Analysis of the Spatial Distribution and Associated Factors of the Transmission Locations of COVID-19 in the First Four Waves in Hong Kong
<p>(<b>a</b>) TPU scale map of hong kong in the study area. (<b>b</b>) Data acquisition and analysis process. (<b>c</b>) Weekly case statistics among different waves.</p> "> Figure 1 Cont.
<p>(<b>a</b>) TPU scale map of hong kong in the study area. (<b>b</b>) Data acquisition and analysis process. (<b>c</b>) Weekly case statistics among different waves.</p> "> Figure 2
<p>Flowchart of COVID-19 transmission chain reconstruction.</p> "> Figure 3
<p>Visualization of the transmission chain of different stages. (<b>a</b>) Transmission chain in Stage I; (<b>b</b>) Transmission chain in Stage Ⅱ; (<b>c</b>) Transmission chain in Stage Ⅲ.</p> "> Figure 4
<p>Spatial hotspot detection of COVID-19 incidence based on Getis-Ord Gi* statistics: (<b>a</b>) the hotspots in stage I of residential locations; (<b>b</b>) the hotspots in stage II of residential locations; (<b>c</b>) the hotspots in stage III of residential locations; (<b>d</b>) the hotspots in stage I of non-residential locations; (<b>e</b>) the hotspots in stage II of non-residential locations; (<b>f</b>) the hotspots in stage III of non-residential locations.</p> "> Figure 5
<p>Space–time cluster distribution in stage I at residential locations (In which number 1, 2, 4, 5 indicate the most significant clusters).</p> "> Figure 6
<p>Space–time cluster distribution in Stage II at residential locations (In which number 1, 4, 12, 14, 16 indicate the most significant clusters).</p> "> Figure 7
<p>Space–time cluster distribution in stage III at residential locations (In which number 1, 9, 20 indicate the most significant clusters).</p> "> Figure 8
<p>Space–time cluster distribution in stage I at non-residential locations (In which number 1, 3, 5 indicate the most significant clusters).</p> "> Figure 9
<p>Space–time cluster distribution in stage II at non-residential locations (In which number 3, 4, 6, 9, 12 indicate the most significant clusters).</p> "> Figure 10
<p>Space–time cluster distribution in stage III at non-residential locations (In which number 2, 3, 7 indicate the most significant clusters).</p> "> Figure 11
<p>Space–time clusters’ evolution of different stages and locations.</p> "> Figure 12
<p>Features’ distribution of clustered TPUs and non-clustered TPUs of COVID-19 transmission in residential locations at different stages of the pandemic in Hong Kong.</p> "> Figure 13
<p>Features’ distribution of clustered TPUs and non-clustered TPUs of COVID-19 transmission in non-residential locations at different stages of the pandemic in Hong Kong.</p> ">
Abstract
:1. Introduction
- (1)
- Most studies on the space–time distribution of COVID-19 and the affecting factors focus on the residential locations or visited locations of the confirmed cases. Few studies, however, have investigated the patterns of those specific locations at which the transmission actually occurred, though these locations are rather more directly related to the pandemic prevention;
- (2)
- Arguably, there is no research that has revealed time and space patterns of COVID-19 transmission locations. Consequently, the contributions of spatial patterns of COVID-19 transmission locations and socio-economic/environmental factors to COVID-19 transmission remain under-explored.
