Accuracy Assessment of Different Digital Surface Models
<p>Geographic representation of the study area with a Pleiades high-resolution (PHR) image and a general overview of the region from Google Earth©.</p> "> Figure 2
<p>The gray levels represent the DSM dataset and the reference DSM data.</p> "> Figure 3
<p>(<b>a</b>) Land cover map of the study area; (<b>b</b>) reference elevation map from HGK data and the locations of checkpoints.</p> "> Figure 4
<p>The height difference distribution of the DSMs derived from 1000 checkpoints.</p> "> Figure 5
<p>Positions of the vertical profiles. (1) North/South; (2) Northeast/Southwest; (3) East/West; (4) Southeast/Northwest.</p> "> Figure A1
<p>Visuals and cross-sections of Profile 3a.</p> "> Figure A2
<p>Visuals and cross-sections of Profile 3b.</p> "> Figure A3
<p>Visuals and cross-sections of Profile 3c.</p> "> Figure A4
<p>Visuals and cross-sections of Profile 4a.</p> "> Figure A5
<p>Visuals and cross-sections of Profile 4b.</p> ">
Abstract
:1. Introduction
- The comparative and quantitative vertical accuracy of the DSMs in the study region.
- The ranking of the comparative accuracy of the DSMs for specific land cover classes.
- The performance of the DSMs in bare lands (i.e., terrain representation).
2. Study Area and Data
3. Methods
3.1. DSM Generation from PHR 1A and 1B and SPOT 6 and 7 Satellite Images
3.2. Production of Land Cover Map and Independent Checkpoints
3.3. Geometric Registration
3.4. Accuracy Assessment
4. Results and Discussion
4.1. Results of the Point-Based Assessment
4.2. Accuracy Assessment by Profile
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Amans, O.C.; Beiping, W.; Yevenyo, Z.Y. Assessing Vertical Accuracy of SRTM Ver 4.1 and ASTER GDEM Ver 2 Using Differential GPS Measurements—Case Study in Ondo State Nigeria. Int. J. Sci. Eng. Res. 2013, 4, 523–531. [Google Scholar]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 2010, 116, 24–36. [Google Scholar] [CrossRef]
- Peralvo, M. Influence of DEM Interpolation Methods in Drainage Analysis. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.4759&rep=rep1&type=pdf (accessed on 12 December 2017).
- Erasmi, S.; Rosenbauer, R.; Buchbach, R.; Busche, T.; Rutishauser, S. Evaluating the quality and accuracy of TanDEM-X digital elevation models at archaeological sites in the Cilician Plain, Turkey. Remote Sens. 2014, 6, 9475–9493. [Google Scholar] [CrossRef] [Green Version]
- Pope, A.; Murray, T.; Luckman, A. DEM quality assessment for quantification of glacier surface change. Ann. Glaciol. 2007, 46, 189–194. [Google Scholar] [CrossRef]
- Kobrick, M. On the toes of giants—How SRTM was born. Photogramm. Eng. Remote Sens. 2006, 72, 206–210. [Google Scholar]
- Frey, H.; Paul, F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 480–490. [Google Scholar] [CrossRef]
- ASPRS. American Society for Photogrammetry and Remote Sensing: Accuracy standards for large-scale maps. Photogramm. Eng. Remote Sens. 1990, 56, 1068–1070. [Google Scholar]
- Groeger, G.; Kolbe, T.H.; Czerwinski, A.; Nagel, C. Open GIS City Geography Markup Language (CityGML) Encoding Standard, version 1.0.0.; Technical Representative, OGC-08-007r1; Open Geospatial Consortium Inc.: Wayland, MA, USA, 2008. [Google Scholar]
- Rayburg, S.; Thoms, M.; Neave, M. A comparison of digital elevation models generated from different data sources. Geomorphology 2009, 106, 261–270. [Google Scholar] [CrossRef]
- Koch, A.; Lohmann, P. Quality assessment and validation of digital surface models derived from the shuttle radar topography mission (SRTM). In Proceedings of the ISPRS Congress, Amsterdam, The Netherlands, 16–23 July 2000; Volume 33. [Google Scholar]
- Habib, A.; Kim, E.M.; Morgan, M.F.; Couloigner, I. DEM Generation from High Resolution Satellite Imagery Using Parallel Projection Model. In Proceedings of the 20th ISPRS Congress, Istanbul, Turkey, 12–23 July 2004; pp. 393–398. [Google Scholar]
- Jacobsen, K. Digital surface models of city areas by very high resolution space Imagery. In Proceedings of the 1st EARSeL Workshop of the SIG Urban Remote Sensing, Berlin, Germany, 2–3 March 2006. [Google Scholar]
