.423 |
Samoa | 0.514 | 16.265 |
Kenya | 0.516 | 10.632 |
São Tomé and Príncipe | 0.522 | 13.227 |
Romania | 0.523 | 26.556 |
Zambia | 0.526 | 22.972 |
Guinea | 0.532 | 14.223 |
Cambodia | 0.534 | 12.629 |
Estonia | 0.537 | 38.572 |
Mozambique | 0.537 | 18.714 |
Guatemala | 0.541 | 17.937 |
Sri Lanka | 0.547 | 19.815 |
Gabon | 0.548 | 17.021 |
Chad | 0.550 | 23.489 |
Netherlands | 0.550 | 12.488 |
Zimbabwe | 0.553 | 34.817 |
Malawi | 0.560 | 10.926 |
Somalia | 0.577 | 36.880 |
Nigeria | 0.595 | 23.318 |
Afghanistan | 0.618 | 40.357 |
Uganda | 0.624 | 21.898 |
Seychelles | 0.624 | 92.991 |
Lao PDR | 0.633 | 17.154 |
Namibia | 0.636 | 33.687 |
Eswatini | 0.639 | 27.596 |
Burundi | 0.642 | 41.806 |
Korea, Dem. Rep. | 0.642 | 21.546 |
Bhutan | 0.647 | 16.960 |
Eritrea | 0.680 | 72.123 |
Congo, Dem. Rep. | 0.708 | 64.175 |
Timor-Leste | 0.736 | 35.984 |
Cabo Verde | 0.746 | 166.356 |
St. Kitts and Nevis | 0.755 | 351.285 |
Papua New Guinea | 0.790 | 651.035 |
Yemen, Rep. | 0.804 | 562.975 |
South Sudan | 0.831 | 336.357 |
References
- Assembly, G. Sustainable Development Goals. (SDGs), Transforming Our World: The 2030; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Policy: Sustainable development goals for people and planet. Nature 2013, 495, 305. [Google Scholar] [CrossRef] [PubMed]
- Robert, K.W.; Parris, T.M.; Leiserowitz, A.A. What is sustainable development? Goals, indicators, values, and practice. Environ. Sci. Policy Sustain. Dev. 2005, 47, 8–21. [Google Scholar] [CrossRef]
- Sachs, J.D. From millennium development goals to sustainable development goals. Lancet 2012, 379, 2206–2211. [Google Scholar] [CrossRef]
- Andries, A.; Morse, S.; Murphy, R.J.; Lynch, J.; Woolliams, E.R. Seeing Sustainability from Space: Using Earth Observation Data to Populate the UN Sustainable Development Goal Indicators. Sustainability 2019, 11, 5062. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, W.; Azam, Q.; Corderi, D.; Hood, K.; Victor, N.M.; Mohammed, M.; Miltner, A.; Weiss, J. The G-Econ Database on Gridded Output: Methods and Data; Yale University: New Haven, CT, USA, 2006; Volume 6. [Google Scholar]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Baugh, K.; Elvidge, C.D.; Ghosh, T.; Ziskin, D. Development of a 2009 stable lights product using DMSP-OLS data. Proc. Asia Pac. Adv. Netw. 2010, 30, 114–130. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Doll, C.H.; Muller, J.-P.; Elvidge, C.D. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. AMBIO J. Hum. Environ. 2000, 29, 157–163. [Google Scholar] [CrossRef]
- Skinner, C. Issues and challenges in census taking. Annu. Rev. Stat. Appl. 2018, 5, 49–63. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T. The Night Light Development Index (NLDI): A spatially explicit measure of human development from satellite data. Soc. Geogr. 2012, 7, 23–35. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Ghosh, T.; Anderson, S.J.; Elvidge, C.D.; Sutton, P.C. Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being. Sustainability 2013, 5, 4988–5019. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Welch, R. Monitoring urban population and energy utilization patterns from satellite Data. Remote Sens. Environ. 1980, 9, 1–9. [Google Scholar] [CrossRef]
