A Progressive Simplification Method for Buildings Based on Structural Subdivision
<p>The basic idea of the proposed method.</p> "> Figure 2
<p>The example of vertices.</p> "> Figure 3
<p>Determination of the <span class="html-italic">TPV</span> and <span class="html-italic">TPS</span>.</p> "> Figure 4
<p>The framework of our approach.</p> "> Figure 5
<p>The simplification <b>subtypes 1</b>–<b>4</b> and their operations. (<b>a</b>) <b>Subtype 1</b>, (<b>b</b>) <b>subtype 2</b>, (<b>c</b>) <b>subtype 3</b>, (<b>d</b>) <b>subtype 4</b>.</p> "> Figure 5 Cont.
<p>The simplification <b>subtypes 1</b>–<b>4</b> and their operations. (<b>a</b>) <b>Subtype 1</b>, (<b>b</b>) <b>subtype 2</b>, (<b>c</b>) <b>subtype 3</b>, (<b>d</b>) <b>subtype 4</b>.</p> "> Figure 6
<p>The simplification <b>subtypes 5</b>–<b>8</b> and their operations. (<b>a</b>) <b>Subtype 5</b>, (<b>b</b>) <b>subtype 6</b>, (<b>c</b>) <b>subtype 7</b>, (<b>d</b>) <b>subtype 8</b>.</p> "> Figure 6 Cont.
<p>The simplification <b>subtypes 5</b>–<b>8</b> and their operations. (<b>a</b>) <b>Subtype 5</b>, (<b>b</b>) <b>subtype 6</b>, (<b>c</b>) <b>subtype 7</b>, (<b>d</b>) <b>subtype 8</b>.</p> "> Figure 7
<p>The <b>Exaggeration types</b> and their operations: (<b>a</b>) <b>Exaggeration 1</b>, and (<b>b</b>) <b>Exaggeration 2</b>.</p> "> Figure 8
<p>The simplification <b>subtype 9</b> and its operations: (<b>a</b>) <b>Subtype 9</b>, and (<b>b</b>) is the case that <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mo>−</mo> <mn>2</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> are co-linear.</p> "> Figure 9
<p>The simplification <b>subtype 10</b> and its operations: (<b>a</b>–<b>c</b>) are different cases of <b>subtype 10</b>.</p> "> Figure 10
<p>The simplification <b>subtype 12</b> and its operations: (<b>a</b>,<b>c</b>,<b>e</b>) are different local structures of <b>subtype 12</b>, and (<b>b</b>–<b>f</b>) are the simplified results correspondingly.</p> "> Figure 11
<p>Example of the simplification process: (<b>a</b>) is the original building, (<b>f</b>) is the simplified building, and (<b>b</b>–<b>e</b>) are the process of simplification.</p> "> Figure 12
<p>Definition of the turning function: (<b>a</b>) shows the tangent angle <math display="inline"><semantics> <mi>ψ</mi> </semantics></math>, and (<b>b</b>) presents the turning function.</p> "> Figure 13
<p>Simplification of buildings at scale 1:25,000: (<b>a</b>) simplified result in a clear view, and (<b>b</b>,<b>c</b>) are the enlarged views.</p> "> Figure 14
<p>Multi-scale simplification of buildings.</p> "> Figure 15
<p>Tests of building simplification. (<b>a</b>) is the original buildings and simplified result; (<b>b</b>) is the test of directional dependence; (<b>c</b>) is the test of changing vertices sequence as counterclockwise; (<b>d</b>,<b>e</b>) is the test of extrusion and stretching; (<b>f</b>) is the test of adjusting the start vertex.</p> "> Figure 16
<p>Results of the comparison test.</p> "> Figure 17
<p>Comparison of simplification methods at different thresholds: (<b>a</b>) <span class="html-italic">NumC</span>, (<b>b</b>) <span class="html-italic">AreaC</span>, (<b>c</b>) <span class="html-italic">OrtC</span>, (<b>d</b>) <span class="html-italic">CtrPC</span>, (<b>e</b>) <span class="html-italic">SGC</span>, (<b>f</b>) <span class="html-italic">SDC</span>.</p> ">
Abstract
:1. Introduction
2. Related Works
- A building must be simplified if it contains edges shorter than a specified length.
- The morphological characteristics must be as similar as possible.
- The visual center of the building remains unchanged.
- The orthogonal shape should be preserved or enhanced.
- The area of the building should be approximately the same.
- If a building has been simplified to a rectangle or quadrilateral, then it will not be simplified further.