- Toutin, T. Generation of DSMs from SPOT-5 in-track HRS and across-track HRG stereo data using spatiotriangulation and autocalibration. ISPRS J. Photogramm. Remote Sens. 2006, 60, 170–181. [Google Scholar] [CrossRef]
- Toutin, T. Comparison of 3D physical and empirical models for generating DSMs from stereo HR images. Photogramm. Eng. Remote Sens. 2006, 72, 597–604. [Google Scholar] [CrossRef]
- Zhang, L.; Gruen, A. Multi-image matching for DSM generation from IKONOS imagery. ISPRS J. Photogramm. Remote Sens. 2006, 60, 195–211. [Google Scholar] [CrossRef]
- Buyuksalih, G.; Jacobsen, K. Digital surface models in build up areas based on very high resolution space images. In Proceedings of the ASPRS 2007 Annual Conference, Tampa, Florida, 7–11 May 2007. [Google Scholar]
- Alobeid, A.; Jacobsen, K. Automatic Generation of Digital Surface Models from IKONOS Stereo Imagery and Related Application. In Proceedings of the GORS 16th International Symposium, Damascus, Syria, 10–12 November 2018. [Google Scholar]
- D’Angelo, P.; Lehner, M.; Krauss, T.; Hoja, D.; Peter, R. Towards Automated DEM Generation from High Resolution Stereo Satellite Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1137–1142. [Google Scholar]
- Crespi, M.; Capaldo, P.; Fratarcangeli, F.; Nascetti, A.; Pieralice, F. DSM Generation from Very High Optical and Radar Sensors: Problems and Potentialities along the Road from the 3D Geometric Modeling to the Surface Model. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 3596–3599. [Google Scholar]
- Capaldo, P.; Crespi, M.; Fratarcangeli, F.; Nascetti, A.; Pieralice, F.; Agugiaro, G.; Poli, D.; Remondino, F. DSM Generation from Optical and SAR High Resolution Satellite Imagery: Methodology, Problems and Potentialities. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Munich, German, 22–27 July 2012; pp. 6936–6939. [Google Scholar]
- Gong, K.; Fritsch, D. A Detailed Study about Digital Surface Model Generation Using High Resolution Satellite Stereo Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 69–76. [Google Scholar] [CrossRef]
- Yu, M.; Huang, Y.; Xu, Q.; Guo, P.; Dai, Z. Application of virtual earth in 3D terrain modeling to visual analysis of large-scale geological disasters in mountainous areas. Environ. Earth. Sci. 2016, 75, 563. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, M.; Xu, Q.; Sawada, K.; Moriguchi, S.; Yashima, A.; Liu, C.; Xue, L. InSAR-derived digital elevation models for terrain change analysis of earthquake-triggered flow-like landslides based on ALOS/PALSAR imagery. Environ. Earth. Sci. 2015, 73, 7661–7668. [Google Scholar] [CrossRef]
- Purinton, B.; Bookhagen, B. Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau. Earth Surf. Dynam. 2017, 5, 211–237. [Google Scholar] [CrossRef]
- Merryman Boncori, J.P. Caveats Concerning the use of SRTM DEM Version 4.1 (CGIAR-CSI). Remote Sens. 2016, 8, 793. [Google Scholar] [CrossRef]
- Arefi, H.; Reinartz, P. Accuracy enhancement of ASTER global digital elevation models using ICESat data. Remote Sens. 2011, 3, 1323–1343. [Google Scholar] [CrossRef]
- Hu, Z.; Peng, J.; Hou, Y.; Shan, J. Evaluation of Recently, Released Open Global Digital Elevation Models of Hubei, China. Remote Sens. 2017, 9, 262. [Google Scholar] [CrossRef]
- Suwandana, E.; Kawamura, K.; Sakuno, Y.; Kustiyanto, E.; Raharjo, B. Evaluation of ASTER GDEM2 in Comparison with GDEM1, SRTM DEM and Topographic-Map-Derived DEM Using Inundation Area Analysis and RTK-dGPS Data. Remote Sens. 2012, 4, 2419–2431. [Google Scholar] [CrossRef]
- De Oliveira, C.G.; Paradella, W.R. An assessment of the altimetric information derived from spaceborne SAR (RADARSAT-1, SRTM3) and optical (ASTER) data for cartographic application in the Amazon region. Sensors 2008, 8, 3819–3829. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.; Morris, C.S.; Belz, J.E.; Chapin, E.C.; Martin, J.M.; Daffer, W.; Hensley, S. An Assessment of the SRTM Topographic Products. Validation Report by NASA and JPL. Available online: https://www2.jpl.nasa.gov/srtm/SRTM_D31639.pdf (accessed on 18 November 2017).
