The Coupling Coordination Relationship Between Urbanization and the Eco-Environment in Resource-Based Cities, Loess Plateau, China
<p>Development stage and location of resource-based cities in the Loess Plateau area.</p> "> Figure 2
<p>The RSEI map and area percentage in 2000, 2005, 2010, 2015, and 2020.</p> "> Figure 3
<p>The RSEI mean value distribution between 2000 and 2020.</p> "> Figure 4
<p>Resource-based cites in China’s Loess Plateau light images and changes from 2000 to 2020.</p> "> Figure 5
<p>CNLI of resource-based cites in China’s Loess Plateau and its changes.</p> "> Figure 6
<p>Spatial distribution of coefficients of multi-scale geographically weighted regression model.</p> "> Figure 7
<p>The coordination degree between eco-environment and urbanization in China’s Loess Plateau.</p> "> Figure 8
<p>The temporal changes of the CCD between eco-environment and urbanization in China Loess Plateau about prefecture-level cities.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Methods
2.3.1. Calculation of the RSEI
2.3.2. Calculation of the Nighttime Light Index
2.3.3. Coupling Coordination Degree Model
2.3.4. MGWR
3. Results
3.1. The Spatio-Temporal Pattern of the Eco-Environment and Urbanization
3.1.1. Changes in Comprehensive Ecological Environment
3.1.2. Changes in Comprehensive Urbanization Quality
3.2. The Spatio-Temporal Relationship Between Eco-Environment and Urbanization
3.3. Coupling Coordination Evaluation Results of Eco-Environment and Urbanization
4. Discussion
4.1. Evolution and Relationship of Eco-Environment and Urbanization
4.2. Implications and Suggestions for Resource-Based Cities Ecological Management and Sustainable Development
4.3. Implications, Limitations and Further Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ji, J.; Tang, Z.; Zhang, W.; Liu, W.; Jin, B.; Xi, X.; Wang, F.; Zhang, R.; Guo, B.; Xu, Z.; et al. Spatiotemporal and Multiscale Analysis of the Coupling Coordination Degree between Economic Development Equality and Eco-Environmental Quality in China from 2001 to 2020. Remote Sens. 2022, 14, 737. [Google Scholar] [CrossRef]
- Cai, J.; Li, X.; Liu, L.; Chen, Y.; Wang, X.; Lu, S. Coupling and Coordinated Development of New Urbanization and Agro-ecological Environment in China. Sci. Total Environ. 2021, 776, 145837. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, S.; Dong, Y.; An, Y.; Shi, F.; Dong, S.; Liu, G. Spatio-Temporal Evolution Scenarios and the Coupling Analysis of Ecosystem Services with Land Use Change in China. Sci. Total Environ. 2019, 681, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Wei, H.; Lu, S.; Dai, Q.; Su, H. Assessment on the Urbanization Strategy in China: Achievements, Challenges and Reflections. Habitat Int. 2018, 71, 97–109. [Google Scholar] [CrossRef]
- Wu, H.; Guo, B.; Fan, J.; Yang, F.; Han, B.; Wei, C.; Lu, Y.; Zang, W.; Zhen, X.; Meng, C. A Novel Remote Sensing Ecological Vulnerability Index on Large Scale: A Case Study of the China-Pakistan Economic Corridor Region. Ecol. Indic. 2021, 129, 107955. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.; Yang, Y. A Comprehensive Analysis of the Spatio-Temporal Variation of Urban Air Pollution in China during 2014–2018. Atmosphere 2020, 220, 117066. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Influences of Urban Spatial Form on Urban Heat Island Effects at the Community Level in China. Sustain. Cities Soc. 2020, 53, 101972. [Google Scholar] [CrossRef]
- Zevenbergen, C.; Fu, D.; Pathirana, A. Transitioning to Sponge Cities: Challenges and Opportunities to Address Urban Water Problems in China. Water 2018, 10, 1230. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Y.; Shu, X.; Ma, L.; Pan, Y. Assessment of the Spatial Distribution of Organochlorine Pesticides (OCPs) and Polychlorinated Biphenyls (PCBs) in Urban Soil of China. Chemosphere 2020, 243, 125392. [Google Scholar] [CrossRef]
