Assessing the Effect of Temporal Interval Length on the Blending of Landsat-MODIS Surface Reflectance for Different Land Cover Types in Southwestern Continental United States
<p>Land cover map (National Land Cover Database (NLCD), year: 2001) of the study area.</p> "> Figure 2
<p>Distribution of the Landsat data used in the study. (<b>a</b>) day of year (DOY), (<b>b</b>) frequency from the period 2001 to 2012. L5 denotes Landsat TM data, L7 denotes Landsat ETM+ data.</p> "> Figure 3
<p>Distribution of the day of year (DOY) for maximum R<sup>2</sup> (not filled marker) and minimum RMSE (filled marker) value at each year from 2001 to 2012. The corresponding base date (dash line) is (<b>a</b>) 9 February (DOY: 40), (<b>b</b>) 16 May (DOY: 136), (<b>c</b>) 28 August (DOY: 240) and (<b>d</b>) 8 November (DOY: 312) for year 2001, respectively. The markers for six Landsat-like bands are circle, triangle, diamond, square, hexagram and pentagram, respectively. The color for each land cover type is black (WAT: water), red (URB: urban), green (SHR: shrub), blue (GRA, grassland), violet (CRO: cropland) and brown (WET: wetland). The meaning of marker and color for symbols is the same for <a href="#ijgi-04-02542-f004" class="html-fig">Figure 4</a>.</p> "> Figure 4
<p>Distribution of the day of year (DOY) for minimum R<sup>2</sup> (not filled marker) and maximum RMSE (filled marker) value at each year from 2001 to 2012. The corresponding base date (dash line) is (<b>a</b>) 9 February (DOY: 40), (<b>b</b>) 16 May (DOY: 136), (<b>c</b>) 28 August (DOY: 240) and (<b>d</b>) 8 November (DOY: 312) for year 2001, respectively.</p> "> Figure 5
<p>Distribution of the day of year (DOY) for maximum R<sup>2</sup> (not filled marker) and minimum RMSE (filled marker) value for year 2001, 2003 and 2008. The corresponding simulation date (dash line) is (<b>a</b>) 14 January (DOY: 14), (<b>b</b>) 12 April (DOY: 102), (<b>c</b>) 9 July (DOY: 190) and (<b>d</b>) 21 October (DOY: 294) for year 2009, respectively. The size of marker from small to big denotes years 2001, 2003 and 2008, respectively. The markers for six Landsat-like bands are circle, triangle, diamond, square, hexagram and pentagram, respectively. The color for each land cover type is black (WAT: water), red (URB: urban), green (SHR: shrub), blue (GRA, grassland), violet (CRO: cropland) and brown (WET: wetland). The meaning of marker and color for symbols is the same for <a href="#ijgi-04-02542-f006" class="html-fig">Figure 6</a>.</p> "> Figure 6
<p>Distribution of the day of year (DOY) for minimum R<sup>2</sup> (not filled marker) and maximum RMSE (filled marker) value for year 2001, 2003 and 2008. The corresponding simulation date (dash line) is (<b>a</b>) 14 January (DOY: 14), (<b>b</b>) 12 April (DOY: 102), (<b>c</b>) 9 July (DOY: 190) and (<b>d</b>) 21 October (DOY: 294) for year 2009, respectively. The size of marker from small to big denotes year 2001, 2003 and 2008 respectively.</p> "> Figure 7
