Morphological Principal Component Analysis for Hyperspectral Image Analysis †
<p>Illustration of an area opening <math display="inline"> <semantics> <msubsup> <mi>γ</mi> <msub> <mi>s</mi> <mi>l</mi> </msub> <mi>a</mi> </msubsup> </semantics> </math> and an area closing <math display="inline"> <semantics> <msubsup> <mi>φ</mi> <msub> <mi>s</mi> <mi>l</mi> </msub> <mi>a</mi> </msubsup> </semantics> </math> of image <span class="html-italic">f</span>, with <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mi>l</mi> </msub> <mo>=</mo> <mn>7</mn> </mrow> </semantics> </math> pixels. We can see that the connected components removed by the opening operator are the white circles since their area is 5, so below 7, and similarly for the black circles in the closed image.</p> "> Figure 2
<p>(<b>a</b>) Channel number 50 of Pavia hyperspectral image and (<b>b</b>) its morphological decomposition by area openings <math display="inline"> <semantics> <msubsup> <mi>γ</mi> <msub> <mi>s</mi> <mi>l</mi> </msub> <mi>a</mi> </msubsup> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mi>l</mi> </msub> <mo>=</mo> </mrow> </semantics> </math><math display="inline"> <semantics> <mrow> <mo>{</mo> <mn>0.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> <mo>,</mo> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> <mo>,</mo> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> <mo>,</mo> <mn>7</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>2</mn> </msup> <mo>,</mo> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>2</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>7</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> <mo>,</mo> <mn>1.2</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> <mo>,</mo> <mn>1.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> <mo>,</mo> <mn>2.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> <mo>}</mo> </mrow> </semantics> </math>. Last image in (b) corresponds to <math display="inline"> <semantics> <msubsup> <mi>γ</mi> <msub> <mi>s</mi> <mi>S</mi> </msub> <mi>a</mi> </msubsup> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mi>S</mi> </msub> <mo>=</mo> <mn>2.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> </mrow> </semantics> </math>; the other images in (b) are <math display="inline"> <semantics> <mrow> <mo>(</mo> <msubsup> <mi>γ</mi> <msub> <mi>s</mi> <mrow> <mi>l</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mi>a</mi> </msubsup> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>−</mo> <msubsup> <mi>γ</mi> <msub> <mi>s</mi> <mi>l</mi> </msub> <mi>a</mi> </msubsup> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </semantics> </math>. Note that the contrast of images has been enhanced to improve visualization.</p> "> Figure 3
<p>The pattern spectrum (PS) by area openings of a grey-scale image using 100 scales in (<b>a</b>); In (<b>b</b>), in blue, its corresponding cumulative pattern spectrum (CPS); in red, its approximation with <math display="inline"> <semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics> </math> scales.</p> "> Figure 4
<p>Global process of MorphPCA.</p> "> Figure 5
<p>Process of scale-space decomposition Morphological Principal Component Analysis (MorphPCA).</p> "> Figure 6
<p>Process of pattern spectrum MorphPCA.</p> "> Figure 7
<p>Process of distance function MorphPCA.</p> "> Figure 8
<p>Top, three examples of spectral bands of Pavia image: (<b>a</b>) <math display="inline"> <semantics> <mrow> <mo>♯</mo> <mn>1</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mo>♯</mo> <mn>50</mn> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <mo>♯</mo> <mn>100</mn> </mrow> </semantics> </math>; middle; (<b>d</b>–<b>f</b>) pattern spectrum (PS) of corresponding spectral bands; (<b>g</b>–<b>i</b>) Molchanov distance functions of corresponding spectral bands.</p> "> Figure 9
<p>(<b>a</b>) Example of a pair of binary images for pattern spectrum correlation discussion; (<b>b</b>) Example of triplet of binary images for distance function correlation discussion.</p> "> Figure 10
<p>Visualization of the correlation matrix of (<b>a</b>) the spectral bands of Pavia hyperspectral image; (<b>b</b>) the PS of its spectral bands; (<b>c</b>) the distance function of its spectral bands.</p> "> Figure 11
<p>(<b>a</b>) A 3-variate image (first three eigenimages after PCA on Pavia hyperspectral image) and (<b>b</b>) its corresponding <span class="html-italic">α</span>-flat zone partition into 84931 spatial classes using the Euclidean distance.</p> "> Figure 12
<p>RGB false color visualization of first three eigenimages from Pavia hyperspectral image: (<b>a</b>) classical PCA on spectral bands; (<b>b</b>) scale-decomposition MorphPCA; (<b>c</b>) pattern spectrum MorphPCA; (<b>d</b>) distance function MorphPCA.</p> "> Figure 13
<p>Hyperspectral band projection into the first two eigenvectors (<span class="html-italic">i.e.</span>, image manifold) from Pavia hyperspectral image: (<b>a</b>) classical PCA on spectral bands; (<b>b</b>) scale-decomposition MorphPCA; (<b>c</b>) pattern spectrum MorphPCA; (<b>d</b>) distance function MorphPCA.</p> "> Figure 14
