Analysis of PM2.5 Synergistic Governance Path from a Socio-Economic Perspective: A Case Study of Guangdong Province
<p>Location of the study area.</p> "> Figure 2
<p>Technical roadmap.</p> "> Figure 3
<p>Flowchart of scenario construction methodology.</p> "> Figure 4
<p>Correlation between PM<sub>2.5</sub> and influencing factors in various cities.</p> "> Figure 5
<p>The predicted annual average concentration of PM<sub>2.5</sub> in Guangdong Province from 2020 to 2025.</p> "> Figure 6
<p>Coupling and coordination relationship of PM<sub>2.5</sub>-pollution-influencing factors in Guangdong Province from 2020 to 2025.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Variable Selection and Data Sources
2.3. Research Methods
2.3.1. Grey Correlation Model
2.3.2. PM2.5 Prediction Model Approach
- (1)
- Ridge Regression
- (2)
- SVM Model
- (3)
- R-SVM Model Construction Process
2.3.3. Scenario Construction Method
2.3.4. Coupling Coordination Degree Model
3. Results
3.1. PM2.5 Concentration Prediction and Analysis of Influencing Factors
3.1.1. Correlation Analysis of PM2.5-Influencing Factors
3.1.2. PM2.5 Concentration Prediction
3.2. PM2.5 Governance Scenario Construction and Simulation Analysis
3.3. Analysis of PM2.5 Pollution Collaborative Governance Pattern
4. Conclusions
5. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Wilson, J.P.; Zhao, N.; Zhang, W.; Wu, Y. The dynamics of cardiovascular and respiratory deaths attributed to long-term PM2.5 exposures in global megacities. Sci. Total Environ. 2022, 842, 156951. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, N.; Zhang, W.; Wilson, J.P. Changes in Long-Term PM2.5 Pollution in the Urban and Suburban Areas of China’s Three Largest Urban Agglomerations from 2000 to 2020. Remote Sens. 2022, 14, 1716. [Google Scholar] [CrossRef]
- Ma, X.; Jia, H. Particulate matter and gaseous pollutions in three megacities over China: Situation and implication. Atmos. Environ. 2016, 140, 476–494. [Google Scholar] [CrossRef]
- Zhang, L.; Wilson, J.P.; MacDonald, B.; Zhang, W.; Yu, T. The changing PM2.5 dynamics of global megacities based on long-term remotely sensed observations. Environ. Int. 2020, 142, 105862. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Guo, J.; Zhou, Y.; Cheng, X. Exploring the spatiotemporal evolution and socioeconomic determinants of PM2.5 distribution and its hierarchical management policies in 366 Chinese cities. Front. Public Health 2022, 10, 843862. [Google Scholar] [CrossRef] [PubMed]
- Zamani Joharestani, M.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Q.; Karimian, H.; Liu, D. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory. Sci. Total Environ. 2019, 664, 1–10. [Google Scholar] [CrossRef]
- Ge, L.; Wu, K.; Zeng, Y.; Chang, F.; Wang, Y.; Li, S. Multi-scale spatiotemporal graph convolution network for air quality prediction. Appl. Intell. 2021, 51, 3491–3505. [Google Scholar] [CrossRef]
- Wang, P.; Feng, H.; Bi, X.; Fu, Y.; He, X.; Zhang, G.; Niu, J. Phase objectives analysis for PM2.5 reduction using dynamics forecasting approach under different scenarios of PGDP decline. Ecol. Indic. 2021, 129, 108003. [Google Scholar] [CrossRef]