<p>Visual comparison between the observed and simulated Landsat reflectance (Near-infrared (NIR)-red-green composite) using the base Landsat-MODIS pair data at 9 February 2001. The upper/lower row is the observed/simulated Landsat reflectance.</p> "> Figure 8
<p>Spatial distribution of land cover changes for the study area for (<b>a</b>) 2001 to 2006, (<b>b</b>) 2006 to 2011, and (<b>c</b>) 2001 to 2011. The base map is band 4 (near-infrared band) of Landsat data on 8 May 2001. The land cover shown on the map is the latest land cover type.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. STARFM
2.4. Evaluation with a Fixed Base Date
Year | Month | Day | DOY | Sensor | Day since Start of the Dataset | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fixed Base Date (2001) | Specific Simulation Date (2009) | |||||||||||
Feb. 9 | May 16 | Aug. 28 | Nov. 8 | Jan. 14 | Apr. 12 | Jul. 9 | Oct. 21 | |||||
2001 | Jan. | 24 | 24 | L5 | - | - | - | - | 2912 | 3000 | 3088 | 3192 |
Feb. | 9 | 40 | L5 | - | - | - | - | 2896 | 2984 | 3072 | 3176 | |
Mar. | 13 | 72 | L5 | 32 | - | - | - | 2864 | 2952 | 3040 | 3144 | |
Apr. | 14 | 104 | L5 | 64 | - | - | - | 2832 | 2920 | 3008 | 3112 | |
May | 16 | 136 | L5 | 96 | - | - | - | 2800 | 2888 | 2976 | 3080 | |
Jun. | 17 | 168 | L5 | 128 | 32 | - | - | 2768 | 2856 | 2944 | 3048 | |
Jul. | 19 | 200 | L5 | 160 | 64 | - | - | 2736 | 2824 | 2912 | 3016 | |
Aug. | 28 | 240 | L7 | 200 | 104 | - | - | 2696 | 2784 | 2872 | 2976 | |
Sep. | 21 | 264 | L5 | 224 | 128 | 24 | - | 2672 | 2760 | 2848 | 2952 | |
Oct. | 23 | 296 | L5 | 256 | 160 | 56 | - | 2640 | 2728 | 2816 | 2920 | |
Nov. | 8 | 312 | L5 | 272 | 176 | 72 | - | 2624 | 2712 | 2800 | 2904 | |
Dec. | 18 | 352 | L7 | 312 | 216 | 112 | 40 | 2584 | 2672 | 2760 | 2864 | |
2003 | Jan. | 14 | 14 | L5 | 704 | 608 | 504 | 432 | 2192 | 2280 | 2368 | 2472 |
Feb. | 30* | 30 | L5 | 720 | 624 | 520 | 448 | 2176 | 2264 | 2352 | 2456 | |
Mar. | 11 | 70 | L7 | 760 | 664 | 560 | 488 | 2136 | 2224 | 2312 | 2416 | |
Apr. | 20 | 110 | L5 | 800 | 704 | 600 | 528 | 2096 | 2184 | 2272 | 2376 | |
May | 22 | 142 | L5 | 832 | 736 | 632 | 560 | 2064 | 2152 | 2240 | 2344 | |
Jun. | 23 | 174 | L5 | 864 | 768 | 664 | 592 | 2032 | 2120 | 2208 | 2312 | |
Jul. | 9 | 190 | L5 | 880 | 784 | 680 | 608 | 2016 | 2104 | 2192 | 2296 | |
Aug. | 10 | 222 | L5 | 912 | 816 | 712 | 640 | 1984 | 2072 | 2160 | 2264 | |
Sep. | 11 | 254 | L5 | 944 | 848 | 744 | 672 | 1952 | 2040 | 2128 | 2232 | |
Oct. | 13 | 286 | L5 | 976 | 880 | 776 | 704 | 1920 | 2008 | 2096 | 2200 | |
Nov. | 14 | 318 | L5 | 1008 | 912 | 808 | 736 | 1888 | 1976 | 2064 | 2168 | |
Dec. | 16 | 350 | L5 | 1040 | 944 | 840 | 768 | 1856 | 1944 | 2032 | 2136 | |
2008 | Jan. | 20 | 20 | L7 | 2536 | 2440 | 2336 | 2264 | 360 | 448 | 536 | 640 |
Feb. | 5 | 36 | L7 | 2552 | 2456 | 2352 | 2280 | 344 | 432 | 520 | 624 | |
29 | 60 | L5 | 2576 | 2480 | 2376 | 2304 | 320 | 408 | 496 | 600 | ||
Mar. | 24 | 84 | L7 | 2600 | 2504 | 2400 | 2328 | 296 | 384 | 472 | 576 | |