<p>Intrusion/Extrusion parameters for PCA and the different variants of MorphPCA from Pavia hyperspectral image: (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>Q</mi> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> </semantics> </math>.</p> "> Figure 15
<p>(<b>a</b>) 3D pattern spectrum distribution of Pavia hyperspectral image and of the different reduced images into <span class="html-italic">d</span> components; (<b>b</b>) Corresponding 3D cumulative pattern spectrum distributions.</p> "> Figure 16
<p>Results of supervised classification using least square SVM with a linear kernel on Indian Pines hyperspectral image. Note the OA is the overall accuracy.</p> "> Figure 17
<p>Results of supervised classification using least square SVM with a RBF kernel on Indian Pines hyperspectral image. Note the OA is the overall accuracy.</p> "> Figure 18
<p>Results of kappa statistic for the least square SVM with a RBF kernel and different number of dimensions on Indian Pines hyperspectral image, the size of training set is equal to 5%.</p> "> Figure 19
<p>Results of kappa statistic for the least square SVM with a RBF kernel and different percentage of training set on Indian Pines hyperspectral image, the dimension of the reduced space is equal to 5.</p> ">
Abstract
:1. Introduction
2. Basics on Morphological Image Representation
2.1. Notation
2.2. Nonlinear Scale-Spaces and Morphological Decomposition
2.3. Pattern Spectrum
2.4. Grey-Scale Distance Function
3. Morphological Principal Component Analysis
3.1. Remind on Classical PCA
3.2. Covariance Matrix and Pearson Correlation Matrix
3.3. MorphPCA and Its Variants
3.3.1. Scale-Space Decomposition MorphPCA
3.3.2. Pattern Spectrum MorphPCA
3.3.3. Distance Function MorphPCA
3.3.4. Spatial/Spectral MorphPCA
4. MorphPCA Applied to Hyperspectral Images
4.1. Criteria to Evaluate PCA vs. MorphPCA
- Local criteria.
- Criterion 1 (C1)
- The reconstructed hyperspectral image using the first d principal components should be a regularized version of in order to be more spatially sparse.
- Criterion 2 (C2)
- The reconstructed hyperspectral image using the first d principal components should preserve local homogeneity and be coherent with the original hyperspectral image .
- Criterion 3 (C3)
- The manifold of variables (i.e., intrinsic geometry) from the reconstructed hyperspectral image should be as similar as possible to the manifold from original hyperspectral image .
- Global criteria.
- Criterion 4 (C4)
- The number of bands d of the reduced hyperspectral image should be reduced as much as possible. It means that a spectrally sparse image is obtained.
- Criterion 5 (C5)
- The reconstructed hyperspectral image using the first d principal components should preserve the global similarity with the original hyperspectral image . Or in other words, it should be a good noise-free approximation.
- Criterion 6 (C6)
- Separability of spectral classes should be improved in the dimensionality reduced space. That involves in particular a better pixel classification.
4.2. Evaluation of Algorithms
4.3. Evaluation on Hyperspectral Images
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Guilfoyle, K.; Althouse, M.L.; Chang, C.I. Further investigations into the use of linear and nonlinear mixing models for hyperspectral image analysis. Proc. SPIE 2002. [Google Scholar] [CrossRef]
- Bachmann, C.; Ainsworth, T.; Fusina, R. Exploiting manifold geometry in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 441–454. [Google Scholar] [CrossRef]
- Van der Maaten, L.J.; Postma, E.O.; van den Herik, H.J. Dimensionality reduction: A comparative review. J. Mach. Learn. Res. 2009, 10, 66–71. [Google Scholar]
- Dalla Mura, M.; Benediktsson, J.; Waske, B.; Bruzzone, L. Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Fauvel, M.; Benediktsson, J.; Chanussot, J.; Sveinsson, J. Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef]
- Pesaresi, M.; Benediktsson, J. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 309–320. [Google Scholar] [CrossRef]
- Lefevre, S.; Chapel, L.; Merciol, F. Hyperspectral image classification from multiscale description with constrained connectivity and metric learning. In Proceedings of the 6th International Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS 2014), Lausannne, Switzerland, 24–27 June 2014.
- Aptoula, E.; Lefevre, S. A comparative study on multivariate mathematical morphology. Pattern Recognit. 2007, 40, 2914–2929. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Hyperspectral image segmentation using a new bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3947–3960. [Google Scholar] [CrossRef]
- Mercier, G.; Derrode, S.; Lennon, M. Hyperspectral image segmentation with markov chain model. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’03, Toulouse, France, 21–25 July 2003; pp. 3766–3768.
- Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351–1362. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gomez-Chova, L.; Mu noz-Marí, J.; Vila-Francés, J.; Calpe-Maravilla, J. Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2006, 3, 93–97. [Google Scholar] [CrossRef]
- Mathieu, F.; Jocelyn, C.; Jón Atli, B. Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas. EURASIP J. Adv. Signal Process. 2009. [Google Scholar] [CrossRef]
- Volpi, M.; Tuia, D. Spatially aware supervised nonlinear dimensionality reduction for hyperspectral data. In Proceedings of the 6th International Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS 2014), Lausannne, Switzerland, 24–27 June 2014.
- Velasco-Forero, S.; Angulo, J. Classification of hyperspectral images by tensor modeling and additive morphological decomposition. Pattern Recognit. 2013, 46, 566–577. [Google Scholar] [CrossRef] [Green Version]
- Renard, N.; Bourennane, S. Dimensionality reduction based on tensor modeling for classification methods. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1123–1131. [Google Scholar] [CrossRef]
- Bakshi, B.R. Multiscale pca with application to multivariate statistical process monitoring. AIChE J. 1998, 44, 1596–1610. [Google Scholar] [CrossRef]
- Franchi, G.; Angulo, J. Comparative study on morphological principal component analysis of hyperspectral images. In Proceedings of the 6th International Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS 2014), Lausannne, Switzerland, 24–27 June 2014.
- I.G.D.F. Contest. Available online: http://www.grss-ieee.org/community/technical-committees/data-fusion/ (accessed on 17 December 2015).
- Vincent, L. Morphological area opening and closing for greyscale images. In Proceedings of the NATO Shape in Picture Workshop, Driebergen, The Netherlands, May 1993.
- Serra, J. Image Analysis and Mathematical Morphology; Academic Press, Inc.: Orlando, FL, USA, 1983. [Google Scholar]
- Cavallaro, G.; Falco, N.; Dalla Mura, M.; Bruzzone, L.; Benediktsson, J.A. Automatic threshold selection for profiles of attribute filters based on granulometric characteristic functions. In Mathematical Morphology and Its Applications to Signal and Image Processing; Springer: Reykjavik, Islande, 2015; pp. 169–181. [Google Scholar]
- Maragos, P. Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 701–716. [Google Scholar] [CrossRef]
- Matheron, G. Random Sets and Integral Geometry; John Wiley & Sons: New York, NY, USA, 1975. [Google Scholar]
- Soille, P. Morphological Image Analysis: Principles and Applications; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Molchanov, I.S.; Teran, P. Distance transforms for real-valued functions. J. Math. Anal. Appl. 2003, 278, 472–484. [Google Scholar] [CrossRef]
- Goshtasby, A.A. Similarity and dissimilarity measures. In Image Registration; Springer: Berlin, Germany, 2012; pp. 7–66. [Google Scholar]
- Huntington, E.V. Mathematics and statistics, with an elementary account of the correlation coefficient and the correlation ratio. Am. Math. Mon. 1919, 26, 421–435. [Google Scholar] [CrossRef]
- Baddeley, A. Errors in binary images and an lp version of the hausdorff metric. Nieuw Archief voor Wiskunde 1992, 10, 157–183. [Google Scholar]
- Velasco-Forero, S.; Angulo, J.; Chanussot, J. Morphological image distances for hyperspectral dimensionality exploration using kernel-pca and isomap. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2009, Cape Town, South Africa, 12–17 July 2009.
