Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review
<p>Study Selection Workflow based on PRISMA.</p> "> Figure 2
<p>Selected Studies Publishing Journals.</p> "> Figure 3
<p>Region of Selected Studies.</p> "> Figure 4
<p>Research Domain Classification.</p> "> Figure 5
<p>Types of Modeling in Selected Studies.</p> "> Figure 6
<p>Ratio of ML Models in Selected Studies.</p> "> Figure 7
<p>Ratio of DL Models in Selected Studies.</p> "> Figure 8
<p>Ratio of Mathematical and Regression Models in Selected Studies.</p> "> Figure 9
<p>Ratio of Validation Strategies in Selected Studies.</p> "> Figure 10
<p>List of Evaluation Metrics used in the Selected Studies.</p> ">
Abstract
:1. Introduction
- The main research categories can be identified in this area of study;
- Review of machine learning and deep learning techniques for understanding previous data and predicting future cases;
- Review of different mathematical models for time series analysis and estimating epidemiological factors;
- Identification of validation strategies and evaluation metrics have been used for model performance.
2. Methodology and Search Strategy
2.1. Protocol and Registration
2.2. Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Identified Research Questions
- What are the main research categories that can be identified in this area of study?
- Which machine learning and deep learning techniques were proposed for predicting the future COVID-19 cases?
- Which mathematical models were used for time series analysis and for calculating different epidemiological factors?
- What validation strategies and evaluation metrics were used for measuring the model performance?
2.5. Quality Assessment
3. Results and Discussion
3.1. Characteristics of Selected Articles
3.1.1. Journal-Wise Categorization
3.1.2. Country-Wise Statistics
3.2. Research Domain
Research Domain Classification | Authors |
---|---|
Automatic Detection | [15,28,29,32,33,34,35,36,37,38,39,40,41,42,43,44] |
Estimation of Disease-Related Factors | [25,26,30,31,45,46,47,48,49] |
Impact of Quarantine and Traveling | [27,50,51,52,53,54] |
Reporting on COVID-19 Numbers | [55,56,57,58,59,60,61,62,63,64,65,66,67,68,69] |
Virus Reproduction and Doubling Time | [64,65,66,70,71,72,73,74,75,76,77,78] |
3.3. Types of Modeling Applied for Modeling COVID-19 Cases
3.3.1. Machine Learning Models
3.3.2. Deep Learning Models
3.3.3. Others (Regression and Mathematical Models)
3.3.4. Model Validation Strategy
3.3.5. Quality Evaluation Metrics Used in Selected Studies
3.4. Epidemiologic Characteristics and Transmission Factors
3.4.1. Estimated Period and Doubling Time
3.4.2. Basic Reproduction Number (R0)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 11 March 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-COVID-19---11-march-2020 (accessed on 15 August 2020).
- The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, 145. [Google Scholar]
- Wang, D.; Yin, Y.; Hu, C.; Liu, X.; Zhang, X.; Zhou, S.; Jian, M.; Xu, H.; Prowle, J.; Hu, B. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit. Care 2020, 24, 188. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yang, X.; Yang, L.; Zou, X.; Wang, Y.; Wu, Y.; Zhou, T.; Yuan, Y.; Qi, H.; Fu, S. Clinical course and predictors of 60-day mortality in 239 critically ill patients with COVID-19: A multicenter retrospective study from Wuhan, China. Crit. Care 2020, 24, 394. [Google Scholar] [CrossRef]
- Alshaikh, K.; Maasher, S.; Bayazed, A.; Saleem, F.; Badri, S.; Fakieh, B. Impact of COVID-19 on the Educational Process in Saudi Arabia: A Technology–Organization–Environment Framework. Sustainability 2021, 13, 7103. [Google Scholar] [CrossRef]
- Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology 2020, 296, E65–E71. [Google Scholar] [CrossRef]
- Debnath, S.; Barnaby, D.P.; Coppa, K.; Makhnevich, A.; Kim, E.J.; Chatterjee, S.; Tóth, V.; Levy, T.J.; Paradis, M.D.; Cohen, S.L. Machine learning to assist clinical decision-making during the COVID-19 pandemic. Bioelectron. Med. 2020, 6, 14. [Google Scholar] [CrossRef]
- Zeroual, A.; Harrou, F.; Dairi, A.; Sun, Y. Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Chaos Solitons Fractals 2020, 140, 110121. [Google Scholar] [CrossRef]
- Wang, C.J.; Ng, C.Y.; Brook, R.H. Response to COVID-19 in Taiwan: Big data analytics, new technology, and proactive testing. JAMA 2020, 323, 1341–1342. [Google Scholar] [CrossRef]
- Alyasseri, Z.A.A.; Al-Betar, M.A.; Doush, I.A.; Awadallah, M.A.; Abasi, A.K.; Makhadmeh, S.N.; Alomari, O.A.; Abdulkareem, K.H.; Adam, A.; Damasevicius, R. Review on COVID-19 diagnosis models based on machine learning and deep learning approaches. Expert Syst. 2022, 39, e12759. [Google Scholar] [CrossRef]
- Ardabili, S.F.; Mosavi, A.; Ghamisi, P.; Ferdinand, F.; Varkonyi-Koczy, A.R.; Reuter, U.; Rabczuk, T.; Atkinson, P.M. COVID-19 outbreak prediction with machine learning. Algorithms 2020, 13, 249. [Google Scholar] [CrossRef]
- Li, Q.; Feng, W.; Quan, Y.-H. Trend and forecasting of the COVID-19 outbreak in China. J. Infect. 2020, 80, 469–496. [Google Scholar] [PubMed] [Green Version]
- Huang, L.; Han, R.; Ai, T.; Yu, P.; Kang, H.; Tao, Q.; Xia, L. Serial quantitative chest ct assessment of COVID-19: Deep-learning approach. Radiol. Cardiothorac. Imaging 2020, 2, e200075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismael, A.M.; Şengür, A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst. Appl. 2020, 164, 114054. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, L.J.; Algehyne, E.A.; Usman, S.S.; Mohammed, I.A.; Abdulkadir, A.; Jibrin, M.B.; Malgwi, Y.M. Deep Learning Models for Predicting COVID-19 Using Chest X-Ray Images. In Trends and Advancements of Image Processing and Its Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 127–144. [Google Scholar]
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Seto, E.; Leonard, K.J.; Cafazzo, J.A.; Barnsley, J.; Masino, C.; Ross, H.J. Developing healthcare rule-based expert systems: Case study of a heart failure telemonitoring system. Int. J. Med. Inform. 2012, 81, 556–565. [Google Scholar]
- Cresswell, K.; Cunningham-Burley, S.; Sheikh, A. Health care robotics: Qualitative exploration of key challenges and future directions. J. Med. Internet Res. 2018, 20, e10410. [Google Scholar] [CrossRef]
- Bengtsson, E. Computerized cell image processing in healthcare. In Proceedings of the 7th International Workshop on Enterprise networking and Computing in Healthcare Industry, 2005. HEALTHCOM 2005, Busan, Korea, 23–25 June 2005; pp. 11–17. [Google Scholar]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Gerup, J.; Soerensen, C.B.; Dieckmann, P. Augmented reality and mixed reality for healthcare education beyond surgery: An integrative review. Int. J. Med. Educ. 2020, 11, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to properly use the PRISMA Statement. Syst. Rev. 2021, 10, 117. [Google Scholar] [CrossRef]
- Hassan, A.; Prasad, D.; Rani, S.; Alhassan, M. Gauging the Impact of Artificial Intelligence and Mathematical Modeling in Response to the COVID-19 Pandemic: A Systematic Review. BioMed Res. Int. 2022, 2022, 7731618. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Gharehgozli, A. Developing a Machine Learning Framework to Determine the Spread of COVID-19. SSRN. 2020. Available online: https://ssrn.com/abstract=3635211 (accessed on 20 March 2022).
