Delineating Urban Fringe Area by Land Cover Information Entropy—An Empirical Study of Guangzhou-Foshan Metropolitan Area, China
<p>The study area and land cover map of the study area in 2008 and the sample transect crossing two centroids of the built-up area of Guangzhou and Foshan.</p> "> Figure 2
<p>Inflection point recognition for information entropy analysis.</p> "> Figure 3
<p>The response of the average entropy value to different scales.</p> "> Figure 4
<p>The information entropy value variation at different scales (240 m, 480 m, 960 m, 1920 m, 3840 m).</p> "> Figure 5
<p>Latitude direction (<b>a</b>); longitude direction (<b>b</b>) and radius direction (<b>c</b>) recognition result.</p> "> Figure 5 Cont.
<p>Latitude direction (<b>a</b>); longitude direction (<b>b</b>) and radius direction (<b>c</b>) recognition result.</p> "> Figure 6
<p>Final delineation of the urban fringe area.</p> "> Figure 7
<p>Industry structure comparison. (<b>a</b>) Division of urban core, urban fringe and rural area based on administrative boundary; (<b>b</b>) Industry structure data of different areas.</p> ">
Abstract
:1. Introduction
- (a)
- What variable(s) should be used as an indicator of how urban or what rural it is?
- (b)
- On what scale should it be analyzed and calculated?
- (c)
- How will the indicating variable(s) be measured?
2. Study Area and Data
3. Methodology
3.1. ‘Fringe Effect’ and Land Cover Information Entropy Model
3.2. Optimal Scale Selection
3.3. Analysis of Land Cover Information Entropy
3.4. Integration of Recognition Results
4. Results
4.1. Optimal Scale for Calculating and Analysing Information Entropy
4.1.1. Value Variation on Different Scales
4.1.2. Spatial Heterogeneity on Different Scales
4.2. Quantitative Recognition of the Information Entropy Image
4.2.1. Entropy Value Overall Analysis
4.2.2. Latitude and Longitude Direction
4.2.3. Radius Direction
4.3. The Final Mapping Result of the Urban Fringe Area and Analysis
5. Discussion
5.1. Accuracy Evaluation
5.2. Land Cover Mapping Limitation
5.3. Applicability
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, Y.; Zhou, Q.; Gong, J.; Wang, Y. An integrated spatio-temporal classification method for urban fringe change detection analysis. Int. J. Remote Sens. 2012, 33, 2516–2531. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS. Landsc. Urban Plan. 2004, 69, 335–354. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on “urban ecoregions”. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Jindrich, J. When the urban fringe is not suburban. Geogr. Rev. 2010, 100, 35–55. [Google Scholar] [CrossRef]
- Louis, H. Die geographische Gliederung von Gross-Berlin (The geographical structure of Greater Berlin). In Landerkundliche Forschung: Krebs-Festschrift; Louis, H., Panzer, W., Eds.; Engelhorn: Stuttgart, Germany, 1936; pp. 146–171. (In German) [Google Scholar]
- Desai, A.; Gupta, S.S. Problem of Changing Land Use Pattern in the Rural-Urban Fringe; Concept Publishing Company: New Delhi, India, 1987. [Google Scholar]
- Friedberger, M. The rural-urban fringe in the late Twentieth Century. Agric. Hist. 2000, 74, 502–514. [Google Scholar]
- Hall, A.S.; Kaufman, S.J.; Ricketts, C.T. Defining urban and rural areas in U.S. epidemiologic studies. J. Urban Health 2006, 8, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Lesage, P.J.; Charles, S.J. Using home buyers’ revealed preferences to define the urban-rural fringe. J. Geogr. Syst. 2008, 10, 1–21. [Google Scholar] [CrossRef]
- Russwurm, L. Urban fringe and urban shadow. In Urban Fringe and Urban Shadow; Holt, Rinehart and Winston: Toronto, ON, Canada, 1975; pp. 148–164. [Google Scholar]
- Weeks, J.R. Defining urban areas. In Remote Sensing of Urban and Suburban Areas; Rashed, T., Jürgens, C., Eds.; Springer-Verlag, Inc.: New York, NY, USA, 2010; pp. 33–45. [Google Scholar]
- Banzhaf, E.; Grescho, V.; Kindler, A. Monitoring urban to peri-urban development with integrated remote sensing and GIS information: A Leipzig, Germany case study. Int. J. Remote Sens. 2009, 30, 1675–1696. [Google Scholar] [CrossRef]
- Yang, X.; Fu, B.; Chen, L. Remote sensing and geospatial analysis for landscape pattern characterization. In Landscape Ecology for Sustainable Environment and Culture; Fu, B., Jones, B., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 205–221. [Google Scholar]
- Zhang, W.; Fang, X.; Zhang, L. Method to identify the urban-rural fringe by TM images. J. Remote Sens. 1999, 3, 199–202. (In Chinese) [Google Scholar]
- Wilson, E.H.; Hurd, J.D.; Civco, D.L.; Prisloe, M.P.; Arnold, C. Development of a geospatial model to quantify describe and map urban growth. Remote Sens. Environ. 2004, 86, 275–285. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D. Urban sprawl metrics: An analysis of global urban expansion using GIS. In Proceedings of the ASPRS 2007 Annual Conference, Tampa, FL, USA, 7–11 May 2007; p. 12.