- Mukul, M.; Srivastava, V.; Mukul, M. Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM) height models using International Global Navigation Satellite System Service (IGS) Network. J. Earth Syst. Sci. 2015, 124, 1343–1357. [Google Scholar] [CrossRef]
- Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Generation of the 30 m-mesh global digital surface model by ALOS PRISM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 157–162. [Google Scholar] [CrossRef]
- Santillan, J.R.; Makinano-Santillan, M.; Makinano, R.M. Vertical accuracy assessment of ALOS World 3D-30M Digital Elevation Model over northeastern Mindanao, Philippines. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5374–5377. [Google Scholar]
- Takaku, J.; Tadono, T.; Tsutsui, K.; Ichikawa, M. Validation of ‘AW3D’ global DSM generated from ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 25–31. [Google Scholar] [CrossRef]
- Durand, A.; Michel, J.; De Franchis, C.; Allenbach, B.; Giros, A. Qualitative assessment of four DSM generation approaches using Pléiades-HR data. In Proceedings of the 33th EARSeL Symposium, Matera, Italy, 3–6 June 2013. [Google Scholar]
- SPOT 6 & SPOT 7 Technical Sheet. Available online: http://www.intelligence-airbusds.com/files/pmedia/public/r12317_9_spot6-7_technical_sheet.pdf (accessed on 21 November 2017).
- Cam, A.; Firat, O.; Yilmaz, A. The orthophoto and digital surface model production activities in the General Command of Mapping. In Proceedings of the TMMOB Geographical Information Systems Congress, Ankara, Turkey, 11–13 November 2013. [Google Scholar]
- Yilmaz, A.; Alp, O.; Okul, A.; Eker, O.; Erdogan, M. Türkiye için hassas sayısal yukseklik modeli üretimi. In Proceedings of the TUFUAB 3 Technical Symposium, Konya, Turkey, 21–23 May 2015. [Google Scholar]
Author Name | Date | Region | Data Source | Generation Method |
---|---|---|---|---|
Habib, A., et al. | 2004 | Korea, Belgium | SPOT-5 HRS | Parallel projection model |
Jacobsen, K. | 2006 | Maras and Zonguldak, Turkey; Phoenix, United States | IKONOS, QuickBird and OrbView-3 | Automatic image matching |
Toutin, T. | 2006 | North of Québec City, Québec, Canada | SPOT-5 in-track HRS and across-track HRG | Area-based multiscale image matching method |
Toutin, T. | 2006 | North of Québec City, Québec, Canada | IKONOS, QuickBird | Physical and empirical models |
Zhang, L., and Gruen, A. | 2006 | Thun, Switzerland | IKONOS | Multi-image matching |
Büyüksalih, G., and Jacobsen, K. | 2007 | Maras and Zonguldak, Turkey; Phoenix, United States | IKONOS, QuickBird, OrbView-3, Cartosat-1 | Automatic image matching |
Alobeid, A., and Jacobsen, K. | 2008 | Maras and Istanbul in Turkey | IKONOS | Automatic image matching |
d’Angelo, P., et al. | 2008 | Catalonia, Spain | Cartosat-1 | Towards automated digital elevation model (DEM) generation |
Crespi, M., et al. | 2010 | Rome and Merano, Italy | Geoeye-1 and Cosmo-SkyMed | Rigorous model and RPC model |
Capaldo, P., et al. | 2012 | Trento, Italy | GeoEye-1 and TerraSAR-X | RPC models for optical, radargrammetry for synthetic aperture radar (SAR) |