- Wu, C.; Zhou, M.; Liu, P.; Yang, M. Analyzing COVID-19 using multisource data: An integrated approach of visualization, spatial regression, and machine learning. GeoHealth 2021, 5, e2021GH000439. [Google Scholar] [CrossRef] [PubMed]
- Naemi, M.; Naemi, A.; Ekbatani, R.Z.; Ebrahimi, A.; Schmidt, T.; Wiil, U.K. Modeling and Evaluating the Impact of Social Restrictions on the Spread of COVID-19 Using Machine Learning. In Smart and Sustainable Technology for Resilient Cities and Communities; Springer: Berlin/Heidelberg, Germany, 2022; pp. 107–118. [Google Scholar]
- Apostolopoulos, I.D.; Mpesiana, T.A. Covid-19: Automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 2020, 43, 635–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [Google Scholar] [CrossRef]
- Nie, X.-D.; Wang, Q.; Wang, M.-N.; Zhao, S.; Liu, L.; Zhu, Y.-L.; Chen, H. Anxiety and depression and its correlates in patients with coronavirus disease 2019 in Wuhan. Int. J. Psychiatry Clin. Pract. 2021, 25, 109–114. [Google Scholar] [CrossRef]
- Wang, J.; Tang, K.; Feng, K.; Lv, W. High temperature and high humidity reduce the transmission of COVID-19. BMJ Open 2020. Available online: https://www.scienceopen.com/document_file/ff8b579c-26ff-4c3c-9aa5-a141bc8e35f6/PubMedCentral/ff8b579c-26ff-4c3c-9aa5-a141bc8e35f6.pdf (accessed on 15 January 2022). [CrossRef] [Green Version]
- Ardakani, A.A.; Kanafi, A.R.; Acharya, U.R.; Khadem, N.; Mohammadi, A. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Comput. Biol. Med. 2020, 121, 103795. [Google Scholar] [CrossRef]
- Sun, L.; Liu, G.; Song, F.; Shi, N.; Liu, F.; Li, S.; Li, P.; Zhang, W.; Jiang, X.; Zhang, Y. Combination of four clinical indicators predicts the severe/critical symptom of patients infected COVID-19. J. Clin. Virol. 2020, 128, 104431. [Google Scholar] [CrossRef]
- Song, Y.; Zheng, S.; Li, L.; Zhang, X.; Zhang, X.; Huang, Z.; Chen, J.; Wang, R.; Zhao, H.; Chong, Y.; et al. Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) with CT Images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 2775–2780. [Google Scholar] [CrossRef]
- Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, X.; Ma, C.; Du, P.; Li, X.; Lv, S.; Yu, L.; Ni, Q.; Chen, Y.; Su, J. A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering 2020, 6, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Barstugan, M.; Ozkaya, U.; Ozturk, S. Coronavirus (COVID-19) classification using ct images by machine learning methods. arXiv 2020, arXiv:2003.09424. [Google Scholar]
- Al Rahhal, M.M.; Bazi, Y.; Jomaa, R.M.; AlShibli, A.; Alajlan, N.; Mekhalfi, M.L.; Melgani, F. COVID-19 Detection in CT/X-ray Imagery Using Vision Transformers. J. Pers. Med. 2022, 12, 310. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.H.; Sohail, A.; Khan, A.; Lee, Y.-S. COVID-19 detection in chest X-ray images using a new channel boosted CNN. Diagnostics 2022, 12, 267. [Google Scholar] [CrossRef]
- Sarki, R.; Ahmed, K.; Wang, H.; Zhang, Y.; Wang, K. Automated Detection of COVID-19 through Convolutional Neural Network using Chest x-ray images. PLoS ONE 2022, 17, e0262052. [Google Scholar] [CrossRef]
- Mousavi, Z.; Shahini, N.; Sheykhivand, S.; Mojtahedi, S.; Arshadi, A. COVID-19 detection using chest X-ray images based on a developed deep neural network. SLAS Technol. 2022, 27, 63–75. [Google Scholar] [CrossRef]
- Sethy, P.K.; Behera, S.K.; Ratha, P.K.; Biswas, P. Detection of Coronavirus Disease (COVID-19) Based on Deep Features and Support Vector Machine. 2020. Available online: https://pdfs.semanticscholar.org/9da0/35f1d7372cfe52167ff301bc12d5f415caf1.pdf (accessed on 10 January 2022).
- Nour, M.; Cömert, Z.; Polat, K. A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization. Appl. Soft Comput. 2020, 97, 106580. [Google Scholar] [CrossRef]
- Aggarwal, S.; Gupta, S.; Alhudhaif, A.; Koundal, D.; Gupta, R.; Polat, K. Automated COVID-19 detection in chest X-ray images using fine-tuned deep learning architectures. Expert Syst. 2022, 39, e12749. [Google Scholar] [CrossRef]