3. Methodology
3.1. Basic Concepts
3.2. Definition of Top Priority Vertex and Structure
3.3. Classification of TPS
- Simplification type 1: TPV is OV, and there is OV in the adjacent two vertices:
- Simplification type 2: TPV is OV, and there is no OV in the adjacent two vertices:
- Simplification type 3: TPV is NV, and the orthogonality of the adjacent two vertices is different:
- Simplification type 4: TPV is NV, and the orthogonality of the adjacent two vertices is identical:
3.4. Framework
3.5. Simplification Method
3.5.1. Simplification Type 1: TPV Is OV, and there Is OV in Two Adjacent Vertices
3.5.2. Simplification Type 2: TPV Is OV, and There Is No OV in Two Adjacent Vertices
3.5.3. Simplification Type 3: TPV Is NV, and the Orthogonality of the Two Adjacent Vertices Is Different
3.5.4. Simplification Type 4: TPV Is NV, and the Orthogonality of the Two Adjacent Vertices Is Identical
3.6. Example of the Simplification Process
4. Experiment and Analysis
4.1. Determination of the Simplification Evaluation Indicators
4.2. Experiments
4.3. Multi-Scale Simplification
4.4. Simplification Test of Typical Buildings
4.5. Method Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
FV | Flat-angled vertex |
OV | Orthogonal vertex |
NV | Non-orthogonal vertex |
CVV | Convex vertex |
CCV | Concave vertex |
TPV | Top-priority-vertex |
TPS | Top-priority-structure |
FAV | Front-Adjacent-Vertex |
RAV | Rear-Adjacent-Vertex |
NumC | The change in the number of vertices |
AreaC | The change in the area |
OrtC | The change in ratio of orthogonal vertices |
CtrPC | The change in position of center point |
SGC | The change in shape in global |
SDC | The change in shape in details |
References
- Guo, R.; Ai, T. Simplification and aggregation of building polygon in automatic map generalization. J. Wuhan Tech. Univ. Surv. Mapp. 2000, 25, 25–30. [Google Scholar]
- Sester, M. Generalization based on least squares adjustment. Int. Arch. Photogramm. Remote Sens. 2000, 33, 931–938. [Google Scholar]
- Haunert, J.; Wolff, A. Optimal simplification of building ground plans. In Proceedings of the XXIst ISPRS Congress Beijing, Beijing, China, 3–11 July 2008; pp. 372–378. [Google Scholar]
- Rainsford, D.; Mackaness, W. Template matching in support of generalisation of rural buildings. In Proceedings of the 10th International Symposium on Spatial Data Handling, Berlin, Germany, 31 August–2 September 2002; pp. 137–151. [Google Scholar]
- Xu, Y.; Wu, L.; Xie, Z.; Chen, Z. Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters. Remote Sens. 2018, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.; Sun, X.; Wu, H.; Luo, W.; Wang, D.; Zhong, D.; Wang, Z.; Zhao, L.; Zhu, J. Identifying Urban Building Function by Integrating Remote Sensing Imagery and POI Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8864–8875. [Google Scholar] [CrossRef]
- Song, Z.; Wang, H.; Qin, S.; Li, X.; Yang, Y.; Wang, Y.; Meng, P. Building-Level Urban Functional Area Identification Based on Multi-Attribute Aggregated Data from Cell Phones—A Method Combining Multidimensional Time Series with a SOM Neural Network. ISPRS Int. J. Geo-Inf. 2022, 11, 72. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, Y.; Cheng, L.; Ding, S. A Progressive and Combined Building Simplification Approach with Local Structure Classification and Backtracking Strategy. ISPRS Int. J. Geo-Inf. 2021, 10, 302. [Google Scholar] [CrossRef]
- Estkowski, R.; Mitchell, J. Simplifying a polygonal subdivision while keeping it simple. In Proceedings of the 17th Annual Symposium on Computational Geometry, Medford, MA, USA, 3–5 June 2001; pp. 40–49. [Google Scholar]
- Steiniger, S.; Taillandier, P.; Weibel, R. Utilising urban context recognition and machine learning to improve the generalisation of buildings. Int. J. Geogr. Inf. Sci. 2010, 24, 253–282. [Google Scholar] [CrossRef]
- Guo, Q. The method of graphic simplification of area feature boundary as right angle. J. Wuhan Tech. Univ. Surv. Mapp. 1999, 24, 255–258. [Google Scholar]
- Sester, M. Optimization approaches for generalization and data abstraction. Int. J. Geogr. Inf. Sci. 2005, 19, 871–897. [Google Scholar] [CrossRef]