- Welch, R.; Zupko, S. Urbanized area energy-utilization patterns from Dmsp data. Photogramm. Eng. Remote Sens. 1980, 46, 201–207. [Google Scholar]
- Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Hillger, D.; Kopp, T.; Lee, T.; Lindsey, D.; Seaman, C.; Miller, S.; Solbrig, J.; Kidder, S.; Bachmeier, S.; Jasmin, T. First-light imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 2013, 94, 1019–1029. [Google Scholar] [CrossRef]
- Xu, T.; Ma, T.; Zhou, C.; Zhou, Y. Characterizing spatio-temporal dynamics of urbanization in China using time series of DMSP/OLS night light data. Remote Sens. 2014, 6, 7708–7731. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Shi, K.; Hu, Y.; Huang, C.; Chen, Z.; Wu, J. Poverty Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County Level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1217–1229. [Google Scholar] [CrossRef]
- Hu, T.; Huang, X. A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data. Appl. Energy 2019, 240, 778–792. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of gross domestic product at sub-national scales using nighttime satellite imagery. Int. J. Ecol. Econ. Stat. 2007, 8, 5–21. [Google Scholar]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Bundervoet, T.; Maiyo, L.; Sanghi, A. Bright Lights, Big Cities: Measuring National and Subnational Economic Growth in Africa from Outer Space, with an Application to Kenya and Rwanda; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Townsend, A.C.; Bruce, D.A. The Use of Night-time Lights Satellite Imagery as a Measure of Australia’s Regional Electricity Consumption and Population Distribution. Int. J. Remote Sens. 2010, 31, 4459–4480. [Google Scholar] [CrossRef]
- Birdsall, N. Rising inequality in the new global economy. Int. J. Dev. Issues 2006, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Washington, DC, USA, 15–19 December 2008; pp. 413–422. [Google Scholar]
- United Nations. Inequality Measurement; UN: New York, NY, USA, 2015. [Google Scholar]
- Hijmans, R.; Garcia, N.; Wieczorek, J. Global Administrative Areas Database (GADM) Version 3.6; UN: New York, NY, USA, 2018. [Google Scholar]
- Schiavina, M.; Freire, S.; MacManus, K. GHS population grid multitemporal (1975, 1990, 2000, 2015) R2019A. Eur. Comm. JRC 2019. [Google Scholar] [CrossRef]
- Pesaresi, M.; Florczyk, A.; Schiavina, M.; Melchiorri, M.; Maffenini, L. GHS settlement grid, updated and refined REGIO model 2014 in application to GHS-BUILT R2018A and GHS-POP R2019A, multitemporal (1975-1990-2000-2015), R2019A. Eur. Comm. JRC 2019. Available online: https://data.europa.eu/euodp/en/data/dataset/42e8be89-54ff-464e-be7b-bf9e64da5218/resource/e8dfcd47-6ff6-4bc1-a1cd-9ffde5405736 (accessed on 1 January 2019).
- NOAA Version 1 VIIRS Day/Night Band Nighttime Lights. Available online: https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html (accessed on 01 August 2019).
- The World Bank. World Development Indicators; The World Bank: Washington, DC, USA, 2016. [Google Scholar]
- UNDP Income Quintile Ratio. Available online: http://hdr.undp.org/en/content/income-quintile-ratio (accessed on 10 May 2019).