Apr. | 17 | 108 | L5 | 2624 | 2528 | 2424 | 2352 | 272 | 360 | 448 | 552 | |
25 | 116 | L7 | 2632 | 2536 | 2432 | 2360 | 264 | 352 | 440 | 544 | ||
May | 3 | 124 | L5 | 2640 | 2544 | 2440 | 2368 | 256 | 344 | 432 | 536 | |
11 | 132 | L7 | 2648 | 2552 | 2448 | 2376 | 248 | 336 | 424 | 528 | ||
2008 | Jun. | 12 | 164 | L7 | 2680 | 2584 | 2480 | 2408 | 216 | 304 | 392 | 496 |
20 | 172 | L5 | 2688 | 2592 | 2488 | 2416 | 208 | 296 | 384 | 488 | ||
Jul. | 22 | 204 | L5 | 2720 | 2624 | 2520 | 2448 | 176 | 264 | 352 | 456 | |
30 | 212 | L7 | 2728 | 2632 | 2528 | 2456 | 168 | 256 | 344 | 448 | ||
Aug. | 23 | 236 | L5 | 2752 | 2656 | 2552 | 2480 | 144 | 232 | 320 | 424 | |
Sep. | 24 | 268 | L5 | 2784 | 2688 | 2584 | 2512 | 112 | 200 | 288 | 392 | |
Oct. | 10 | 284 | L5 | 2800 | 2704 | 2600 | 2528 | 96 | 184 | 272 | 376 | |
18 | 292 | L7 | 2808 | 2712 | 2608 | 2536 | 88 | 176 | 264 | 368 | ||
Nov. | 3 | 308 | L7 | 2824 | 2728 | 2624 | 2552 | 72 | 160 | 248 | 352 | |
11 | 316 | L5 | 2832 | 2736 | 2632 | 2560 | 64 | 152 | 240 | 344 | ||
Dec. | 5 | 340 | L7 | 2856 | 2760 | 2656 | 2584 | 40 | 128 | 216 | 320 | |
29 | 364 | L5 | 2880 | 2784 | 2680 | 2608 | 16 | 104 | 192 | 296 |
2.5. Evaluation for a Specific Simulation Date
2.6. Accuracy Assessment
3. Results
3.1. Landsat-Like Surface Reflectance with a Fixed Base Date
3.2. Landsat-Like Surface Reflectance on A Specific Simulation Date
4. Discussion
CROto | GRAto | SHRto | URBto | WATto | WETto | OTHto | Totalto | ||
---|---|---|---|---|---|---|---|---|---|
2001 ➔2006 | CROfrom | 25.79 | - | 0.73 | 4.08 | 0.04 | 0.00 | - | 30.65 |
GRAfrom | - | 0.82 | 0.02 | 0.05 | 0.01 | 0.00 | - | 0.90 | |
SHRfrom | 0.09 | - | 33.09 | 2.03 | 0.06 | - | - | 35.27 | |
URBfrom | - | - | 0.00 | 28.97 | - | - | - | 28.97 | |
WATfrom | - | - | 0.00 | 0.01 | 0.31 | 0.01 | - | 0.33 | |
WETfrom | - | - | 0.06 | 0.05 | 0.01 | 3.69 | - | 3.81 | |
OTHfrom | 0.00 | - | 0.00 | - | 0.07 | - | 0.08 | ||
Totalfrom | 25.88 | 0.82 | 33.91 | 35.19 | 0.43 | 3.77 | 0.00 | 100.00 | |
2006 ➔2011 | CROfrom | 21.77 | - | 0.03 | 4.00 | 0.09 | - | - | 25.88 |
GRAfrom | - | 0.77 | 0.02 | 0.01 | 0.01 | 0.00 | - | 0.81 | |
SHRfrom | - | - | 32.35 | 1.53 | 0.03 | - | - | 33.91 | |
URBfrom | - | - | - | 35.19 | 0.00 | - | - | 35.19 | |
WATfrom | - | - | 0.01 | 0.00 | 0.42 | - | - | 0.43 | |
WETfrom | - | - | - | 0.02 | - | 3.75 | - | 3.77 | |
OTHfrom | - | - | - | - | - | - | - | 0.00 | |
Totalfrom | 21.77 | 0.77 | 32.40 | 40.75 | 0.55 | 3.75 | 0.00 | 100.00 | |
2001 ➔2011 | CROfrom | 21.68 | - | 0.66 | 8.17 | 0.13 | 0.00 | - | 30.65 |
GRAfrom | 0.00 | 0.77 | 0.04 | 0.07 | 0.02 | 0.00 | - | 0.90 | |
SHRfrom | 0.08 | - | 31.63 | 3.48 | 0.08 | 0.06 | - | 35.34 | |
URBfrom | - | - | 0.00 | 28.97 | 0.00 | 0.00 | - | 28.97 | |
WATfrom | - | - | 0.00 | 0.01 | 0.30 | 0.01 | - | 0.33 | |
WETfrom | - | - | 0.06 | 0.06 | 0.01 | 3.67 | - | 3.81 | |
OTHfrom | 0.00 | - | - | 0.00 | - | - | 0.00 | 0.01 | |
Totalfrom | 21.77 | 0.77 | 32.40 | 40.75 | 0.55 | 3.75 | 0.00 | 100.00 |
5. Conclusion
