sgdm: An R Package for Performing Sparse Generalized Dissimilarity Modelling with Tools for gdm
<p>Illustrative workflow for deriving a raster map of Cerrado tree communities within the <span class="html-italic">sgdm</span> package.</p> "> Figure 2
<p>False colour RGB composite of the <span class="html-italic">spectral.image</span> predictor map: a subset of the hyperspectral Hyperion image covering an area of natural vegetation in the Brazilian Cerrado, acquired on 27 June 2014 (DOY 178). The overlaid yellow triangles represent the sample locations, for which both the biological (<span class="html-italic">trees</span>) and predictor (<span class="html-italic">spectra</span>) datasets were derived.</p> "> Figure 3
<p>Representation of the performance matrix with the model root mean square error (RMSE) values for each parameter pair. In the x axis are penalization values for the environmental matrix (from 0.6 to 1), and in the y axis those for the biological matrix (also from 0.6 to 1).</p> "> Figure 4
<p>Plot of the fitted generalized dissimilarity modelling (GDM) model and respective I-splines.</p> "> Figure 5
<p>Plot of observed vs. predicted dissimilarities of the final model.</p> "> Figure 6
<p>Plots of the eight non-metric multidimensional scaling (NMDS) axes representing the tree community transitions in the study area, according to the sparse generalized dissimilarity modelling (SGDM) model predictions.</p> ">
Abstract
:1. Introduction
2. General sgdm Package Description
- R> # Package installation from GitHub
- R> devtools::install_github("sparsegdm/sgdm_package")
- R> Loading package
- R> library(sgdm)
3. Running a SGDM Model in the sgdm Package
- R> # Parameterize SGDM
- R> sgdm.gs <− sgdm.param(predData = spectra, bioData = trees, k = 30)
- R> # Retrieving and building the best SGDM model
- R> sgdm.model <− sgdm.best(perf.matrix = sgdm.gs, predData = spectra, bioData = trees, output = ”m”, k = 30)
- R> # Retrieving the sparse canonical components corresponding to the best GDM model
- R> sgdm.sccbest <− sgdm.best(perf.matrix = sgdm.gs, predData = spectra, bioData = trees, output = ”c”, k = 30)
- R> # Retrieving the sparse canonical vectors corresponding to the best GDM model
- R> sgdm.vbest <− sgdm.best(perf.matrix = sgdm.gs, predData = spectra, bioData = trees, output = ”v”, k = 30)
- R> # Applying SCCA transformation onto the prediction map
- R> component.image <− predData.transform(predData = spectral.image, v = sgdm.vbest)
4. Additional Tools Useful for GDM and SGDM
- R> # Combining pair site data for GDM model variable contribution check
- R> spData.sccbest <− gdm:: formatsitepair(bioData = trees, bioFormat = 1, dist = "bray", abundance = TRUE, siteColumn = "Plot_ID", XColumn = "X", YColumn = "Y", predData = sgdm.sccbest)
- R> # Checking SGDM variable drop contribution
- R> gdm.varcont(spData = spData.sccbest)
- R> # Checking significance of variable contributions
- R> sigtest.sgdm <− gdm.varsig(predData = sgdm.sccbest, bioData = trees)
- R> # Excluding non-significant variables
- R> sgdm.sccbest.red <− data.reduce(data = sgdm.sccbest, datatype = "pred", sigtest = sigtest.sgdm)
- R> # Combining pair site data for input in GDM
- R> spData.sccbest.red <− gdm:: formatsitepair(bioData = trees, bioFormat = 1, dist = "bray", abundance = TRUE, siteColumn = "Plot_ID", XColumn = "X", YColumn = "Y", predData = sgdm.sccbest.red)
- R> # Final SGDM model
- R> sgdm.model.red <− gdm:: gdm(data = spData.sccbest.red)
- R> # 10-fold cross-validation of the final SGDM model
- R> gdm.cv(spData = spData.sccabest.red, nfolds = 10, performance = "r2")
- R> # Mapping community composition
- R> map.sitepairs <− gdm.map(spData = spData.sccabest.red, model = sgdm.model.red)
- R> # Reducing canonical component map to significant components
- R> component.image.red <− data.reduce(data = component.image, datatype = "pred", igtest = sigtest.sgdm)
- R> # Mapping community composition in space
- R> map.image <− gdm.map(spData = spData.sccabest.red, predMap = component.image.red, model = sgdm.model.red, k = 8)
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chapin, F.S., III; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.M.; Navarro, L.M.; Martins, I.S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 2012, 37, 25–50. [Google Scholar] [CrossRef]
- Ferrier, S. Extracting more value from biodiversity change observations through integrated modeling. BioScience 2011, 61, 96–97. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Legendre, P.; Borcard, D.; Peres-Neto, P.R. Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol. Monogr. 2005, 75, 435–450. [Google Scholar] [CrossRef]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Ferrier, S.; Guisan, A. Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 2006, 43, 393–404. [Google Scholar] [CrossRef]
- Guisan, A.; Rahbek, C. SESAM—A new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J. Biogeogr. 2011, 38, 1433–1444. [Google Scholar] [CrossRef]