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Wang, R.; Wan, B.; Guo, Q.; Hu, M.; Zhou, S. Mapping regional urban extent using NPP-VIIRS DNB and MODIS NDVI data. Remote Sens. 2017, 9, 862. [Google Scholar] [CrossRef] [Green Version]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 1996, 96, 226–231. [Google Scholar]
- Gini, C. Measurement of inequality of incomes. Econ. J. 1921, 31, 124–126. [Google Scholar] [CrossRef]
- Gastwirth, J.L. The estimation of the Lorenz curve and Gini index. Rev. Econ. Stat. 1972, 54, 306–316. [Google Scholar] [CrossRef]
- Kawachi, I.; Kennedy, B.P. The relationship of income inequality to mortality: Does the choice of indicator matter? Soc. Sci. Med. 1997, 45, 1121–1127. [Google Scholar] [CrossRef]
- Mackenbach, J.P.; Kunst, A.E. Measuring the magnitude of socio-economic inequalities in health: An overview of available measures illustrated with two examples from Europe. Soc. Sci. Med. 1997, 44, 757–771. [Google Scholar] [CrossRef]
- De Maio, F.G. Income inequality measures. J. Epidemiol. Community Health 2007, 61, 849–852. [Google Scholar] [CrossRef]
- Sutton, P.C.; Costanza, R. Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecol. Econ. 2002, 41, 509–527. [Google Scholar] [CrossRef]
- Falchetta, G.; Pachauri, S.; Parkinson, S.; Byers, E. A high-resolution gridded dataset to assess electrification in sub-Saharan Africa. Sci. Data 2019, 6, 110. [Google Scholar] [CrossRef]
- Kummu, M.; Taka, M.; Guillaume, J.H. Gridded global datasets for gross domestic product and Human Development Index over 1990–2015. Sci. Data 2018, 5, 180004. [Google Scholar] [CrossRef] [Green Version]
- Wackernagel, M.; Onisto, L.; Bello, P.; Linares, A.C.; Falfán, I.S.L.; García, J.M.; Guerrero, A.I.S.; Guerrero, M.G.S. National natural capital accounting with the ecological footprint concept. Ecol. Econ. 1999, 29, 375–390. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Bounoua, L.; Zhang, P.; Wolfe, R. Assessing the Urban Heat Island Effect Across Biomes in the Continental USA Using Landsat and MODIS; NASA: Washington, DC, USA, 2011.
Dataset | Description | Sources |
---|---|---|
Population | Global spatial information for the human presence on the planet in 2015 with 1 km2 spatial resolution. | GHS [33] |
Human Settlement | Global spatial information for the human settlement (urban and rural) in 2015 with 1 km2 spatial resolution. | GHS [34] |
VIIRS | VIIRS Cloud Mask-Outlier Removed-Night-Time Lights (vcm-orm-ntl) annual data from 2015 with a spatial resolution of 15 arc-second. | NOAA/NASA [35] |
Global Administrative Areas | Global administrative areas of countries including the sub-divisions (v3.6). | GADM [32] |
Productivity Ratios | Agriculture, forestry, and fishing with value added (% of GDP) from 2015 at national level. | The World Bank [36] |
National GDP | 2015 National GDP at purchasing power parity in constant 2011 U.S. dollars. | The World Bank [36] |
Gini Index | Gini index estimates based on household survey data from 2015 at national level. | The World Bank [36] |
Income Quintile Ratio | Ratio of the average income between the richest 20% and the poorest 20% of the population. Only 2013 income quintile ratios are available. | UNDP [37] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Sutton, P.C.; Qi, B. Global Mapping of GDP at 1 km2 Using VIIRS Nighttime Satellite Imagery. ISPRS Int. J. Geo-Inf. 2019, 8, 580. https://doi.org/10.3390/ijgi8120580
Wang X, Sutton PC, Qi B. Global Mapping of GDP at 1 km2 Using VIIRS Nighttime Satellite Imagery. ISPRS International Journal of Geo-Information. 2019; 8(12):580. https://doi.org/10.3390/ijgi8120580
Chicago/Turabian StyleWang, Xuantong, Paul C. Sutton, and Bingxin Qi. 2019. "Global Mapping of GDP at 1 km2 Using VIIRS Nighttime Satellite Imagery" ISPRS International Journal of Geo-Information 8, no. 12: 580. https://doi.org/10.3390/ijgi8120580
APA StyleWang, X., Sutton, P. C., & Qi, B. (2019). Global Mapping of GDP at 1 km2 Using VIIRS Nighttime Satellite Imagery. ISPRS International Journal of Geo-Information, 8(12), 580. https://doi.org/10.3390/ijgi8120580