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Emelyanova, I.V.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; van Dijk, A.I.J.M. Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens. Environ. 2013, 133, 193–209. [Google Scholar] [CrossRef]
- Gevaert, C.M.; García-Haro, F.J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion. Remote Sens. Environ. 2015, 156, 34–44. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric. For. Meteorol. 2014, 186, 1–11. [Google Scholar] [CrossRef]
- Fu, D.; Chen, B.; Zhang, H.; Wang, J.; Black, T.A.; Amiro, B.D.; Bohrer, G.; Bolstad, P.; Coulter, R.; Rahman, A.F.; et al. Estimating landscape net ecosystem exchange at high spatial-temporal resolution based on Landsat data, an improved upscaling model framework, and eddy covariance flux measurements. Remote Sens. Environ. 2014, 141, 90–104. [Google Scholar] [CrossRef]
- Singh, D. Generation and evaluation of gross primary productivity using Landsat data through blending with MODIS data. Int. J. Appl. Earth Obs. Geoinform. 2011, 13, 59–69. [Google Scholar] [CrossRef]
- Watts, J.D.; Powell, S.L.; Lawrence, R.L.; Hilker, T. Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery. Remote Sens. Environ. 2011, 115, 66–75. [Google Scholar] [CrossRef]
- Walker, J.J.; de Beurs, K.M.; Wynne, R.H.; Gao, F. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens. Environ. 2012, 117, 381–393. [Google Scholar] [CrossRef]
- Wu, M.; Wu, C.; Huang, W.; Niu, Z.; Wang, C. High-resolution leaf area index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model. Comput. Electron. Agric. 2015, 115, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Weng, Q.H. Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007. Remote Sens. Environ. 2012, 117, 57–71. [Google Scholar] [CrossRef]
- Zhu, X.L.; Chen, J.; Gao, F.; Chen, X.H.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Fu, D.; Chen, B.; Wang, J.; Zhu, X.; Hilker, T. An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model. Remote Sens. 2013, 5, 6346–6360. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J.; Song, H.; Fu, D.; Wong, K. Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1011–1015. [Google Scholar] [CrossRef]
- Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Gao, F.; Hilker, T.; Zhu, X.; Anderson, M.; Masek, J.; Wang, P.; Yang, Y. Fusing Landsat and MODIS data for vegetation monitoring. IEEE Geosci. Remote Sens. Mag. 2015, 3, 47–60. [Google Scholar] [CrossRef]
- Grimm, N.; Redman, C. Approaches to the study of urban ecosystems: The case of Central Arizona—Phoenix. Urban. Ecosyst. 2004, 7, 199–213. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J. Arid Environ. 2009, 73, 512–520. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J.; Gries, C. Estimating vegetation cover in an urban environment based on landsat ETM+ imagery: A case study in Phoenix, USA. Int. J. Remote Sens. 2007, 28, 269–291. [Google Scholar] [CrossRef]