2. Data Preparation and Methods
2.1. Research Area and Data
2.2. Research Methods
2.2.1. Reconstruction of the COVID-19 Transmission Chain for Hong Kong
2.2.2. Analysis of the Clustering Changes and Hot Spots of COVID-19 Transmission Locations
2.2.3. Space–Time Scan Statistics Based on the Location of COVID-19 Transmission
2.2.4. Correlation between Spatial Context and COVID-19 Infection Location
3. Results
3.1. The Clustering Characteristics and Hotspot Distribution of COVID-19 Transmission Locations
3.2. Space–Time Clusters of COVID-19 Transmission Locations
3.2.1. Space–Time Clusters of COVID-19 Transmission in Residential Locations
3.2.2. Space–Time Clusters of COVID-19 Transmission in Non-Residential Locations
3.2.3. Relevant Demographic and Environmental Characteristics of the Transmission Locations of COVID-19
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Situation Report; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Kan, Z.; Kwan, M.-P.; Wong, M.S.; Huang, J.; Liu, D. Identifying the space-time patterns of COVID-19 risk and their associations with different built environment features in Hong Kong. Sci. Total. Environ. 2021, 772, 145379. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Choi, H.; Kim, J.-H.; Choi, J. Spatial epidemic dynamics of the COVID-19 outbreak in China. Int. J. Infect. Dis. 2020, 94, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.Y.; Webster, C.; Kumari, S.; Sarkar, C. The nature of cities and the COVID-19 pandemic. Curr. Opin. Environ. Sustain. 2020, 46, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wang, Y.; Chen, F.; Zhu, M. Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China. Int. J. Environ. Res. Public Heal. 2020, 17, 3903. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, M.; Hohl, A.; Delmelle, E. Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic: Detecting and evaluating emerging clusters. Appl. Geogr. 2020, 118, 102202. [Google Scholar] [CrossRef]
- Hutch, D.J.; Bouye, K.E.; Skillen, E.; Lee, C.; Whitehead, L.; Rashid, J.R. Potential Strategies to Eliminate Built Environment Disparities for Disadvantaged and Vulnerable Communities. Am. J. Public Heal. 2011, 101, 587–595. [Google Scholar] [CrossRef]
- Kan, Z.; Kwan, M.P.; Huang, J.; Wong, M.S.; Liu, D. Comparing the space-time patterns of high-risk areas in different waves of COVID-19 in Hong Kong. Trans. GIS 2021, 25, 2982–3001. [Google Scholar] [CrossRef]
- Kwok, C.Y.T.; Wong, M.S.; Chan, K.L.; Kwan, M.-P.; Nichol, J.E.; Liu, C.H.; Wong, J.Y.H.; Wai, A.K.C.; Chan, L.W.C.; Xu, Y.; et al. Spatial analysis of the impact of urban geometry and socio-demographic characteristics on COVID-19, a study in Hong Kong. Sci. Total Environ. 2021, 764, 144455. [Google Scholar] [CrossRef]
- Mollalo, A.; Vahedi, B.; Rivera, K.M. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Sci. Total. Environ. 2020, 728, 138884. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pouyan, S.; Heidari, B.; Farajzadeh, Z.; Shamsi, S.R.F.; Babaei, S.; Khosravi, R.; Etemadi, M.; Ghanbarian, G.; Farhadi, A.; et al. Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between 19 February and 14 June 2020). Int. J. Infect. Dis. 2020, 98, 90–108. [Google Scholar] [CrossRef]