- Ceng, P.; Wei, X.; Duan, Z. Study on spatial and temporal differentiation and optimization path of collaborative pollution control in urban agglomerations of China. Resour. Environ. Yangtze Basin 2023, 32, 1317–1333. [Google Scholar]
- Cheng, N.; Zhang, D.; Li, Y.; Xie, X.; Chen, Z.; Meng, F.; Gao, B.; He, B. Spatio-temporal variations of PM2.5 concentrations and the evaluation of emission reduction measures during two red air pollution alerts in Beijing. Sci. Rep. 2017, 7, 8220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod. 2016, 112, 1519–1527. [Google Scholar] [CrossRef]
- Liu, J.; Kiesewetter, G.; Klimont, Z.; Cofala, J.; Heyes, C.; Schöpp, W.; Zhu, T.; Cao, G.; Sanabria, A.G.; Sander, R. Mitigation pathways of air pollution from residential emissions in the Beijing-Tianjin-Hebei region in China. Environ. Int. 2019, 125, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Chen, R.; Chen, M.; Ye, X. A new framework of regional collaborative governance for PM2.5. Stoch. Environ. Res. Risk Assess. 2019, 33, 1109–1116. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Huang, L.; Lu, G.; Gong, Y.; Yaluk, E.; Li, H.; Yi, X.; Yang, L.; Feng, J. Development and evaluation of a scheme system of joint prevention and control of PM2.5 pollution in the Yangtze River Delta region, China. J. Clean. Prod. 2020, 275, 122756. [Google Scholar] [CrossRef]
- Li, W.; Yang, G.; Qian, X. The socioeconomic factors influencing the PM2.5 levels of 160 cities in China. Sustain. Cities Soc. 2022, 84, 104023. [Google Scholar] [CrossRef]
- Yu, Q. Analysis of PM2.5 Influencing Factors Based on Various Statistical Methods—A Case Study of Beijing in 2021; Atlantis Press: Paris, France, 2022; pp. 195–204. [Google Scholar]
- Zhao, H.; Liu, Y.; Gu, T.; Zheng, H.; Wang, Z.; Yang, D. Identifying spatiotemporal heterogeneity of PM2.5 concentrations and the key influencing factors in the middle and lower reaches of the yellow river. Remote Sens. 2022, 14, 2643. [Google Scholar] [CrossRef]
- Shahriar, S.A.; Kayes, I.; Hasan, K.; Hasan, M.; Islam, R.; Awang, N.R.; Hamzah, Z.; Rak, A.E.; Salam, M.A. Potential of ARIMA-ANN, ARIMA-SVM, DT and CatBoost for atmospheric PM2.5 forecasting in Bangladesh. Atmosphere 2021, 12, 100. [Google Scholar] [CrossRef]
- Liu, B.; Jin, Y.; Xu, D.; Wang, Y.; Li, C. A data calibration method for micro air quality detectors based on a LASSO regression and NARX neural network combined model. Sci. Rep. 2021, 11, 21173. [Google Scholar] [CrossRef]
- Zhang, G.; Rui, X.; Fan, Y. Critical review of methods to estimate PM2.5 concentrations within specified research region. ISPRS Int. J. Geo-Inf. 2018, 7, 368. [Google Scholar] [CrossRef]
- Yue, H.; Duan, L.; Lu, M.; Huang, H.; Zhang, X.; Liu, H. Modeling the Determinants of PM2.5 in China Considering the Localized Spatiotemporal Effects: A Multiscale Geographically Weighted Regression Method. Atmosphere 2022, 13, 627. [Google Scholar] [CrossRef]