- Gao, X.; Yan, H.; Lu, X.; Wang, Z. Recognition and progressive simplification of short-edge structure of buildings using calculation regions. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1782–1790. [Google Scholar]
- Shen, Y.; Ai, T.; Li, W.; Yang, M.; Feng, Y. A polygon aggregation method with global feature preservation using superpixel segmentation. Comput. Environ. Urban Syst. 2019, 75, 117–131. [Google Scholar] [CrossRef]
- Xu, W.; Long, Y.; Zhou, T.; Chen, L. Simplification of building polygon based on adjacent four-point method. Acta Geod. Cartogr. Sin. 2013, 42, 929–936. [Google Scholar]
- Wright, J.K. Map makers are human: Comments on the subjective in maps. Geogr. Rev. 1942, 32, 527–544. [Google Scholar] [CrossRef]
- Raisz, E. Principles of Cartography; Mcgraw-Hill: New York, NY, USA; Michigan University: Ann Arbor, MI, USA, 1962; 315p. [Google Scholar]
- Robinson, A.; Sale, R.; Morrison, J. Podstawy Kartografii; PWN: Warsaw, Poland, 1978; 624p. [Google Scholar]
- Ratajski, L. Metodyka Kartografii Społeczno—Gospodarczej; Polskie Przedsiębiorstwo Wydawnictw Kartograficznyc: Warsaw, Poland, 1989; 338p. [Google Scholar]
- McMaster, R.; Shea, K.S. Generalization in Digital Cartography; Association of American Geographers: Washington, DC, USA, 1992. [Google Scholar]
- Lee, D.; Hardy, P. Automating generalization-tools and models. In Proceedings of the 22nd ICA Conference, A Coruňa, Spain, 9–16 July 2005. [Google Scholar]
- Wang, H.; Wu, F.; Zhang, L.; Deng, H. The application of mathematical morphology and pattern recognition to building polygon simplification. Acta Geod. Et Cartogr. Sin. 2005, 34, 269–276. [Google Scholar]
- Kada, M.; Luo, F. Generalisation of building ground plans using half-spaces. International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2006, 36, 1–4. [Google Scholar]
- Buchin, K.; Meulemans, W.; Speckmann, B. A new method for subdivision simplification with applications to urban-area generalization. In Proceedings of the 19th ACM Sigspatial International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 1–4 November 2011. [Google Scholar]
- Bayer, T. Automated building simplification using a recursive approach. In Cartography in Central and Eastern Europe; Springer: Berlin/Heidelberg, Germany, 2009; pp. 121–146. [Google Scholar]
- Lokhat, I.; Touya, G. Enhancing building footprints with squaring operations. J. Spat. Inf. Sci. 2016, 13, 33–60. [Google Scholar]
- Meijers, M. Building simplification using offset curves obtained from the straight skeleton. In Proceedings of the 19th ICA Workshop on Generalisation and Multiple Representation, Helsinki, Finland, 14 June 2016. [Google Scholar]
- Barrault, M.; Regnauld, N.; Duchene, C.; Haire, K.; Baeijs, C.; Demazeau, Y.; Hardy, P.; Mackaness, W.; Ruas, A.; Weibel, R. Integrating multi-agent, object-oriented and algorithmic techniques for improved automated map generalization. In Proceedings of the 20th International Cartographic Conference, Beijing, China, 6–10 August 2001; pp. 2110–2116. [Google Scholar]
- Martin, G. Automated Polygon Generalization in a Multi Agent System. Ph.D. Thesis, University of Zurich, Zürich, Switzerland, 2003. [Google Scholar]
- Taillandier, P.; Duchene, C.; Drogoul, A. Automatic revision of rules used to guide the generalisation process in systems based on a trial and error strategy. Int. J. Geogr. Inf. Sci. 2011, 25, 1971–1999. [Google Scholar] [CrossRef]
- Jin, Y.; Wei, L.; Wang, B.; Yan, X.; Liu, S.; Tong, X. Constrained Building Boundary Simplification Based on Partial Total Least Squares Method. Sensors Mater. 2020, 32, 4559. [Google Scholar] [CrossRef]
- Lian, C.; Li, C.; Yin, Y.; Guo, P. An improved algorithm of building polygon simplification based on adjacent four-point method. Sci. Surv. Mapp. 2016, 41, 26–29. [Google Scholar]
- Li, L.; Li, C.; Lu, X.; Yin, Y.; Wu, P. Simplification of building polygon based on adjacent five-point method. Bull. Surv. Mapp. 2019, 3, 41–45. [Google Scholar]
- Yin, S.; Yan, X.; Yan, X. Simplification method of building polygon based on feature edges reconstruction. Acta Geod. Cartogr. Sin. 2020, 49, 703–710. [Google Scholar]
- Bildirici, I. Building and road generalization with the Change generalization software using Turkish topographic base map data. Cartogr. Geogr. Inf. Sci. 2004, 31, 43–54. [Google Scholar] [CrossRef]