- Lai, S.; Ruktanonchai, N.W.; Zhou, L.; Prosper, O.; Luo, W.; Floyd, J.R.; Wesolowski, A.; Santillana, M.; Zhang, C.; Du, X.; et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature 2020, 585, 410–413. [Google Scholar] [CrossRef]
- Kwan, M.-P. The stationarity bias in research on the environmental determinants of health. Heal. Place 2021, 70, 102609. [Google Scholar] [CrossRef]
- Golinelli, D.; Lenzi, J.; Adja, K.Y.C.; Reno, C.; Sanmarchi, F.; Fantini, M.P.; Gibertoni, D. Small-scale spatial analysis shows the specular distribution of excess mortality between the first and second wave of the COVID-19 pandemic in Italy. Public Health 2021, 194, 182–184. [Google Scholar] [CrossRef]
- Shim, E.; Tariq, A.; Chowell, G. Spatial variability in reproduction number and doubling time across two waves of the COVID-19 pandemic in South Korea, February to July, 2020. Int. J. Infect. Dis. 2020, 102, 1–9. [Google Scholar] [CrossRef]
- Ajelli, M.; Parlamento, S.; Bome, D.; Kebbi, A.; Atzori, A.; Frasson, C.; Putoto, G.; Carraro, D.; Merler, S. The 2014 Ebola virus disease outbreak in Pujehun, Sierra Leone: Epidemiology and impact of interventions. BMC Med. 2015, 13, 281. [Google Scholar] [CrossRef] [Green Version]
- Faye, O.; Boëlle, P.-Y.; Heleze, E.; Faye, O.; Loucoubar, C.; Magassouba, N.; Soropogui, B.; Keita, S.; Gakou, T.; Bah, E.H.I.; et al. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: An observational study. Lancet Infect. Dis. 2015, 15, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Stoddard, S.T.; Forshey, B.M.; Morrison, A.C.; Paz-Soldan, V.A.; Vazquez-Prokopec, G.M.; Astete, H.; Reiner, R.C.; Vilcarromero, S.; Elder, J.P.; Halsey, E.S.; et al. House-to-house human movement drives dengue virus transmission. Proc. Natl. Acad. Sci. USA 2013, 110, 994–999. [Google Scholar] [CrossRef] [Green Version]
- Guzzetta, G.; Marques-Toledo, C.A.; Rosà, R.; Teixeira, M.; Merler, S. Quantifying the spatial spread of dengue in a non-endemic Brazilian metropolis via transmission chain reconstruction. Nat. Commun. 2018, 9, 2837. [Google Scholar] [CrossRef] [Green Version]
- Jombart, T.; Cori, A.; Didelot, X.; Cauchemez, S.; Fraser, C.; Ferguson, N. Bayesian Reconstruction of Disease Outbreaks by Combining Epidemiologic and Genomic Data. PLoS Comput. Biol. 2014, 10, e1003457. [Google Scholar] [CrossRef]
- Mollentze, N.; Nel, L.H.; Townsend, S.; le Roux, K.; Hampson, K.; Haydon, D.T.; Soubeyrand, S. A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data. Proc. R. Soc. B Biol. Sci. 2014, 281, 20133251. [Google Scholar] [CrossRef] [Green Version]
- Morelli, M.J.; Thébaud, G.; Chadœuf, J.; King, D.P.; Haydon, D.T.; Soubeyrand, S. A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLoS Comput. Biol. 2012, 8, e1002768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, D.C.; Wu, P.; Wong, J.Y.; Lau, E.H.; Tsang, T.K.; Cauchemez, S.; Leung, G.M.; Cowling, B.J. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 2020, 26, 1714–1719. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Lee, Y.; Roosa, K.; Blumberg, S.; Yan, P.; Ma, S.; Chowell, G. Real-time monitoring the transmission potential of COVID-19 in Singapore, March 2020. BMC Med. 2020, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhu, X.; Liu, X.; Wei, T.; Yuan, H.-Y.; Xu, Y.; Zhu, R.; He, H.; Wang, H.; Wong, M.; et al. Reopening International Borders without Quarantine: Contact Tracing Integrated Policy against COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 7494. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, R.; Chen, L.; Li, W.; Wu, Y.; Zhou, H. H-WPS: Hybrid wireless positioning system using an enhanced wi-fi FTM/RSSI/MEMS sensors integration approach. IEEE Internet Things J. 2021, 9, 11827–11842. [Google Scholar] [CrossRef]
- Ahmed, N.; Michelin, R.A.; Xue, W.; Ruj, S.; Malaney, R.; Kanhere, S.S.; Seneviratne, A.; Hu, W.; Janicke, H.; Jha, S.K. A Survey of COVID-19 Contact Tracing Apps. IEEE Access 2020, 8, 134577–134601. [Google Scholar] [CrossRef]
- Seong, H.; Hyun, H.J.; Yun, J.G.; Noh, J.Y.; Cheong, H.J.; Kim, W.J.; Song, J.Y. Comparison of the second and third waves of the COVID-19 pandemic in South Korea: Importance of early public health intervention. Int. J. Infect. Dis. 2021, 104, 742–745. [Google Scholar] [CrossRef]
- Yang, L.; Dai, J.; Zhao, J.; Wang, Y.; Deng, P.; Wang, J. Estimation of incubation period and serial interval of COVID-19: Analysis of 178 cases and 131 transmission chains in Hubei province, China. Epidemiol. Infect. 2020, 148, e117. [Google Scholar] [CrossRef]
- Lokuge, K.; Banks, E.; Davis, S.; Roberts, L.; Street, T.; O’Donovan, D.; Caleo, G.; Glass, K. Exit strategies: Optimizing feasible surveillance for detection, elimination, and ongoing prevention of COVID-19 community transmission. BMC Med. 2021, 19, 1–14. [Google Scholar] [CrossRef]
- Malheiro, R.; Figueiredo, A.L.; Magalhães, J.P.; Teixeira, P.; Moita, I.; Moutinho, M.C.; Mansilha, R.B.; Gonçalves, L.M.; Ferreira, E. Effectiveness of contact tracing and quarantine on reducing COVID-19 transmission: A retrospective cohort study. Public Health 2020, 189, 54–59. [Google Scholar] [CrossRef]
- Wang, J. Spatial Analysis; Science Press: Beijing, China, 2006; pp. 55–56. [Google Scholar]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. In Perspectives on Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 127–145. [Google Scholar]
- Wright, R.E. Logistic regression. In Reading and Understanding Multivariate Statistics; American Psychological Association: Washington, DC, USA, 1995; pp. 217–244. [Google Scholar]
- Castro, R.R.; Santos, R.S.C.; Sousa, G.J.B.; Pinheiro, Y.T.; Martins, R.R.I.M.; Pereira, M.L.D.; Silva, R.A.R. Spatial dynamics of the COVID-19 pandemic in Brazil. Epidemiol. Infect. 2021, 149, e60. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, W.; Zhang, A.; Zhu, X. The effectiveness of the restricted policy on specific venues in Hong Kong: A spatial point pattern view. Geospat. Health 2022, 17, 1130. [Google Scholar] [CrossRef]
Name of Variable | R I | R II | R III | NR I | NR II | NR III |
---|---|---|---|---|---|---|
Average distance observed | 869.7490 m | 149.6688 m | 131.2052 m | 201.6234 m | 116.0415 m | 57.3838 m |
Expected average distance | 1783.0137 m | 743.0114 m | 606.4645 m | 1335.8216 m | 983.4025 m | 659.4559 m |