- Bai, Y.; Zeng, B.; Li, C.; Zhang, J. An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting. Chemosphere 2019, 222, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; De Hoogh, K.; De’Donato, F.; Gariazzo, C.; Lyapustin, A.; Michelozzi, P.; Renzi, M. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zhang, X.; Gui, K.; Wang, Y.; Che, H.; Shen, X.; Zhang, L.; Zhang, Y.; Sun, J.; Zhang, W. Robust prediction of hourly PM2.5 from meteorological data using LightGBM. Nat. Sci. Rev. 2021, 8, nwaa307. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, Y.; Zhao, R.; Wang, N.; Biswas, A.; Shi, Z. High-resolution prediction of the spatial distribution of PM2.5 concentrations in China using a long short-term memory model. J. Clean. Prod. 2021, 297, 126493. [Google Scholar] [CrossRef]
- Pan, B. Application of XGBoost Algorithm in Hourly PM2.5 Concentration Prediction; IOP Publishing: Wales, UK, 2018; p. 12127. [Google Scholar]
- Du, P.; Wang, J.; Hao, Y.; Niu, T.; Yang, W. A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting. Appl. Soft Comput. 2020, 96, 106620. [Google Scholar] [CrossRef]
- Moisan, S.; Herrera, R.; Clements, A. A dynamic multiple equation approach for forecasting PM2.5 pollution in Santiago, Chile. Int. J. Forecast. 2018, 34, 566–581. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Qin, Z.; Zhang, G. A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting. Atmos. Pollut. Res. 2017, 8, 850–860. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.; Chang, L.; Kao, I.; Wang, Y.; Kang, C. Multi-output support vector machine for regional multi-step-ahead PM2.5 forecasting. Sci. Total Environ. 2019, 651, 230–240. [Google Scholar] [CrossRef]
- Babu, C.N.; Reddy, B.E. A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Appl. Soft Comput. 2014, 23, 27–38. [Google Scholar] [CrossRef]
- Gairaa, K.; Khellaf, A.; Messlem, Y.; Chellali, F. Estimation of the daily global solar radiation based on Box–Jenkins and ANN models: A combined approach. Renew. Sustain. Energy Rev. 2016, 57, 238–249. [Google Scholar] [CrossRef]
- Zhang, X.; Fung, J.C.; Zhang, Y.; Lau, A.K.; Leung, K.K.; Huang, W.W. Assessing PM2.5 emissions in 2020: The impacts of integrated emission control policies in China. Environ. Pollut. 2020, 263, 114575. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Dai, H.; Geng, Y.; Xie, Y.; Masui, T.; Liu, Z.; Qian, Y. Economic impacts from PM2.5 pollution-related health effects: A case study in Shanghai. Environ. Sci. Technol. 2017, 51, 5035–5042. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhu, Y.; Gong, S.; Pan, J.; Zang, S.; Wang, W.; Li, Z.; Matsunaga, T.; Yamaguchi, Y.; Bai, Y. PM2.5-related premature deaths and potential health benefits of controlled air quality in 34 provincial cities of China during 2001–2017. Environ. Impact Assess. 2022, 97, 106883. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, S.; Yan, Y. Spatial pattern changes of urban expansion and multi-dimensional analysis of driving forces in the Guangdong-Hong Kong-Macao Greater Bay Area in 1980–2020. Acta Geogr. Sin. 2022, 77, 1086–1101. [Google Scholar]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Lai, W.D.; Deng, Z.X. The influence and countermeasures of the “COVID-19” on the economic development of coastal economic zone of guangdong province. Int. J. Econ. Behav. Organ. 2020, 8, 44–48. [Google Scholar] [CrossRef]