- Peterson, D.L.; Parker, T.V. Ecological Scale Theory and Applications; Columbia University Press: New York, NY, USA, 1998. [Google Scholar]
- Quattrochi, D.A.; Goodchild, M.F. Scale in Remote Sensing and GIS; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Corry, R.C.; Nassauer, J.I. Limitations of using landscape pattern indices to evaluate the ecological consequences of alternative plans and designs. Landsc. Urban Plan. 2005, 72, 265–280. [Google Scholar] [CrossRef]
- Wu, J. Key concepts and research topics in landscape ecology revisited: 30 years after the Allerton Park workshop. Landsc. Ecol. 2013, 28, 1–11. [Google Scholar] [CrossRef]
- Senft, A.R. Species Diversity Patterns at Ecotones; University of North Carolina: Chapel Hill, NC, USA, 2009. [Google Scholar]
- Graves, R. Ecotone. Available online: http://www.eoearth.org/view/article/152345 (accessed on 15 February 2016).
- Ludwig, J.A.; Reynolds, J.F. Statistical Ecology; John Wiley & Sons, Inc.: New York, NY, USA, 1988. [Google Scholar]
- Bhatta, B. Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. Int. J. Remote Sens. 2009, 30, 4733–4746. [Google Scholar] [CrossRef]
- Schneider, A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sens. Environ. 2012, 124, 689–704. [Google Scholar] [CrossRef]
- Gong, P.; Yu, L.; Li, C.; Wang, J.; Liang, L.; Li, X.; Ji, L.; Bai, Y.; Cheng, Y.; Zhu, Z. A new research paradigm for global land cover mapping. Ann. GIS 2016, 22, 1–16. [Google Scholar] [CrossRef]
- Brook, A.; Ben-Dor, E.; Richter, R. Modelling and monitoring urban built environment via multi-source integrated and fused remote sensing data. Int. J. Image Data Fusion 2013, 4, 2–32. [Google Scholar] [CrossRef]
- Dahiya, S.; Garg, P.K.; Jat, M.K. A comparative study of various pixel-based image fusion techniques as applied to an urban environment. Int. J. Image Data Fusion 2013, 4, 197–213. [Google Scholar] [CrossRef]
- Guo, G.; Wu, Z.; Xiao, R.; Chen, Y.; Liu, X.; Zhang, X. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc. Urban Plan. 2015, 135, 1–10. [Google Scholar] [CrossRef]
- Pryor, R.J. Defining the rural-urban fringe. Soc. Forces 1968, 47, 202–215. [Google Scholar] [CrossRef]
- Zhou, Q.; Sun, B. Analysis of spatio-temporal pattern and driving force of land cover change using multi-temporal remote sensing images. Sci. China Technol. Sci. 2010, 53, 111–119. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhou, Q.; Wu, Z. Delineating Urban Fringe Area by Land Cover Information Entropy—An Empirical Study of Guangzhou-Foshan Metropolitan Area, China. ISPRS Int. J. Geo-Inf. 2016, 5, 59. https://doi.org/10.3390/ijgi5050059
Huang J, Zhou Q, Wu Z. Delineating Urban Fringe Area by Land Cover Information Entropy—An Empirical Study of Guangzhou-Foshan Metropolitan Area, China. ISPRS International Journal of Geo-Information. 2016; 5(5):59. https://doi.org/10.3390/ijgi5050059
Chicago/Turabian StyleHuang, Junyi, Qiming Zhou, and Zhifeng Wu. 2016. "Delineating Urban Fringe Area by Land Cover Information Entropy—An Empirical Study of Guangzhou-Foshan Metropolitan Area, China" ISPRS International Journal of Geo-Information 5, no. 5: 59. https://doi.org/10.3390/ijgi5050059
APA StyleHuang, J., Zhou, Q., & Wu, Z. (2016). Delineating Urban Fringe Area by Land Cover Information Entropy—An Empirical Study of Guangzhou-Foshan Metropolitan Area, China. ISPRS International Journal of Geo-Information, 5(5), 59. https://doi.org/10.3390/ijgi5050059