Nearest neighbor ratio value | 0.4878 | 0.2014 | 0.2163 | 0.1509 | 0.1180 | 0.0870 |
z score | −9.1397 | −34.1948 | −41.1117 | −20.2226 | −28.5353 | −44.0476 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Name of Variable | R I | R II | R III | NR I | NR II | NR III |
---|---|---|---|---|---|---|
Moran’s I | 0.0629 | 0.1882 | 0.1145 | 0.0616 | 0.0732 | 0.0984 |
Variance | 0.0009 | 0.0009 | 0.0009 | 0.0007 | 0.0008 | 0.0009 |
z score | 2.2003 | 6.3236 | 3.8869 | 2.4584 | 2.6820 | 3.4497 |
p-value | 0.0278 | 0.0000 | 0.0001 | 0.0140 | 0.0073 | 0.0006 |
Cluster | Duration (Days) | p-Value | Observed | Expected | Relative Risk |
---|---|---|---|---|---|
1 | 20/5/2020–29/5/2020 | 0.000 | 8 | 0.04 | 234.02 |
2 | 29/2/2020–31/3/2020 | 0.000 | 12 | 0.36 | 38.35 |
3 | 17/3/2020–2/4/2020 | 0.000 | 6 | 0.14 | 45.53 |
4 | 17/3/2020–22/3/2020 | 0.000 | 4 | 0.04 | 117.17 |
5 | 14/2/2020–27/3/2020 | 0.020 | 3 | 0.01 | 210.91 |
Cluster | Duration (Days) | p-Value | Observed | Expected | Relative Risk |
---|---|---|---|---|---|
1 | 14/7/2020–24/7/2020 | 0.000 | 26 | 0.40 | 69.36 |
2 | 28/6/2020–23/7/2020 | 0.000 | 30 | 1.11 | 28.56 |
3 | 6/7/2020–11/8/2020 | 0.000 | 28 | 1.47 | 20.11 |
4 | 19/8/2020–23/8/2020 | 0.000 | 15 | 0.14 | 107.53 |
5 | 2/10/2020–3/10/2020 | 0.000 | 12 | 0.11 | 106.89 |
6 | 2/7/2020–4/7/2020 | 0.000 | 10 | 0.11 | 96.07 |
7 | 3/7/2020–16/7/2020 | 0.000 | 14 | 0.98 | 14.69 |
8 | 15/7/2020–18/7/2020 | 0.000 | 7 | 0.10 | 67.79 |
9 | 12/7/2020–19/7/2020 | 0.000 | 10 | 0.51 | 19.87 |
10 | 5/8/2020–10/8/2020 | 0.000 | 8 | 0.35 | 23.02 |
11 | 15/7/2020–19/7/2020 | 0.010 | 7 | 0.32 | 21.93 |
12 | 3/8/2020–4/8/2020 | 0.010 | 4 | 0.04 | 100.94 |
13 | 13/7/2020–16/7/2020 | 0.020 | 5 | 0.12 | 41.47 |
14 | 26/10/2020–27/10/2020 | 0.020 | 3 | 0.01 | 258.38 |
15 | 13/7/2020–16/7/2020 | 0.050 | 5 | 0.16 | 32.12 |
16 | 12/7/2020–13/7/2020 | 0.050 | 3 | 0.02 | 173.11 |
Cluster | Duration (Days) | p-Value | Observed | Expected | Relative Risk |
---|---|---|---|---|---|
1 | 25/11/2020–26/11/2020 | 0.000 | 37 | 0.08 | 463.37 |
2 | 9/12/2020–15/1/2021 | 0.000 | 33 | 0.90 | 38.13 |
3 | 27/11/2020–10/12/2020 | 0.000 | 18 | 0.46 | 40.35 |
4 | 5/12/2020–4/1/2021 | 0.000 | 21 | 1.20 | 17.97 |
5 | 17/11/2020–15/12/2020 | 0.000 | 20 | 1.69 | 12.13 |
6 | 10/11/2020–11/12/2020 | 0.000 | 14 | 0.65 | 21.82 |
7 | 17/11/2020–7/12/2020 | 0.000 | 12 | 0.41 | 29.83 |
8 | 16/11/2020–24/11/2020 | 0.000 | 13 | 0.55 | 24.12 |
9 | 22/12/2020–26/12/2020 | 0.000 | 6 | 0.02 | 265.24 |
10 | 4/1/2021–11/1/2021 | 0.000 | 11 | 0.45 | 24.90 |
11 | 23/11/2020–22/12/2020 | 0.000 | 12 | 0.89 | 13.69 |
12 | 21/11/2020–21/1/2021 | 0.000 | 23 | 4.37 | 5.39 |
13 | 21/11/2020–17/1/2021 | 0.000 | 9 | 0.43 | 21.00 |
14 | 16/11/2020–11/12/2020 | 0.000 | 15 | 1.84 | 8.30 |
15 | 31/3/2021–8/4/2021 | 0.000 | 5 | 0.06 | 85.39 |
16 | 2/12/2020–3/12/2020 | 0.000 | 6 | 0.14 | 43.19 |
17 | 26/11/2020–13/12/2020 | 0.000 | 11 | 1.00 | 11.19 |
18 | 9/12/2020–21/12/2020 | 0.000 | 10 | 0.80 | 12.59 |
19 | 30/11/2020–9/12/2020 | 0.010 | 4 | 0.03 | 125.37 |
20 | 21/11/2020–22/11/2020 | 0.020 | 4 | 0.05 | 89.03 |
Cluster | Duration (Days) | p-Value | Observed | Expected | Relative Risk |
