Dynamic Perception-Based Vehicle Trajectory Prediction Using a Memory-Enhanced Spatio-Temporal Graph Network
<p>The architecture of the Spatial–Temporal Graph Convolutional Network.</p> "> Figure 2
<p>The graph structure of spatial extraction and convolutional summing. (<b>a</b>) the orange lines represents the relative position mapping of the vehicles.; (<b>b</b>) the red dashed lines represent the weights.</p> "> Figure 3
<p>LSTM-based trajectory prediction.</p> "> Figure 4
<p>Attention-based LSTM trajectory prediction.</p> "> Figure 5
<p>Prediction error at different distance values.</p> "> Figure 6
<p>Vehicle trajectory visualization.</p> ">
Abstract
:1. Introduction
- (1)
- We propose a novel vehicle trajectory prediction framework that integrates a Spatio-Temporal Graph Convolutional Network (STGCN) with an attention-enhanced LSTM trajectory prediction network into a Seq2Seq architecture, accurately capturing the spatio-temporal dependencies in vehicle trajectory data.
- (2)
- The Memory-Enhanced Spatio-Temporal Graph Network (MESTGN) model focuses on analyzing the interactions between vehicles and deeply captures and understands these interactions’ complex spatial relationships through the integration of a spatio-temporal graph. It accurately identifies and addresses the dynamic interplay between vehicles, thus achieving higher precision and reliability in vehicle trajectory prediction.
- (3)
- We conducted experiments on the urban traffic dataset ApolloSpace, validating our model’s performance advantage in vehicle trajectory prediction. The experimental results validate our model’s effectiveness in this field.
2. Related Works
3. Methodology
4. Proposed Scheme
4.1. Data Preprocessing
4.2. Spatio-Temporal Feature Extraction Based on GCNs
4.3. Trajectory Analysis and Prediction Network
- (1)
- Linear maps:
- (2)
- Inner product:
- (3)
- Normalization:
5. Experiments
5.1. Dataset
5.2. Experimental Environment
5.3. Results Evaluation
5.4. Ablation Experiments
5.5. Quantitative Analysis
- Average displacement error (ADE): the mean Euclidean distance over all the predicted positions and ground truth positions during the prediction time.
- Final displacement error (FDE): the mean Euclidean distance between the final predicted positions and the corresponding ground truth locations.
5.6. Vehicle Trajectory Visualization Analysis
6. Conclusions
7. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Luo, Y.; Xiong, H.; Wang, T.; Huang, H.; Zhong, Z. An integrated approach to probabilis-tic vehicle trajectory prediction via driver characteristic and intention estimation. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 3526–3532. [Google Scholar]
- Lin, W.; Zhou, Y.; Xu, H.; Yan, J.; Xu, M.; Wu, J.; Liu, Z. A tube-and-droplet-based approach for representing and analyzing motion trajecto-ries. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1489–1503. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xia, J.; Chen, X.; Tan, Y.; Chen, J. SIT: A Spatial lnteraction-Aware Transformer-Based Model for Freeway Trajectory Prediction. ISPRS Int. J. Geo-Inf. 2022, 11, 79. [Google Scholar] [CrossRef]
- Rasouli, A.; Tsotsos, J.K. Autonomous vehicles that interact with pedestrians: A survey of theory and practice. IEEE Trans. Intell. Transp. Syst. 2019, 21, 900–918. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Yang, H.; Yang, L. Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA J. Autom. Sin. 2020, 7, 315–329. [Google Scholar] [CrossRef]
- Abbas, M.T.; Jibran, M.A.; Afaq, M.; Song, W. An adaptive approach to vehicle trajectory prediction using multimodel Kalman filter. Trans. Emerg. Telecommun. Technol. 2020, 31, e3734. [Google Scholar] [CrossRef]
- Jianping, L. Research on Traffic Vehicle Motion Prediction Method for Intelligent Driving. Master’s Thesis, Jilin University, Changchun, China, 2018. [Google Scholar]
- Zhang, J.; Liao, Y.; Wang, S.; Han, J. Study on driving decision-making mechanism of autonomous vehicle based on an optimized support vector machine regression. Appl. Sci. 2018, 8, 13. [Google Scholar] [CrossRef]
- Li, J.; Dai, B.; Li, X.; Xu, X.; Liu, D. A dynamic bayesian network for vehicle maneuver prediction in highway driving scenarios: Framework and verification. Electronics 2019, 8, 40. [Google Scholar] [CrossRef]
- Jiang, H.; Chang, L.; Li, Q.; Chen, D. Trajectory prediction of vehicles based on deep learning. In Proceedings of the 2019 4th International Conference on Intelligent Transportation Engineering (ICITE), Singapore, 5–7 September 2019; pp. 190–195. [Google Scholar]
- Zhao, T.; Xu, Y.; Monfort, M.; Choi, W.; Baker, C.; Zhao, Y.; Wang, Y.; Wu, Y.N. Multi-agent tensor fusion for contextual trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12126–12134. [Google Scholar]
- Shuai, L.; Jing, L. Random Local Search Heuristic Method Based on Deep Reinforcement Learning. J. Jilin Univ. 2021, 51, 1420–1426. [Google Scholar]
- Marcot, B.G.; Penman, T.D. Advances in Bayesian network modelling: Integration of modelling technologies. Environ. Model. Softw. 2019, 111, 386–393. [Google Scholar] [CrossRef]