Gong, K., and D. Fritsch | 2016 | Munich, Germany | WorldView-2 | Bias-compensated RPC bundle block-adjusted Epipolar images generation, dense image matching, and DSM generation |
Yu, M., et al. | 2016 | Guangyuan City, China | Google Earth (GE) | Terrain extraction from GE |
Huang, Y., et al. | 2015 | Guangyuan City, China | Advanced Land Observing Satellite (ALOS)/PALSAR | DEM extraction with InSAR technique |
Purinton, B. and Bookhagen, B. | 2017 | Central Andean Plateu, Argentina | Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM version 2 (ASTER GDEM v.2), Shuttle Radar Topography Mission (SRTM-C), TerrasarX, ALOS World 3D (ALOS W3D) | Vertical accuracy by dGPS and morpometric comp |
PHR1A | SPOT6 | ||
---|---|---|---|
Acquisition Date | Incidence Angles (°) | Acquisition Date | Incidence Angles (°) |
28 August 2015 | 19.19 | 25 April 2017 | 19.30 |
14.20 | 2.74 | ||
23.14 | 15.06 |
Accuracy Metrics | PHR DSM | ALOS | SPOT DSM | SRTM | ASTER |
---|---|---|---|---|---|
Root mean square error (RMSE) | 1.57 | 2.14 | 2.26 | 3.53 | 5.72 |
Accuracy | 3.08 | 4.19 | 4.43 | 6.92 | 11.21 |
SD | 1.05 | 1.41 | 1.48 | 2.20 | 3.32 |
Accuracy Metrics | SPOT DSM | PHR DSM | ALOS | SRTM | ASTER |
---|---|---|---|---|---|
RMSE | 4.23 | 5.09 | 5.91 | 6.49 | 6.92 |
Accuracy | 8.29 | 9.97 | 11.58 | 12.72 | 13.56 |
SD | 3.17 | 3.46 | 4.49 | 4.57 | 4.68 |
DSM Type | Forest | Industry | Rare Residential | Residential | Roads | High Building | Average |
---|---|---|---|---|---|---|---|
SPOT DSM | 4.19 | 4.16 | 3.72 | 3.02 | 4.21 | 1.40 | 4.23 |
PHR DSM | 4.81 | 4.36 | 4.52 | 3.78 | 3.48 | 7.23 | 5.09 |
ALOS | 7.44 | 4.50 | 3.18 | 3.60 | 3.77 | 7.12 | 5.91 |
SRTM | 7.54 | 8.81 | 3.43 | 3.81 | 4.36 | 7.43 | 6.49 |
ASTER | 8.28 | 7.41 | 5.13 | 4.16 | 5.33 | 6.53 | 6.92 |
Forest | Industry | Rare Residential | Residential | Roads | High Building | Average |
---|---|---|---|---|---|---|
SPOT DSM | SPOT DSM | ALOS | SPOT DSM | PHR DSM | SPOT DSM | SPOT DSM |
PHR DSM | PHR DSM | SRTM | ALOS | ALOS | ASTER | PHR DSM |
ALOS | ALOS | SPOT DSM | PHR DSM | SPOT DSM | ALOS | ALOS |
SRTM | ASTER | PHR DSM | SRTM | SRTM | PHR DSM | SRTM |
ASTER | SRTM | ASTER | ASTER | ASTER | SRTM | ASTER |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alganci, U.; Besol, B.; Sertel, E. Accuracy Assessment of Different Digital Surface Models. ISPRS Int. J. Geo-Inf. 2018, 7, 114. https://doi.org/10.3390/ijgi7030114
Alganci U, Besol B, Sertel E. Accuracy Assessment of Different Digital Surface Models. ISPRS International Journal of Geo-Information. 2018; 7(3):114. https://doi.org/10.3390/ijgi7030114
Chicago/Turabian StyleAlganci, Ugur, Baris Besol, and Elif Sertel. 2018. "Accuracy Assessment of Different Digital Surface Models" ISPRS International Journal of Geo-Information 7, no. 3: 114. https://doi.org/10.3390/ijgi7030114
APA StyleAlganci, U., Besol, B., & Sertel, E. (2018). Accuracy Assessment of Different Digital Surface Models. ISPRS International Journal of Geo-Information, 7(3), 114. https://doi.org/10.3390/ijgi7030114