- Lecordix, F.; Trévisan, J.; le Gallic, J.M.; Gondol, L. Clarity experimentations for cartographic generalisation in production. In Proceedings of the 9th ICA Workshop on Generalization and Multiple Representation, Portland, OR, USA, 25 June 2006. [Google Scholar]
- Stoter, J.; Baella, B.; Blok, C.; Burghardt, D.; Duchêne, C.; Pla, M.; Regnauld, N.; Touya, G. State-of-the-Art of Automated Generalisation in Commercial Software; EuroSDR: Dublin, Ireland, 2010. [Google Scholar]
- Liu, P.; Ai, T.; Hu, J.; Cheng, X. Building-polygon simplification based on shape matching of protopype template. Geomat. Inf. Sci. Wuhan Univ. 2010, 35, 1369–1372. [Google Scholar]
- Ai, T.; Cheng, X.; Liu, P.; Yang, M. A shape analysis and template matching of building features by the Fourier transform method. Comput. Environ. Urban Syst. 2013, 41, 219–233. [Google Scholar] [CrossRef]
- Yan, X.; Ai, T.; Yang, M. A simplification of residential feature by the shape congnition and template matching method. Acta Geod. Cartogr. Sin. 2016, 45, 874–882. [Google Scholar]
- Yan, X.; Ai, T.; Zhang, X. Template Matching and Simplification Method for Building Features Based on Shape Cognition. ISPRS Int. J. Geo-Inf. 2017, 6, 250. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Yuan, T.; Yan, X.; Ai, T.; Jiang, C. A hybrid approach to building simplification with an evaluator from a backpropagation neural network. Int. J. Geogr. Inf. Sci. 2021, 36, 280–309. [Google Scholar] [CrossRef]
- Shen, Y.; Ai, T.; Wang, L.; Zhou, J. A new approach to simplifying polygonal and linear features using superpixel segmentation. Int. J. Geogr. Inf. Sci. 2018, 32, 2023–2054. [Google Scholar] [CrossRef]
- Sester, M.; Feng, Y.; Thiemann, F. Building generalization using deep learning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Thiemann, F.; Sester, M. Learning Cartographic Building Generalization with Deep Convolutional Neural Networks. ISPRS Int. J. Geo-Inf. 2019, 8, 258. [Google Scholar] [CrossRef] [Green Version]
- Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 1973, 10, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Buchin, K.; Meulemans, W.; van Renssen, A.; Speckmann, B. Area-Preserving Simplification and Schematization of Polygonal Subdivisions. ACM Trans. Spat. Algorithms Syst. 2016, 2, 1–36. [Google Scholar] [CrossRef]
- Arkin, E.; Chew, L.; Huttenlocher, D.; Kedem, K.; Mitchell, J.S. An efficiently computable metric for comparing polygonal shapes. Proc. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Lee, D. Automation of map generalization: The cutting-edge technology. In Esri White Paper Series; ESRI: Dublin, Ireland, 1996. [Google Scholar]
Parameters | Description | Denoted |
---|---|---|
A tolerance range | A tolerance that allows approximate right-angled angle or flat angle to strict 90° or 180° [26]. | |
Minimum granularity | The actual distance corresponding to the minimum length that human eyes can distinguish on the map [10,15]. | |
The length of the shortest edge | The length of the shortest edge in the building polygon. |
Type 1 | Type 2 | Type 3 | Type 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
— | |||||||||
— |
Scale | Running Time (s) | ||||||
---|---|---|---|---|---|---|---|
1:25,000 | −28.42% | 0.41% | 2.91% | 0.3878 | 99.81% | 0.0622 | 25.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, R.; Li, A.; Yin, J.; Du, J.; Qiu, Y. A Progressive Simplification Method for Buildings Based on Structural Subdivision. ISPRS Int. J. Geo-Inf. 2022, 11, 393. https://doi.org/10.3390/ijgi11070393
Zhai R, Li A, Yin J, Du J, Qiu Y. A Progressive Simplification Method for Buildings Based on Structural Subdivision. ISPRS International Journal of Geo-Information. 2022; 11(7):393. https://doi.org/10.3390/ijgi11070393
Chicago/Turabian StyleZhai, Renjian, Anping Li, Jichong Yin, Jiawei Du, and Yue Qiu. 2022. "A Progressive Simplification Method for Buildings Based on Structural Subdivision" ISPRS International Journal of Geo-Information 11, no. 7: 393. https://doi.org/10.3390/ijgi11070393
APA StyleZhai, R., Li, A., Yin, J., Du, J., & Qiu, Y. (2022). A Progressive Simplification Method for Buildings Based on Structural Subdivision. ISPRS International Journal of Geo-Information, 11(7), 393. https://doi.org/10.3390/ijgi11070393