- Han, Z.; Jiao, S.; Zhang, X.; Xie, F.; Ran, J.; Jin, R.; Xu, S. Seeking Sustainable Development Policies at the Municipal Level Based on the Triad of City, Economy, and Environment: Evidence from Hunan Province, China. J. Environ. Manag. 2021, 290, 112554. [Google Scholar] [CrossRef]
- Yu, J.; Li, J.; Zhang, W. Identification and Classification of Resource-Based Cities in China. J. Geogr. Sci. 2019, 29, 1300–1314. [Google Scholar] [CrossRef]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six Transformations to Achieve the Sustainable Development Goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.; Zhang, H.; Niu, H. Coordinated Development of a Coupled Social Economy and Resource Environment System: A Case Study in Henan Province, China. Environ. Dev. Sustain. 2018, 20, 1385–1404. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, W.; Yang, X. Coupling Coordination Evaluation and Sustainable Development Pattern of Geo-Ecological Environment and Urbanization in Chongqing Municipality, China. Sustain. Cities Soc. 2020, 61, 102271. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, J.; Lou, K.; Yang, L. Coupling Coordination and Spatiotemporal Heterogeneity between Urbanization and Ecological Environment in Shaanxi Province, China. Ecol. Indic. 2022, 141, 109152. [Google Scholar] [CrossRef]
- Fu, S.; Zhuo, H.; Song, H.; Wang, J.; Ren, L. Examination of a Coupling Coordination Relationship between Urbanization and the Eco-Environment: A Case Study in Qingdao, China. Environ. Sci. Pollut. Res. 2020, 27, 23981–23993. [Google Scholar] [CrossRef]
- Sui, Y.; Hu, J.; Zhang, N.; Ma, F. Exploring the dynamic equilibrium relationship between urbanization and ecological environment—A case study of Shandong Province, China. Ecol. Indic. 2024, 158, 111456. [Google Scholar] [CrossRef]
- Xing, L.; Xue, M.; Hu, M. Dynamic Simulation and Assessment of the Coupling Coordination Degree of the Economy–Resource–Environment System: Case of Wuhan City in China. J. Environ. Manag. 2019, 230, 474–487. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Yang, F.; Hu, N.; Liang, L. Evaluation of the Coordination between Eco-Environment and Socioeconomy under the “Ecological County Strategy” in Western China: A Case Study of Meixian. Ecol. Indic. 2021, 125, 107585. [Google Scholar] [CrossRef]
- Shi, F.; Liu, M.; Qiu, J.; Zhang, Y.; Su, H.; Mao, X.; Li, X.; Fan, J.; Chen, J.; Lv, Y.; et al. Assessing Land Cover and Ecological Quality Changes in the Forest-Steppe Ecotone of the Greater Khingan Mountains, Northeast China, from Landsat and MODIS Observations from 2000 to 2018. Remote Sens. 2022, 14, 725. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Ma, X.; Wang, Y.; Yang, G.; Zhu, L. Evaluation of Resources and Environmental Carrying Capacity of 36 Large Cities in China Based on a Support-Pressure Coupling Mechanism. Sci. Total Environ. 2019, 688, 838–854. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Yu, J.; Li, X.; Guan, X.; Shen, H. A remote sensing assessment index for urban ecological livability and its application. Geo-Spat. Inf. Sci. 2024, 27, 289–310. [Google Scholar] [CrossRef]
- Wang, D.; Shi, Y.; Wan, K. Integrated Evaluation of the Carrying Capacities of Mineral Resource-Based Cities Considering Synergy between Subsystems. Ecol. Indic. 2020, 108, 105701. [Google Scholar] [CrossRef]
- Ruan, F.; Yan, L.; Wang, D. The Complexity for the Resource-Based Cities in China on Creating Sustainable Development. Cities 2020, 97, 102571. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, X. Transformation Effect of Resource-Based Cities Based on PSM-DID Model: An Empirical Analysis from China. Environ. Impact Assess. 2021, 91, 106648. [Google Scholar] [CrossRef]
- Li, Q.; Liu, S.; Yang, M.; Xu, F. The Effects of China’s Sustainable Development Policy for Resource-Based Cities on Local Industrial Transformation. Resour. Policy 2021, 71, 101940. [Google Scholar] [CrossRef]