- Zhu, L.; Li, T.; Ma, L.; Liu, Z. The influence of industrial structure adjustment on Haze Pollution: An empirical study of Jing-jin-ji region. Ecol. Econ. 2018, 34, 141–148. [Google Scholar]
- Li, G.; Fang, C.; Wang, S.; Sun, S. The effect of economic growth, urbanization, and industrialization on fine particulate matter (PM2.5) concentrations in China. Environ. Sci. Technol. 2016, 50, 11452–11459. [Google Scholar] [CrossRef]
- He, X.; Lin, Z.; Liu, H.; Qi, X. Analysis of the driving factors of PM2.5 in Jiangsu province based on grey correlation model. Acta Geogr. Sin. 2016, 71, 1119–1129. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Applications to nonorthogonal problems. Technometrics 1970, 12, 69–82. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Joachims, T. Making Large-Scale SVM Learning Practical; Technical Report; Universität Dortmund: Dortmund, Germany, 1998. [Google Scholar]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.B.; Li, R.D.; Song, X.F. Grey associative analysis of regional urbanization and eco-environment coupling in China. Acta Geogr. Sin. 2005, 60, 237–247. [Google Scholar]
- Liu, Y.; Li, R.; Li, C. Scenarios simulation of coupling system between urbanization and eco-environment in Jiangsu province based on system dynamics model. Chin. Geogr. Sci. 2005, 15, 219–226. [Google Scholar] [CrossRef]
- Chen, M.; Lu, D.; Zhang, H. Comprehensive evaluation and the driving factors of China’s urbanization. Acta Geogr. Sin. 2009, 64, 387–398. [Google Scholar]
- Xu, Y.; Fu, H. Descending dimension method in linear algrbra. Coll. Math. 2020, 36, 111–117. [Google Scholar]
Coordination Degree | Coordination Level | Coordination Degree | Coordination Level |
---|---|---|---|
[0, 0.1) | Extreme imbalance | [0.5, 0.6) | Reluctant coordination |
[0.1, 0.2) | Serious imbalance | [0.6, 0.7) | Primary coordination |
[0.2, 0.3) | Moderate disorder | [0.7, 0.8) | Intermediate coordination |
[0.2, 0.3) | Mild disorder | [0.8, 0.9) | Good coordination |
[0.4, 0.5) | Endangered disorder | [0.9, 1) | Quality coordination |
City | Ridge | SVM | RR-SVM | ||||||
---|---|---|---|---|---|---|---|---|---|
MAE/(μg·m−3) | RMSE/(μg·m−3) | R2 | MAE/(μg·m−3) | RMSE/(μg·m−3) | R2 | MAE/(μg·m−3) | RMSE/(μg·m−3) | R2 | |
Chaozhou | 0.7586 | 0.9777 | 0.9493 | 1.2942 | 1.5536 | 0.8719 | 0.5200 | 0.6275 | 0.9791 |
Dongguan | 1.0153 | 1.4954 | 0.9269 | 1.1974 | 1.4423 | 0.9320 | 0.4859 | 0.7184 | 0.9831 |
Foshan | 1.5727 | 1.8879 | 0.9080 | 1.3962 | 1.8300 | 0.9136 | 0.4478 | 0.4959 | 0.9937 |
Guangzhou | 1.3084 | 1.6678 | 0.9293 | 0.9040 | 1.1350 | 0.9673 | 0.6196 | 1.0397 | 0.9725 |
Heyuan | 1.0393 | 1.3187 | 0.9384 | 2.2587 | 2.9273 | 0.6966 | 0.7832 | 1.0925 | 0.9577 |