---|---|---|---|---|---|
1 | 4/3/2020–2/4/2020 | 0.000 | 52 | 0.28 | 277.09 |
2 | 6/3/2020–31/3/2020 | 0.000 | 41 | 0.11 | 498.54 |
3 | 25/1/2020–26/1/2020 | 0.000 | 10 | 0.00 | 3385.75 |
4 | 25/1/2020–8/2/2020 | 0.000 | 12 | 0.03 | 431.81 |
5 | 14/3/2020–16/3/2020 | 0.000 | 7 | 0.02 | 381.70 |
6 | 13/3/2020–23/3/2020 | 0.000 | 8 | 0.10 | 87.12 |
7 | 12/3/2020–28/3/2020 | 0.000 | 6 | 0.05 | 125.82 |
8 | 10/3/2020–14/3/2020 | 0.000 | 4 | 0.01 | 348.10 |
Cluster | Duration (Days) | p-Value | Observed | Expected | Relative Risk |
---|---|---|---|---|---|
1 | 26/6/2020–12/7/2020 | 0.000 | 67 | 0.26 | 341.98 |
2 | 8/7/2020–29/7/2020 | 0.000 | 47 | 0.17 | 332.06 |
3 | 5/7/2020–21/7/2020 | 0.000 | 19 | 0.08 | 256.67 |
4 | 16/7/2020–21/7/2020 | 0.000 | 13 | 0.02 | 687.55 |
5 | 8/7/2020–1/8/2020 | 0.000 | 14 | 0.19 | 78.40 |
6 | 6/7/2020–23/7/2020 | 0.000 | 9 | 0.15 | 62.14 |
7 | 8/7/2020–15/7/2020 | 0.000 | 8 | 0.16 | 50.80 |
8 | 3/7/2020–9/7/2020 | 0.000 | 7 | 0.11 | 63.88 |
9 | 8/8/2020–28/8/2020 | 0.000 | 8 | 0.25 | 33.46 |
10 | 7/7/2020–4/8/2020 | 0.000 | 6 | 0.12 | 52.19 |
11 | 13/7/2020–20/7/2020 | 0.010 | 3 | 0.01 | 261.40 |
12 | 24/8/2020–2/9/2020 | 0.020 | 5 | 0.14 | 37.61 |
13 | 26/7/2020–23/8/2020 | 0.030 | 5 | 0.14 | 35.56 |
Cluster | Duration (Days) | p-Value | Observed | Expected | Relative Risk |
---|---|---|---|---|---|
1 | 2/3/2021–11/3/2021 | 0.000 | 92 | 0.09 | 1176.67 |
2 | 13/11/2020–25/11/2020 | 0.000 | 63 | 0.05 | 1495.68 |
3 | 7/11/2020–24/11/2020 | 0.000 | 45 | 0.04 | 1217.18 |
4 | 13/11/2020–25/11/2020 | 0.000 | 48 | 0.17 | 307.81 |
5 | 28/11/2020–7/1/2021 | 0.000 | 47 | 0.29 | 174.89 |
6 | 8/11/2020–5/12/2020 | 0.000 | 55 | 0.80 | 75.19 |
7 | 22/11/2020–1/12/2020 | 0.000 | 31 | 0.04 | 740.22 |
8 | 15/2/2021–25/2/2021 | 0.000 | 29 | 0.04 | 792.04 |
9 | 14/11/2020–11/12/2020 | 0.000 | 35 | 0.84 | 43.91 |
10 | 17/11/2020–23/11/2020 | 0.000 | 15 | 0.08 | 183.11 |
11 | 9/11/2020–6/12/2020 | 0.000 | 24 | 0.76 | 32.83 |
12 | 13/11/2020–1/12/2020 | 0.000 | 17 | 0.39 | 44.68 |
13 | 25/1–/2020–28/11/2020 | 0.000 | 9 | 0.04 | 239.95 |
14 | 21/1/2021–25/1/2021 | 0.000 | 9 | 0.12 | 79.28 |
15 | 28/12/2020–8/1/2021 | 0.000 | 7 | 0.10 | 70.01 |
Parameters/Features | Median Monthly Income from Main Employment, Excluding FDHs | Population Density | Building Density | Roads and Transport Facilities | Government, Institutional, and Com-munity Facilities | Private Residential | Public Residential | Open Space and Recreation | Commercial/Business and Office | Woodland | Grassland |
---|---|---|---|---|---|---|---|---|---|---|---|
CI (Mean) | 25,107.2 | 20,285.9 | 0.147 | 0.093 | 0.053 | 0.097 | 0.030 | 0.043 | 0.004 | 0.205 | 0.066 |
NI (Mean) | 19,853.4 | 32,712.2 | 0.228 | 0.164 | 0.063 | 0.097 | 0.052 | 0.062 | 0.031 | 0.159 | 0.068 |
CII (Mean) | 16,603.7 | 45,017.4 | 0.269 | 0.188 | 0.058 | 0.106 | 0.101 | 0.082 | 0.042 | 0.108 | 0.047 |
NII (Mean) | 21,024.9 | 29,274.2 | 0.211 | 0.151 | 0.063 | 0.096 | 0.042 | 0.057 | 0.026 | 0.173 | 0.070 |
CIII (Mean) | 22,119 | 36,801.2 | 0.277 | 0.205 | 0.079 | 0.129 | 0.063 | 0.089 | 0.036 | 0.136 | 0.034 |