- Song, Y.; Xue, D.; Dai, L.; Wang, P.; Huang, X.; Xia, S. Land Cover Change and Eco-Environmental Quality Response of Different Geomorphic Units on the Chinese Loess Plateau. J. Arid Land 2020, 12, 29–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y. Research Trends and Areas of Focus on the Chinese Loess Plateau: A Bibliometric Analysis during 1991–2018. Catena 2020, 194, 104798. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Ahmad, M.; Lu, Y.; Xue, C. A Step Towards a Green Future: Does Sustainable Development Policy Reduce Energy Consumption in Resource-Based Cities of China? Front. Environ. Sci. 2022, 10, 901721. [Google Scholar] [CrossRef]
- Li, S.; Cao, X.; Zhao, C.; Jie, N.; Liu, L.; Chen, X.; Cui, X. Developing a pixel-scale corrected nighttime light dataset (PCNL, 1992–2021) combining DMSP-OLS and NPP-VIIRS. Remote Sens. 2023, 15, 3925. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef]
- Xu, H.; Li, C.; Shi, T. Is the z-score standardized RSEI suitable for time-series ecological change detection? Comment on Zheng et al. (2022). Sci. Total Environ. 2022, 853, 158582. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Chen, X.; Liu, Y. Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021. Remote Sens. 2022, 14, 3967. [Google Scholar] [CrossRef]
- Li, H.; Hong, L. Spatio-Temporal Land Use/Land Cover Dynamics and Its Driving Forces in the Mekong Basin Using Landsat Imageries from 1988 to 2017. Geocarto Int. 2022, 37, 14676–14698. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Tollerud, H.J.; Brown, J.F.; Loveland, T.R. Investigating the Effects of Land Use and Land Cover on the Relationship between Moisture and Reflectance Using Landsat Time Series. Remote Sens. 2020, 12, 1919. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Ma, Q. Dynamics of Urbanization Levels in China from 1992 to 2012: Perspective from DMSP/OLS Nighttime Light Data. Remote Sens. 2015, 7, 1721–1735. [Google Scholar] [CrossRef]
- Fu, H.; Shao, Z.; Fu, P.; Cheng, Q. The Dynamic Analysis between Urban Nighttime Economy and Urbanization Using the DMSP/OLS Nighttime Light Data in China from 1992 to 2012. Remote Sens. 2017, 9, 416. [Google Scholar] [CrossRef]
- Liu, N.; Liu, C.; Xia, Y.; Da, B. Examining the coordination between urbanization and eco-environment using coupling and spatial analyses: A case study in China. Ecol. Indic. 2018, 93, 1163–1175. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Liu, L.; Wang, W. Dynamic analysis of supply and demand coupling of ecosystem services in Loess Hilly Region: A case study of Lanzhou, China. Chin. Geog. Sci. 2021, 31, 276–296. [Google Scholar] [CrossRef]
- Pan, Z.; Gao, G.; Fu, B.; Liu, S.; Wang, J.; He, J.; Liu, D. Exploring the historical and future spatial interaction relationship between urbanization and ecosystem services in the Yangtze River Basin, China. J. Clean. Prod. 2023, 428, 139401. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Li, Y. Exploring the Spatial and Temporal Driving Mechanisms of Landscape Patterns on Habitat Quality in a City Undergoing Rapid Urbanization Based on GTWR and MGWR: The Case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- Feng, Y.; Li, G. Interaction between urbanization and eco-environment in the Tibetan Plateau. J. Geogr. Sci. 2021, 31, 298–324. [Google Scholar] [CrossRef]
- Hou, Y.; Huang, Q.; Ren, Q.; Gu, T.; Zhou, Y.; Wu, P.; Fan, Y.; Zhu, G. Spatiotemporal dynamics of urban sprawl in China from 2000 to 2020. GISci. Remote Sens. 2024, 61, 2351262. [Google Scholar] [CrossRef]
- Liu, X.; Guo, P.; Yue, X.; Zhong, S.; Cao, X. Urban transition in China: Examining the coordination between urbanization and the eco-environment using a multi-model evaluation method. Ecol. Indic. 2021, 130, 108056. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, H.; Liu, F.; Lv, T.; Sun, L.; Li, Z.; Shang, W.; Xu, G. Coupling coordination between the ecological environment and urbanization in the middle reaches of the Yangtze River urban agglomeration. Urban Clim. 2023, 52, 101698. [Google Scholar] [CrossRef]