- Jin, S.; Yang, L.; Danielson, P.; Homer, C.; Fry, J.; Xian, G. A comprehensive change detection method for updating the national Land Cover Database to circa 2011. Remote Sens. Environ. 2013, 132, 159–175. [Google Scholar] [CrossRef]
- Fry, J.A.; Xian, G.; Jin, S.; Dewitz, J.A.; Homer, C.G.; LIMIN, Y.; Barnes, C.A.; Herold, N.D.; Wickham, J.D. Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens. 2011, 77, 858–864. [Google Scholar]
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 National Land Cover Database for the counterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337–341. [Google Scholar]
- Buyantuyev, A.; Wu, J. Urbanization diversifies land surface phenology in arid environments: Interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA. Landsc. Urban Plan. 2012, 105, 149–159. [Google Scholar] [CrossRef]
- Wickham, J.D.; Stehman, S.V.; Gass, L.; Dewitz, J.; Fry, J.A.; Wade, T.G. Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sens. Environ. 2013, 130, 294–304. [Google Scholar] [CrossRef]
- Wickham, J.; Homer, C.; Vogelmann, J.; McKerrow, A.; Mueller, R.; Herold, N.; Coulston, J. The multi-resolution land characteristics (MRLC) consortium—20 years of development and integration of USA national land cover data. Remote Sens. 2014, 6, 7424–7441. [Google Scholar] [CrossRef]
- Sexton, J.O.; Urban, D.L.; Donohue, M.J.; Song, C. Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record. Remote Sens. Environ. 2013, 128, 246–258. [Google Scholar] [CrossRef]
- Bhandari, S.; Phinn, S.; Gill, T. Preparing Landsat image time series (LITS) for monitoring changes in vegetation phenology in Queensland, Australia. Remote Sens. 2012, 4, 1856–1886. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, D.; Zhang, L.; Chen, H.; Wang, J.; Sun, X.; Wu, T. Assessing the Effect of Temporal Interval Length on the Blending of Landsat-MODIS Surface Reflectance for Different Land Cover Types in Southwestern Continental United States. ISPRS Int. J. Geo-Inf. 2015, 4, 2542-2560. https://doi.org/10.3390/ijgi4042542
Fu D, Zhang L, Chen H, Wang J, Sun X, Wu T. Assessing the Effect of Temporal Interval Length on the Blending of Landsat-MODIS Surface Reflectance for Different Land Cover Types in Southwestern Continental United States. ISPRS International Journal of Geo-Information. 2015; 4(4):2542-2560. https://doi.org/10.3390/ijgi4042542
Chicago/Turabian StyleFu, Dongjie, Lifu Zhang, Hao Chen, Juan Wang, Xuejian Sun, and Taixia Wu. 2015. "Assessing the Effect of Temporal Interval Length on the Blending of Landsat-MODIS Surface Reflectance for Different Land Cover Types in Southwestern Continental United States" ISPRS International Journal of Geo-Information 4, no. 4: 2542-2560. https://doi.org/10.3390/ijgi4042542
APA StyleFu, D., Zhang, L., Chen, H., Wang, J., Sun, X., & Wu, T. (2015). Assessing the Effect of Temporal Interval Length on the Blending of Landsat-MODIS Surface Reflectance for Different Land Cover Types in Southwestern Continental United States. ISPRS International Journal of Geo-Information, 4(4), 2542-2560. https://doi.org/10.3390/ijgi4042542