Huizhou | 0.9073 | 1.0530 | 0.9569 | 1.3760 | 2.0746 | 0.8326 | 0.3246 | 0.3654 | 0.9948 |
Jiangmen | 1.0444 | 1.3588 | 0.9095 | 1.1114 | 1.3701 | 0.9080 | 0.3926 | 0.4750 | 0.9889 |
Jieyang | 0.7701 | 0.8654 | 0.9564 | 1.2182 | 1.4342 | 0.8803 | 0.6250 | 0.7732 | 0.9652 |
Maoming | 0.7926 | 0.9079 | 0.9589 | 2.4316 | 2.9650 | 0.6688 | 0.5461 | 0.8446 | 0.9731 |
Meizhou | 1.6525 | 2.0368 | 0.8934 | 3.7907 | 4.4974 | 0.4804 | 1.2531 | 1.6352 | 0.9313 |
Qingyuan | 0.8305 | 1.2200 | 0.9504 | 2.0922 | 2.3381 | 0.8180 | 0.5401 | 0.7001 | 0.9837 |
Shantou | 0.8345 | 0.9589 | 0.9595 | 2.6883 | 3.1139 | 0.5730 | 0.6109 | 0.7544 | 0.9749 |
Shanwei | 1.3367 | 1.7419 | 0.9258 | 2.2040 | 2.7585 | 0.8139 | 0.8290 | 1.2582 | 0.9613 |
Shaoguan | 1.1424 | 1.2343 | 0.9446 | 1.4279 | 2.1250 | 0.8358 | 0.6569 | 0.9924 | 0.9642 |
Shenzhen | 1.1022 | 1.4584 | 0.9064 | 1.4724 | 1.7932 | 0.8585 | 0.8423 | 1.0594 | 0.9506 |
Yangjiang | 0.7186 | 0.8981 | 0.9402 | 1.3465 | 1.7569 | 0.7713 | 0.3907 | 0.4737 | 0.9834 |
Yunfu | 1.4012 | 1.5357 | 0.9301 | 3.0842 | 3.9902 | 0.5279 | 0.9717 | 1.2663 | 0.9524 |
Zhanjiang | 1.5875 | 1.9121 | 0.8671 | 2.4511 | 2.9479 | 0.6840 | 0.6862 | 0.9604 | 0.9665 |
Zhaoqing | 1.3098 | 1.4348 | 0.9136 | 2.1075 | 2.6462 | 0.7062 | 0.5871 | 0.9006 | 0.9660 |
Zhongshan | 1.0897 | 1.4074 | 0.9209 | 2.2536 | 2.4644 | 0.7576 | 0.7246 | 0.9455 | 0.9643 |
Zhuhai | 0.9881 | 1.2581 | 0.9201 | 1.6543 | 2.1569 | 0.7653 | 0.5532 | 0.8312 | 0.9651 |
Factor | Lower | Middle | High | ||||||
---|---|---|---|---|---|---|---|---|---|
Low Width | Low Strong | Low Severity | Middle Width | Middle Strong | Middle Severity | High Width | High Strong | High Severity | |
SGDP | Down 0.1% | Down 0.2% | Down 0.3% | Down 0.4% | Down 0.6% | Down 0.8% | Down 1.0% | Down 1.5% | Down 2.0% |
TGDP | Up 0.1% | Up 0.2% | Up 0.3% | Up 0.4% | Up 0.6% | Up 0.8% | Up 1.0% | Up 1.5% | Up 2.0% |
ECPG | Down [11%] | Down [12%] | Down [13%] | Down [14%] | Down [15%] | Down [16%] | Down [17%] | Down [18%] | Down [19%] |
HFTF | Down 0.1% | Down 0.2% | Down 0.3% | Down 0.5% | Down 0.7% | Down 0.9% | Down 1.0% | Down 1.5% | Down 2.0% |
WFTF | Up 0.1% | Up 0.2% | Up 0.3% | Up 0.5% | Up 0.7% | Up 0.9% | Up 1.0% | Up 1.5% | Up 2.0% |
GROC | Down 2% | Down 3% | Down 4% | Down 5% | Down 6% | Down 7% | Down 8% | Down 10% | Down 12% |
GAPC | Up [5%] | Up [10%] | Up [15%] | Up [20%] | Up [25%] | Up [30%] | Up [35%] | Up [40%] | Up [45%] |
ISDE | Down [10%] | Down [15%] | Down [20%] | Down [25%] | Down [30%] | Down [35%] | Down [40%] | Down [45%] | Down [50%] |
Rank | STIR | ECPG/(tce·10kCHY−1) | WFHR | GROC/% | GAPC/m2 | ISDE/10 kt |
---|---|---|---|---|---|---|
1 | 0.00–0.38 | 0.31–0.43 | 0.00–0.05 | 0.00–0.03 | 11.5–14.9 | 0.07–0.21 |
2 | 0.38–0.63 | 0.43–0.63 | 0.05–0.14 | 0.03–0.12 | 14.9–19.1 | 0.21–0.41 |
3 | 0.63–0.83 | 0.63–1.63 | 0.14–0.34 | 0.12–0.18 | 19.1–23.8 | 0.41–0.80 |
4 | 0.83–1.00 | 1.63–1.74 | 0.34–1.23 | 0.18–0.22 | 1.80–1.63 | |
5 | 1.00–1.33 |
Category | City | STIR | ECPG | WHFR | GROC | GAPC | ISDE |
---|---|---|---|---|---|---|---|