- Eddy, S.R. Hidden markov models. Curr. Opin. Struct. Biol. 1996, 6, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Xing, Z.; Pei, J.; Keogh, E. A brief survey on sequence classification. ACM Sigkdd Explor. Newsl. 2010, 12, 40–48. [Google Scholar] [CrossRef]
- Rajan, K.; Harvey, C.D.; Tank, D.W. Recurrent network models of sequence generation and memory. Neuron 2016, 90, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Dollár, P.; Rabaud, V.; Cottrell, G.; Belongie, S. Behavior recognition via sparse spatio-temporal features. In Proceedings of the 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, Beijing, China, 15–16 October 2005; pp. 65–72. [Google Scholar]
- Messaoud, K.; Yahiaoui, I.; Verroust-Blondet, A.; Nashashibi, F. Non-local Social Pooling for Vehicle Trajectory Prediction. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium, Paris, France, 9–12 June 2019. [Google Scholar]
- Deo, N.; Trivedi, M.M. Convolutional social pooling for vehicle trajectory prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1468–1476. [Google Scholar]
- Cui, H.; Radosavljevic, V.; Chou, F.-C.; Lin, T.-H.; Nguyen, T.; Huang, T.-K.; Schneider, J.; Djuric, N. Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In Proceedings of the 2019 International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 2090–2096. [Google Scholar]
- Choi, S.; Kim, J.; Yeo, H. Attention-based recurrent neural network for urban vehicle trajectory prediction. Procedia Comput. Sci. 2019, 151, 327–334. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, X.; Zhang, S.; Yang, R.; Wang, W.; Manocha, D. Trafficpredict: Trajectory prediction for heterogeneous traffic-agents. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 6120–6127. [Google Scholar]
- Han, P.; Wang, W.; Shi, Q.; Yang, J. Real-time short-term trajectory prediction based on GRU neural network. In Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8 September–12 September 2019. [Google Scholar]
- Zhu, Y.; Qian, D.; Ren, D.; Xia, H. Starnet: Pedestrian trajectory prediction using deep neural network in star topology. arXiv 2019, arXiv:1906.01797. [Google Scholar]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Henaff, M.; Bruna, J.; LeCun, Y. Deep convolutional networks on graph-structured data. arXiv 2015, arXiv:1506.05163. [Google Scholar]
- Li, X.; Yang, X.; Chuah, M. Grip: Graph-based interaction aware trajectory prediction. In Proceedings of the IEEE ITSC, Auckland, New Zealand, 27–30 October 2019. [Google Scholar]
- Gao, J.; Sun, C.; Zhao, H.; Shen, Y.; Anguelov, D.; Li, C.; Schmid, C. Vectornet: Encoding hd maps and agent dynamics from vectorized representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv 2017, arXiv:1709.04875. [Google Scholar]
- Yi, S.; Wang, X.; Yamasaki, T. Impression prediction of oral presentation using lstm and dot-product attention mechanism. In Proceedings of the 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), Singapore, 11–13 September 2019; pp. 242–246. [Google Scholar]
- Huang, X.; Cheng, X.; Geng, Q.; Cao, B.; Zhou, D.; Wang, P.; Lin, Y.; Yang, R. The apolloscape dataset for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 954–960. [Google Scholar]
Experimental Equipment | Experimental Specifications |
---|---|
CPU | 12th Gen Intel(R) Core(TM) i7-12700KF |
CPU Frequency | 3600 MHz |
GPU | NVIDIA GeForce RTX 3090 |
System | Ubuntu 20.04 |
Memory | 64 GB |
Prediction Horizons | MESTGN (No GCN) | MESTGN (No Attention) | MESTGN |
---|---|---|---|
1 | 0.57 | 0.37 | 0.35 |
2 | 1.73 | 1.12 | 0.81 |
3 | 2.81 | 1.67 | 1.43 |
4 | 4.12 | 3.12 | 2.20 |
5 | 5.34 | 4.36 | 3.24 |
Average | 2.51 | 2.13 | 1.40 |
Method | WSADE | ADE (Vehicles) | ADE (Pedestrian) | ADE (Cyclists) | WSFDE | FDE (Vehicles) | FDE (Pedestrians) | FDE (Cyclists) | |
---|---|---|---|---|---|---|---|---|---|
Model | |||||||||
TrafficPredict [23] | 8.588 | 7.946 | 7.810 | 12.880 | 24.226 | 12.77 | 11.121 | 22.791 | |
StarNet [25] | 1.342 | 2.386 | 0.785 | 1.862 | 2.498 | 4.285 | 1.515 | 3.464 | |
Grip [29] | 1.259 | 2.240 | 0.714 | 1.802 | 2.363 | 4.076 | 1.373 | 3.415 | |
MESTGN (ours) | 1.238 | 2.217 | 0.681 | 1.819 | 2.277 | 3.894 | 1.297 | 3.391 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, Z.; Wang, X.; Li, W. Dynamic Perception-Based Vehicle Trajectory Prediction Using a Memory-Enhanced Spatio-Temporal Graph Network. ISPRS Int. J. Geo-Inf. 2024, 13, 172. https://doi.org/10.3390/ijgi13060172
Gui Z, Wang X, Li W. Dynamic Perception-Based Vehicle Trajectory Prediction Using a Memory-Enhanced Spatio-Temporal Graph Network. ISPRS International Journal of Geo-Information. 2024; 13(6):172. https://doi.org/10.3390/ijgi13060172
Chicago/Turabian StyleGui, Zhiming, Xin Wang, and Wenzheng Li. 2024. "Dynamic Perception-Based Vehicle Trajectory Prediction Using a Memory-Enhanced Spatio-Temporal Graph Network" ISPRS International Journal of Geo-Information 13, no. 6: 172. https://doi.org/10.3390/ijgi13060172
APA StyleGui, Z., Wang, X., & Li, W. (2024). Dynamic Perception-Based Vehicle Trajectory Prediction Using a Memory-Enhanced Spatio-Temporal Graph Network. ISPRS International Journal of Geo-Information, 13(6), 172. https://doi.org/10.3390/ijgi13060172