NIII (Mean) | 20,075.7 | 29,947.4 | 0.204 | 0.144 | 0.058 | 0.089 | 0.047 | 0.053 | 0.026 | 0.171 | 0.075 |
CI (SD) | 14,462.4 | 34,539.8 | 0.139 | 0.098 | 0.071 | 0.122 | 0.066 | 0.064 | 0.007 | 0.180 | 0.086 |
NI (SD) | 9356.1 | 36,874.4 | 0.187 | 0.133 | 0.075 | 0.118 | 0.094 | 0.072 | 0.067 | 0.163 | 0.092 |
CII (SD) | 6465.8 | 45,301.1 | 0.207 | 0.138 | 0.059 | 0.136 | 0.149 | 0.075 | 0.085 | 0.121 | 0.074 |
NII (SD) | 10,508 | 35,047.2 | 0.179 | 0.130 | 0.077 | 0.115 | 0.077 | 0.071 | 0.060 | 0.169 | 0.093 |
CIII (SD) | 11,836.8 | 33,619.5 | 0.167 | 0.124 | 0.071 | 0.119 | 0.098 | 0.090 | 0.074 | 0.164 | 0.049 |
NIII (SD) | 9747.8 | 37,424.4 | 0.185 | 0.131 | 0.075 | 0.116 | 0.089 | 0.064 | 0.061 | 0.165 | 0.097 |
CI (Median) | 20,000 | 2635.2 | 0.086 | 0.059 | 0.037 | 0.033 | 0.0002 | 0.0168 | 0.0011 | 0.1363 | 0.0304 |
NI (Median) | 16,000 | 20,770.7 | 0.194 | 0.141 | 0.044 | 0.051 | 0.0013 | 0.0358 | 0.0044 | 0.1003 | 0.0231 |
CII (Median) | 15,000 | 28,544.6 | 0.201 | 0.158 | 0.048 | 0.028 | 0.0332 | 0.0923 | 0.0085 | 0.0747 | 0.0054 |
NII (Median) | 17,500 | 15,702.8 | 0.166 | 0.112 | 0.043 | 0.051 | 0.001 | 0.0301 | 0.004 | 0.1205 | 0.0273 |
CIII (Median) | 17,000 | 31,921.4 | 0.257 | 0.181 | 0.055 | 0.114 | 0.0016 | 0.0772 | 0.0077 | 0.0801 | 0.0138 |
NIII (Median) | 16,000 | 14,565.4 | 0.149 | 0.106 | 0.037 | 0.039 | 0.0011 | 0.0284 | 0.0034 | 0.1205 | 0.0272 |
CI- NI (p-values) | 0.039 | 0.042 | 0.04 | 0.027 | 0.075 | 0.004 | 0.029 | 0.082 | 0.018 | 0.139 | 0.423 |
CII- NII (p-values) | 0.003 | 0.062 | 0.157 | 0.137 | 0.028 | 0.523 | 0.069 | 0.242 | 0.796 | 0.067 | 0.066 |
CIII- NIII (p-values) | 0.068 | 0.019 | 0.003 | 0.002 | 0.011 | 0.007 | 0.394 | 0.004 | 0.124 | 0.121 | 0.028 |
Parameters/Features | Median Monthly Income from Main Employment, Excluding FDHs | Population Density | Building Density | Roads and Transport Facilities | Government, Institutional, and Com-munity Facilities | Private Residential | Public Residential | Open Space and Recreation | Commercial/Business and Office | Woodland | Grassland |
---|---|---|---|---|---|---|---|---|---|---|---|
CI (Mean) | 19,786.5 | 41,211.4 | 0.446 | 0.287 | 0.075 | 0.133 | 0.030 | 0.109 | 0.131 | 0.065 | 0.029 |
NI (Mean) | 17,434.2 | 30,234.7 | 0.195 | 0.142 | 0.061 | 0.093 | 0.052 | 0.055 | 0.017 | 0.175 | 0.071 |
CII (Mean) | 17,980 | 58,160.8 | 0.384 | 0.271 | 0.068 | 0.123 | 0.087 | 0.082 | 0.077 | 0.087 | 0.025 |
NII (Mean) | 20,857 | 27,043.7 | 0.192 | 0.138 | 0.061 | 0.093 | 0.044 | 0.056 | 0.020 | 0.176 | 0.074 |
CIII (Mean) | 20,383.2 | 56,329.6 | 0.358 | 0.237 | 0.075 | 0.157 | 0.079 | 0.093 | 0.065 | 0.127 | 0.023 |
NIII (Mean) | 20,487.1 | 25,319.3 | 0.185 | 0.137 | 0.059 | 0.083 | 0.043 | 0.052 | 0.019 | 0.173 | 0.078 |
CI (SD) | 9517.5 | 35,719.6 | 0.205 | 0.123 | 0.062 | 0.123 | 0.075 | 0.099 | 0.120 | 0.138 | 0.079 |
NI (SD) | 10,271.6 | 36,791.1 | 0.165 | 0.125 | 0.076 | 0.117 | 0.093 | 0.066 | 0.043 | 0.164 | 0.092 |
CII (SD) | 9050.5 | 48,953.4 | 0.211 | 0.139 | 0.060 | 0.143 | 0.134 | 0.065 | 0.116 | 0.139 | 0.042 |
NII (SD) | 10,317 | 32,662.1 | 0.165 | 0.121 | 0.077 | 0.113 | 0.082 | 0.072 | 0.047 | 0.166 | 0.095 |
CIII (SD) | 11,181.2 | 41,098.5 | 0.200 | 0.136 | 0.051 | 0.137 | 0.129 | 0.091 | 0.104 | 0.167 | 0.042 |