Category 1 | Guangzhou | 1 | 1 | 4 | 2 | 1 | 2 |
Meizhou | 2 | 1 | 1 | 3 | 1 | 3 | |
Qingyuan | 2 | 2 | 4 | 2 | 3 | 4 | |
Shaogua | 2 | 2 | 3 | 3 | 2 | 3 | |
Shenzhen | 2 | 1 | 3 | 1 | 3 | 1 | |
Yunfu | 2 | 2 | 3 | 4 | 2 | 3 | |
Category 2 | Heyuan | 2 | 2 | 1 | 3 | 3 | 1 |
Jieyang | 3 | 3 | 1 | 3 | 3 | 3 | |
Maoming | 3 | 2 | 2 | 3 | 2 | 2 | |
Shanwei | 3 | 2 | 1 | 4 | 3 | 1 | |
Yangjiang | 3 | 3 | 1 | 3 | 2 | 3 | |
Category 3 | Chaozhou | 5 | 1 | 3 | 2 | 3 | 2 |
Dongguan | 5 | 1 | 4 | 2 | 1 | 3 | |
Foshan | 5 | 1 | 2 | 2 | 2 | 3 | |
Shantou | 4 | 1 | 2 | 2 | 3 | 2 | |
Zhongshan | 4 | 2 | 2 | 2 | 2 | 1 | |
Category 4 | Huizhou | 5 | 4 | 4 | 2 | 2 | 4 |
Jiangmen | 4 | 2 | 3 | 2 | 1 | 3 | |
Zhangjiang | 3 | 4 | 3 | 3 | 2 | 2 | |
Zhaoqing | 4 | 3 | 3 | 2 | 1 | 4 | |
Zhuhai | 3 | 3 | 3 | 2 | 1 | 1 |
Category | STIR | ECPG | WHFR | GROC | GAPC | ISDE |
---|---|---|---|---|---|---|
Category 1 | Lower ↓ | Lower ↓ | High ↓ | Middle ↓ | Middle ↑ | High ↓ |
Category 2 | Middle ↓ | Middle ↓ | Lower ↓ | High ↓ | High ↑ | Middle ↓ |
Category 3 | High ↓ | Lower ↓ | Middle ↓ | Lower ↓ | Middle ↑ | Middle ↓ |
Category 4 | High ↓ | High ↓ | High ↓ | Lower ↓ | Lower ↑ | High ↓ |
Factor | Category 1 | Category 2 | Category 3 | Category 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Loose Type | Intensive Type | Strict Type | Loose Type | Intensive Type | Strict Type | Loose Type | Intensive Type | Strict Type | Loose Type | Intensive Type | Strict Type | |
STIR | low width | low strength | low strictness | medium width | medium strength | medium strictness | high width | high strength | high strictness | high width | high strength | high strictness |
ECPG | low width | low strength | low strictness | medium width | medium strength | medium strictness | low width | low strength | low strictness | high width | high strength | high strictness |
WHFR | high width | high strength | high strictness | low width | low strength | low strictness | medium width | medium strength | medium strictness | high width | high strength | high strictness |
GROC | medium width | medium strength | medium strictness | high width | high strength | high strictness | low width | low strength | low strictness | low width | low strength | low strictness |
GAPC | medium width | medium strength | medium strictness | high width | high strength | high strictness | medium width | medium strength | medium strictness | low width | low strength | low strictness |
ISDE | high width | high strength | high strictness | medium width | medium strength | medium strictness | medium width | medium strength | medium strictness | high width | high strength | high strictness |
City | SGDP | TGDP | ECPG | HFTF | WFTF | GROC | GAPC | ISDE |
---|---|---|---|---|---|---|---|---|
Chaozhou | down 1.0% | up 1.0% | down 2.48% | down 0.5% | up 0.5% | down 2.0% | up 3.08% | down 4.68% |
Dongguan | down 2.0% | up 2.0% | down 2.86% | down 0.9% | up 0.9% | down 4.0% | up 4.47% | down 6.92% |
Foshan | down 2.0% | up 2.0% | down 2.86% | down 0.9% | up 0.9% | down 4.0% | up 4.47% | down 6.92% |