- Meyer, F. The levelings. Comput. Imaging Vis. 1998, 12, 199–206. [Google Scholar]
- Franchi, G.; Angulo, J. Quantization of hyperspectral image manifold using probabilistic distances. In Geometric Science of Information; Springer: Berlin, Germany, 2015; pp. 406–414. [Google Scholar]
- Lee, J.A.; Verleysen, M. Quality assessment of dimensionality reduction: Rank-based criteria. Neurocomputing 2009, 72, 1431–1443. [Google Scholar] [CrossRef]
- Venna, J.; Kaski, S. Local multidimensional scaling. Neural Netw. 2006, 19, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Venna, J.; Kaski, S. Neighborhood preservation in nonlinear projection methods: An experimental study. In Artificial Neural Networks-ICANN 2001; Springer: Berlin, Germany, 2001; pp. 485–491. [Google Scholar]
- Mohan, A.; Sapiro, G.; Bosch, E. Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2007, 4, 206–210. [Google Scholar] [CrossRef]
- He, J.; Zhang, L.; Wang, Q.; Li, Z. Using diffusion geometric coordinates for hyperspectral imagery representation. IEEE Geosci. Remote Sens. Lett. 2009, 6, 767–771. [Google Scholar]
Technique | Parameter (1) | Computational (2) | Memory (3) |
---|---|---|---|
PCA | Prop | ||
MorphPCA Morpho-1 | Prop, S | ||
MorphPCA Morpho-2 | Prop | ||
MorphPCA Morpho- 3 | Prop | ||
MorphPCA Morpho-4 β | Prop, β | ||
KPCA | Prop, K |
(a) | ||||
V | VMorpho-1 | VMorpho-2 | VMorpho-3 | |
ErrorHomg | 100 | 100 | 95.9 | 79.3 |
Errorsparse spatially | 99.8 | 99.7 | 100 | 88.3 |
VMorpho-4 β β = 0.8 | VMorpho-4 β β = 0.2 | VMorpho-4 β β = 0.5 | ||
ErrorHomg | 93.2 | 83.9 | 88.3 | |
Errorsparse spatially | 93.3 | 96.7 | 98.6 | |
(b) | ||||
V | VMorpho-1 | VMorpho-2 | VMorpho-3 | |
ErrorHomg | 100 | 90.4 | 35.3 | 38.3 |
Errorsparse spatially | 97.7 | 97.6 | 100 | 89 |
(c) | ||||
V | VMorpho-1 | VMorpho-2 | VMorpho-3 | |
ErrorHomg | 98.1 | 100 | 96.5 | 97.8 |
Errorsparse spatially | 91 | 100 | 91.2 | 82.7 |
(a) Pavia Image | |||
Overall Accuracy with Linear Kernel | Overall Accuracy with RBF Kernel | Kappa Statistic with RBF Kernel | |
V | 51.51 ± 0.9 | 84.9 ± 3.1 | 0.84 ± 1 × 10−4 |
VMorpho-1 | 59.6 ± 2.2 | 85.8 ± 2.6 | 0.84 ± 1 × 10−4 |
VMorpho-2 | 56.99 ± 1.1 | 85.2 ± 2.1 | 0.84 ± 1 × 10−4 |
VMorpho-3 | 59.9 ± 2.5 | 86.0 ± 1.9 | 0.84 ± 1 × 10−4 |
VMorpho-4 β, β = 0.2 | 61.0 ± 1.73 | 85.2 ± 1.1 | 0.83 ± 1 × 10−4 |
VMorpho-4 β, β = 0.5 | 59.9 ± 1.5 | 84.6 ± 1.0 | 0.83 ± 1 × 10−4 |
VMorpho-4 β, β = 0.8 | 57.87 ± 3 | 84.7 ± 2.5 | 0.83 ± 2 × 10−4 |
(b) Indian Pine image | |||
Overall Accuracy with Linear Kernel | Overall Accuracy with RBF Kernel | Kappa Statistic with RBF Kernel | |
V | 43.9 ± 3.6 | 75.2 ± 3.7 | 0.73 ± 4.3 × 10−4 |
VMorpho-1 | 50.5 ± 3.8 | 79.6 ± 3.7 | 0.78 ± 4 × 10−4 |
VMorpho-2 | 41.5 ± 3.8 | 66.6 ± 4.6 | 0.63 ± 4.5 × 10−4 |
VMorpho-3 | 51.3 ± 3.2 | 79.1 ± 3.2 | 0.77 ± 3.7 × 10−4 |
VMorpho-4 β, β = 0.2 | 43.5 ± 3.3 | 75.1 ± 2.3 | 0.72 ± 2.6 × 10−4 |
VMorpho-4 β, β = 0.5 | 43.1 ± 2.9 | 71.2 ± 2.6 | 0.68 ± 3 × 10−4 |
VMorpho-4 β, β = 0.8 | 43.0 ± 2.2 | 69.7 ± 3.3 | 0.67 ± 3.9 × 10−4 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franchi, G.; Angulo, J. Morphological Principal Component Analysis for Hyperspectral Image Analysis. ISPRS Int. J. Geo-Inf. 2016, 5, 83. https://doi.org/10.3390/ijgi5060083
Franchi G, Angulo J. Morphological Principal Component Analysis for Hyperspectral Image Analysis. ISPRS International Journal of Geo-Information. 2016; 5(6):83. https://doi.org/10.3390/ijgi5060083
Chicago/Turabian StyleFranchi, Gianni, and Jesús Angulo. 2016. "Morphological Principal Component Analysis for Hyperspectral Image Analysis" ISPRS International Journal of Geo-Information 5, no. 6: 83. https://doi.org/10.3390/ijgi5060083
APA StyleFranchi, G., & Angulo, J. (2016). Morphological Principal Component Analysis for Hyperspectral Image Analysis. ISPRS International Journal of Geo-Information, 5(6), 83. https://doi.org/10.3390/ijgi5060083