NIII (SD) | 9966.5 | 33,081.5 | 0.163 | 0.123 | 0.079 | 0.108 | 0.078 | 0.064 | 0.046 | 0.164 | 0.097 |
CI (Median) | 17,750 | 36,552.6 | 0.477 | 0.329 | 0.053 | 0.117 | 0 | 0.091 | 0.104 | 0.0023 | 0.002 |
NI (Median) | 16,000 | 16,848.3 | 0.154 | 0.109 | 0.042 | 0.049 | 0.002 | 0.029 | 0.003 | 0.128 | 0.027 |
CII (Median) | 15,000 | 43,262.6 | 0.412 | 0.278 | 0.054 | 0.054 | 0.006 | 0.065 | 0.012 | 0.007 | 0.0003 |
NII (Median) | 17,000 | 13,538.4 | 0.152 | 0.106 | 0.042 | 0.049 | 0.001 | 0.027 | 0.003 | 0.121 | 0.027 |
CIII (Median) | 15,000 | 46,473.6 | 0.298 | 0.236 | 0.059 | 0.128 | 0.008 | 0.065 | 0.018 | 0.015 | 0.004 |
NIII (Median) | 17,000 | 10,162.2 | 0.135 | 0.106 | 0.037 | 0.039 | 0.001 | 0.027 | 0.003 | 0.119 | 0.032 |
CI- NI (p-values) | 0.042 | 0.058 | 0.001 | 0.01 | 0.018 | 0.149 | 0.046 | 0.003 | 0.001 | 0.01 | 0.001 |
CII- NII (p-values) | 0.013 | 0.001 | 0.001 | 0.01 | 0.182 | 0.31 | 0.005 | 0.005 | 0.01 | 0.001 | 0.001 |
CIII- NIII (p-values) | 0.026 | 0.001 | 0.01 | 0.01 | 0.002 | 0.001 | 0.162 | 0.001 | 0.01 | 0.011 | 0.001 |
Influencing Factors | R I | R II | R III | NR I | NR II | NR III |
---|---|---|---|---|---|---|
Median income | —— | 0.063 | 0.686 | —— | 0.677 | 0.652 |
Population density | —— | 1.618 | 1.745 | —— | —— | —— |
Building density | —— | —— | —— | 8.084 | 2.193 | 6.927 |
Private residential | 1.514 | —— | —— | —— | —— | 0.601 |
Public residential | 1.510 | 1.765 | 1.468 | —— | 1.978 | —— |
Commercial/business and office | —— | —— | —— | 5.630 | —— | —— |
Government, institutional, and community facilities | —— | —— | —— | 1.864 | —— | 1.463 |
Open space and recreation | —— | —— | —— | 2.319 | —— | 1.358 |
Roads and transport facilities | —— | —— | 1.344 | —— | 1.517 | 2.449 |
Woodland density | —— | —— | 1.456 | 2.602 | 1.366 | 2.064 |
Grassland density | —— | —— | —— | 5.327 | —— | 2.584 |
Land use diversity | —— | 1.687 | 1.478 | 2.050 | —— | 1.391 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Shi, W.; Yu, Y.; Chen, L.; Chen, R. Analysis of the Spatial Distribution and Associated Factors of the Transmission Locations of COVID-19 in the First Four Waves in Hong Kong. ISPRS Int. J. Geo-Inf. 2023, 12, 111. https://doi.org/10.3390/ijgi12030111
Yang D, Shi W, Yu Y, Chen L, Chen R. Analysis of the Spatial Distribution and Associated Factors of the Transmission Locations of COVID-19 in the First Four Waves in Hong Kong. ISPRS International Journal of Geo-Information. 2023; 12(3):111. https://doi.org/10.3390/ijgi12030111
Chicago/Turabian StyleYang, Daping, Wenzhong Shi, Yue Yu, Liang Chen, and Ruizhi Chen. 2023. "Analysis of the Spatial Distribution and Associated Factors of the Transmission Locations of COVID-19 in the First Four Waves in Hong Kong" ISPRS International Journal of Geo-Information 12, no. 3: 111. https://doi.org/10.3390/ijgi12030111
APA StyleYang, D., Shi, W., Yu, Y., Chen, L., & Chen, R. (2023). Analysis of the Spatial Distribution and Associated Factors of the Transmission Locations of COVID-19 in the First Four Waves in Hong Kong. ISPRS International Journal of Geo-Information, 12(3), 111. https://doi.org/10.3390/ijgi12030111