Guangzhou | down 0.3% | up 0.3% | down 2.29% | down 2.0% | up 2.0% | down 7.0% | up 4.47% | down 10.91% |
Heyuan | down 0.4% | up 0.4% | down 2.48% | down 0.1% | up 0.1% | down 8.0% | up 5.13% | down 4.68% |
Huizhou | down 1.5% | up 1.5% | down 3.25% | down 1.5% | up 1.5% | down 3.0% | up 1.60% | down 9.48% |
Jiangmen | down 1.5% | up 1.5% | down 3.25% | down 1.5% | up 1.5% | down 3.0% | up 1.60% | down 9.48% |
Jieyang | down 0.8% | up 0.8% | down 2.86% | down 0.3% | up 0.3% | down 12.0% | up 6.38% | down 6.92% |
Maoming | down 0.6% | up 0.6% | down 2.67% | down 0.2% | up 0.2% | down 10.0% | up 5.77% | up 5.77% |
Meizhou | down 0.2% | up 0.2% | down 2.11% | down 1.5% | up 1.5% | down 6.0% | up 3.78% | down 9.48% |
Qingyuan | down 0.1% | up 0.1% | down 1.92% | down 1.0% | up 1.0% | down 5.0% | up 3.08% | down 8.16% |
Shantou | down 1.0% | up 1.0% | down 2.48% | down 0.5% | up 0.5% | down 2.0% | up 3.08% | down 4.68% |
Shanwei | down 0.4% | up 0.4% | down 2.48% | down 0.1% | up 0.1% | down 8.0% | up 5.13% | down 4.68% |
Shaoguan | down 0.3% | up 0.3% | down 2.29% | down 2.0% | up 2.0% | down 7.0% | up 4.47% | down 10.91% |
Shenzhen | down 0.3% | up 0.3% | down 2.29% | down 2.0% | up 2.0% | down 7.0% | up 4.47% | down 10.91% |
Yangjiang | down 0.6% | up 0.6% | down 2.67% | down 0.2% | up 0.2% | down 10.0% | up 5.77% | up 5.77% |
Yunfu | down 0.3% | up 0.3% | down 2.29% | down 2.0% | up 2.0% | down 7.0% | up 4.47% | down 10.91% |
Zhanjiang | down 1.5% | up 1.5% | down 3.25% | down 1.5% | up 1.5% | down 3.0% | up 1.60% | down 9.48% |
Zhaoqing | down 1.5% | up 1.5% | down 3.25% | down 1.5% | up 1.5% | down 3.0% | up 1.60% | down 9.48% |
Zhongshan | down 1.0% | up 1.0% | down 2.48% | down 0.5% | up 0.5% | down 2.0% | up 3.08% | down 4.68% |
Zhuhai | down 1.0% | up 1.0% | down 3.05% | down 1.0% | up 1.0% | down 2.0% | up 0.82% | down 8.16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, K.; Li, D.; Li, C.; Jin, X.; Ding, F.; Zeng, Z. Analysis of PM2.5 Synergistic Governance Path from a Socio-Economic Perspective: A Case Study of Guangdong Province. ISPRS Int. J. Geo-Inf. 2023, 12, 340. https://doi.org/10.3390/ijgi12080340
Fan K, Li D, Li C, Jin X, Ding F, Zeng Z. Analysis of PM2.5 Synergistic Governance Path from a Socio-Economic Perspective: A Case Study of Guangdong Province. ISPRS International Journal of Geo-Information. 2023; 12(8):340. https://doi.org/10.3390/ijgi12080340
Chicago/Turabian StyleFan, Kunkun, Daichao Li, Cong Li, Xinlei Jin, Fei Ding, and Zhan Zeng. 2023. "Analysis of PM2.5 Synergistic Governance Path from a Socio-Economic Perspective: A Case Study of Guangdong Province" ISPRS International Journal of Geo-Information 12, no. 8: 340. https://doi.org/10.3390/ijgi12080340
APA StyleFan, K., Li, D., Li, C., Jin, X., Ding, F., & Zeng, Z. (2023). Analysis of PM2.5 Synergistic Governance Path from a Socio-Economic Perspective: A Case Study of Guangdong Province. ISPRS International Journal of Geo-Information, 12(8), 340. https://doi.org/10.3390/ijgi12080340