- De Caceres, M.; Legendre, P.; He, F. Dissimilarity measurements and the size structure of ecological communities. Methods Ecol. Evolut. 2013, 4, 1167–1177. [Google Scholar] [CrossRef]
- Ferrier, S.; Manion, G.; Elith, J.; Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 2007, 13, 252–264. [Google Scholar] [CrossRef]
- Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evolut. 2003, 18, 299–305. [Google Scholar] [CrossRef]
- Jetz, W.; Cavender-Bares, J.; Pavlick, R.; Schimel, D.; Davis, F.W.; Asner, G.P.; Guralnick, R.; Kattge, J.; Latimer, A.M.; Moorcroft, P.; et al. Monitoring plant functional diversity from space. Nat. Plants 2016, 2, 16024. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2015. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Chabrillat, S.; Förster, S.; Rogass, C.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Lausch, A.; Bannehr, L.; Beckmann, M.; Boehm, C.; Feilhauer, H.; Hacker, J.M.; Heurich, M.; Jung, A.; Klenke, R.; Neumann, C.; et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecol. Indic. 2016, 70, 317–339. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Andrefouet, S.; Cohen, W.B.; Gomez, C.; Griffiths, P.; Hais, M.; Healey, S.P.; Helmer, E.H.; Hostert, P.; Lyons, M.B.; et al. Bringing an ecological view of change to Landsat-based remote sensing. Front. Ecol. Environ. 2014, 12, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Cord, A.F.; Meentemeyer, R.K.; Leitão, P.J.; Václavík, T. Modelling species distributions with remote sensing data: Bridging disciplinary perspectives. J. Biogeogr. 2013, 40, 2226–2227. [Google Scholar] [CrossRef]
- Parviainen, M.; Zimmermann, N.E.; Heikkinen, R.K.; Luoto, M. Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species. Biodivers. Conserv. 2013, 22, 1731–1754. [Google Scholar] [CrossRef]
- Cord, A.F.; Klein, D.; Mora, F.; Dech, S. Comparing the suitability of classified land cover data and remote sensing variables for modeling distribution patterns of plants. Ecol. Model. 2014, 272, 129–140. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Leitão, P.J.; Schwieder, M.; Suess, S.; Catry, I.; Milton, E.J.; Moreira, F.; Osborne, P.E.; Pinto, M.J.; van der Linden, S.; Hostert, P. Mapping beta diversity from space: Sparse Generalised Dissimilarity Modelling (SGDM) for analysing high-dimensional data. Methods Ecol. Evolut. 2015, 6, 764–771. [Google Scholar] [CrossRef]
- Witten, D.M.; Tibshirani, R.; Hastie, T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 2009, 10, 515–534. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 1996, 58, 267–288. [Google Scholar]
- Reineking, B.; Schröder, B. Constrain to perform: Regularization of habitat models. Ecol. Model. 2006, 193, 675–690. [Google Scholar] [CrossRef]
- Manion, G.; Lisk, M.; Ferrier, S.; Nieto-Lugilde, D.; Fitzpatrick, M.C. GDM: Functions for Generalized Dissimilarity Modeling; R Package Version 1.2.3. Available online: http://CRAN.R-project.org/package=gdm (accessed on 18 January 2017).
- R Development Core Team R. A Language and Environment for Statistical Computing, 3.2.2; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Witten, D.; Tibshirani, R.; Gross, S.; Narasimhan, B. PMA: Penalized Multivariate Analysis; R Package Version 1.0.9. Available online: http://CRAN.R-project.org/package=PMA (accessed on 18 January 2017).
- Vegan: Community Ecology Package; R Package Version 2.3-5. Available online: http://CRAN.R-project.org/package=vegan (accessed on 18 January 2017).
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling; R Package Version 2.5-8. Available online: http://CRAN.R-project.org/package=raster (accessed on 18 January 2017).
- Crookston, N.L.; Finley, A.O. yaImpute: An R Package for kNN imputation. J. Stat. Softw. 2008, 23, 1–16. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Thessler, S.; Ruokolainen, K.; Tuomisto, H.; Tomppo, E. Mapping gradual landscape-scale floristic changes in Amazonian primary rain forests by combining ordination and remote sensing. Glob. Ecol. Biogeogr. 2005, 14, 315–325. [Google Scholar] [CrossRef]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitão, P.J.; Schwieder, M.; Senf, C. sgdm: An R Package for Performing Sparse Generalized Dissimilarity Modelling with Tools for gdm. ISPRS Int. J. Geo-Inf. 2017, 6, 23. https://doi.org/10.3390/ijgi6010023
Leitão PJ, Schwieder M, Senf C. sgdm: An R Package for Performing Sparse Generalized Dissimilarity Modelling with Tools for gdm. ISPRS International Journal of Geo-Information. 2017; 6(1):23. https://doi.org/10.3390/ijgi6010023
Chicago/Turabian StyleLeitão, Pedro J., Marcel Schwieder, and Cornelius Senf. 2017. "sgdm: An R Package for Performing Sparse Generalized Dissimilarity Modelling with Tools for gdm" ISPRS International Journal of Geo-Information 6, no. 1: 23. https://doi.org/10.3390/ijgi6010023
APA StyleLeitão, P. J., Schwieder, M., & Senf, C. (2017). sgdm: An R Package for Performing Sparse Generalized Dissimilarity Modelling with Tools for gdm. ISPRS International Journal of Geo-Information, 6(1), 23. https://doi.org/10.3390/ijgi6010023