Composite Category | Coordination Level | Subcategory | Systematic Exponential Comparison | Type |
---|---|---|---|---|
Coordinated development | 0.7 < D ≤ 1 | High coordination | E-U > 0.1 | Sluggish urbanization (IV-1) |
U-E > 0.1 | Ecological environment lag (IV-2) | |||
|E-U| < 0.1 | Coordinated development (IV-3) | |||
Transformation development | 0.6 < D ≤ 0.7 | Moderate coordination | E-U > 0.1 | Sluggish urbanization (III-1) |
U-E > 0.1 | Ecological environment lag (III-2) | |||
|E-U| < 0.1 | Coordinated development (III-3) | |||
Uncoordinated development | 0.4 < D ≤ 0.6 | Reluctant coordination | E-U > 0.1 | Sluggish urbanization (II-1) |
U-E > 0.1 | Ecological environment lag (II-2) | |||
|E-U| < 0.1 | Coordinated development (II-3) | |||
0 < D ≤ 0.4 | Serious imbalance | E-U > 0.1 | Sluggish urbanization (I-1) | |
U-E > 0.1 | Ecological environment lag (I-2) | |||
|E-U| < 0.1 | Coordinated development (I-3) |
Year | Mean | STD | Min | Median | Max |
---|---|---|---|---|---|
2000 | 0.042 | 0.725 | −1.684 | 0.348 | 0.661 |
2005 | −0.001 | 0.003 | −0.005 | −0.001 | 0.004 |
2010 | −0.001 | 0.002 | −0.004 | −0.001 | 0.002 |
2015 | −0.001 | 0.004 | −0.008 | −0.001 | 0.005 |
2020 | −0.002 | 0.002 | −0.006 | −0.001 | 0.003 |
City | Types | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|
Baiyin | Recessionary | I-1 | I-1 | I-1 | I-1 | I-1 |
Wuhai | I-1 | II-3 | II-3 | II-3 | II-1 | |
Shizhuishan | I-1 | II-1 | II-1 | II-1 | II-1 | |
Tongchuan | I-1 | II-1 | II-1 | II-1 | II-1 | |
Baotou | Regenerative | I-1 | II-1 | I-1 | II-1 | II-1 |
Luoyang | I-1 | II-1 | II-1 | II-1 | II-1 | |
Ordos | Growing | I-1 | I-1 | I-1 | I-1 | I-1 |
Shuozhou | I-1 | II-1 | II-1 | II-1 | II-1 | |
Yulin | I-1 | I-1 | I-1 | I-1 | I-1 | |
Yan’an | I-1 | I-1 | I-1 | II-1 | II-1 | |
Qingyang | I-1 | I-1 | I-1 | I-1 | I-1 | |
Xianyang | I-1 | II-1 | II-1 | II-1 | II-1 | |
Datong | Grown-up | I-1 | II-1 | II-1 | II-1 | II-1 |
Xinzhou | I-1 | I-1 | II-1 | II-1 | II-1 | |
Lvliang | I-1 | II-1 | II-1 | II-1 | II-1 | |
Yangquan | I-1 | II-1 | II-1 | II-1 | II-1 | |
Jinzhong | I-1 | II-1 | II-1 | II-1 | II-1 | |
Changzhi | II-1 | II-1 | II-1 | II-1 | II-1 | |
Linfen | I-1 | II-1 | II-1 | II-1 | II-1 | |
Jincheng | I-1 | II-1 | II-1 | II-1 | II-1 | |
Yuncheng | II-1 | II-1 | II-1 | II-1 | II-1 | |
Sanmenxia | I-1 | II-1 | II-1 | II-1 | II-1 | |
Weinan | II-1 | II-1 | II-1 | II-1 | II-1 | |
Pingliang | I-1 | I-1 | I-1 | I-1 | I-1 | |
Baoji | II-1 | I-1 | I-1 | II-1 | I-1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Jia, X.; Zhao, Y.; Luo, M.; Wang, H.; Zhao, M. The Coupling Coordination Relationship Between Urbanization and the Eco-Environment in Resource-Based Cities, Loess Plateau, China. ISPRS Int. J. Geo-Inf. 2024, 13, 437. https://doi.org/10.3390/ijgi13120437
Kang S, Jia X, Zhao Y, Luo M, Wang H, Zhao M. The Coupling Coordination Relationship Between Urbanization and the Eco-Environment in Resource-Based Cities, Loess Plateau, China. ISPRS International Journal of Geo-Information. 2024; 13(12):437. https://doi.org/10.3390/ijgi13120437
Chicago/Turabian StyleKang, Shuaizhi, Xia Jia, Yonghua Zhao, Manya Luo, Huanyuan Wang, and Ming Zhao. 2024. "The Coupling Coordination Relationship Between Urbanization and the Eco-Environment in Resource-Based Cities, Loess Plateau, China" ISPRS International Journal of Geo-Information 13, no. 12: 437. https://doi.org/10.3390/ijgi13120437
APA StyleKang, S., Jia, X., Zhao, Y., Luo, M., Wang, H., & Zhao, M. (2024). The Coupling Coordination Relationship Between Urbanization and the Eco-Environment in Resource-Based Cities, Loess Plateau, China. ISPRS International Journal of Geo-Information, 13(12), 437. https://doi.org/10.3390/ijgi13120437