- Prata, D.N.; Rodrigues, W.; Bermejo, P.H. Temperature significantly changes COVID-19 transmission in (sub) tropical cities of Brazil. Sci. Total Environ. 2020, 729, 138862. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Zhao, J.; Molina, M.J. Understanding transmission and intervention for the COVID-19 pandemic in the United States. Sci. Total Environ. 2020, 748, 141560. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, N.; Zhang, R.; Duan, M.; Xie, T.; Pan, J.; Peng, E.; Huang, J.; Zhang, Y.; Xu, X. Severity detection for the coronavirus disease 2019 (COVID-19) patients using a machine learning model based on the blood and urine tests. Front. Cell Dev. Biol. 2020, 8, 683. [Google Scholar] [CrossRef] [PubMed]
- Loey, M.; Manogaran, G.; Taha, M.H.N.; Khalifa, N.E.M. A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement 2021, 167, 108288. [Google Scholar] [CrossRef] [PubMed]
- Kocadagli, O.; Baygul, A.; Gokmen, N.; Incir, S.; Aktan, C. Clinical prognosis evaluation of COVID-19 patients: An interpretable hybrid machine learning approach. Curr. Res. Transl. Med. 2022, 70, 103319. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, T.; Stoecker, T.; Stoecker, H.; Jiang, Y.; Zhou, K. Machine learning spatio-temporal epidemiological model to evaluate Germany-county-level COVID-19 risk. Mach. Learn. Sci. Technol. 2021, 2, 35031. [Google Scholar] [CrossRef]
- Dandekar, R.; Barbastathis, G. Quantifying the effect of quarantine control in COVID-19 infectious spread using machine learning. medRxiv 2020, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ogundokun, R.O.; Lukman, A.F.; Kibria, G.B.M.; Awotunde, J.B.; Aladeitan, B.B. Predictive modelling of COVID-19 confirmed cases in Nigeria. Infect. Dis. Model. 2020, 5, 543–548. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, W.; Lai, J.; Hou, J.; Lin, W. Vaccination and Quarantine Effect on COVID-19 Transmission Dynamics Incorporating Chinese-Spring-Festival Travel Rush: Modeling and Simulations. Bull. Math. Biol. 2022, 84, 30. [Google Scholar] [CrossRef]
- Andariesta, D.T.; Wasesa, M. Machine learning models for predicting international tourist arrivals in Indonesia during the COVID-19 pandemic: A multisource Internet data approach. J. Tour. Futures 2022, 1–17. [Google Scholar] [CrossRef]
- Yadav, M.; Perumal, M.; Srinivas, M. Analysis on novel coronavirus (COVID-19) using machine learning methods. Chaos Solitons Fractals 2020, 139, 110050. [Google Scholar] [CrossRef]
- Singh, V.; Poonia, R.C.; Kumar, S.; Dass, P.; Agarwal, P.; Bhatnagar, V.; Raja, L. Prediction of COVID-19 corona virus pandemic based on time series data using Support Vector Machine. J. Discrete Math. Sci. Cryptogr. 2020, 23, 1583–1597. [Google Scholar] [CrossRef]
- Lounis, M.; Khan, F.M. Predicting COVID-19 cases, deaths and recoveries using machine learning methods. Eng. Appl. Sci. Lett. 2021, 4, 43–49. [Google Scholar] [CrossRef]
- Vega, R.; Flores, L.; Greiner, R. SIMLR: Machine Learning inside the SIR model for COVID-19 Forecasting. Forecasting 2022, 4, 72–94. [Google Scholar] [CrossRef]
- Pavlyutin, M.; Samoyavcheva, M.; Kochkarov, R.; Pleshakova, E.; Korchagin, S.; Gataullin, T.; Nikitin, P.; Hidirova, M. COVID-19 Spread Forecasting, Mathematical Methods vs. Machine Learning, Moscow Case. Mathematics 2022, 10, 195. [Google Scholar] [CrossRef]
- Shwetha, S.; Sunagar, P.; Rajarajeswari, S.; Kanavalli, A. Ensemble Model to Forecast the End of the COVID-19 Pandemic. In Proceedings of the Third International Conference on Communication, Computing and Electronics Systems, Coimbatore, India, 28–29 October 2021; Springer: Singapore, 2022; pp. 815–829. [Google Scholar]
- Babu, M.A.; Ahmmed, M.M.; Ferdousi, A.; Mostafizur Rahman, M.; Saiduzzaman, M.; Bhatnagar, V.; Raja, L.; Poonia, R.C. The mathematical and machine learning models to forecast the COVID-19 outbreaks in Bangladesh. J. Interdiscip. Math. 2022, 1–20. [Google Scholar] [CrossRef]
- Krivorotko, O.; Sosnovskaia, M.; Vashchenko, I.; Kerr, C.; Lesnic, D. Agent-based modeling of COVID-19 outbreaks for New York state and UK: Parameter identification algorithm. Infect. Dis. Model. 2022, 7, 30–44. [Google Scholar] [CrossRef]
- Shiri, I.; Salimi, Y.; Pakbin, M.; Hajianfar, G.; Avval, A.H.; Sanaat, A.; Mostafaei, S.; Akhavanallaf, A.; Saberi, A.; Mansouri, Z. COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients. Comput. Biol. Med. 2022, 145, 105467. [Google Scholar] [CrossRef]
- Masum, M.; Masud, M.A.; Adnan, M.I.; Shahriar, H.; Kim, S. Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management. Socio-Econ. Plan. Sci. 2022, 80, 101249. [Google Scholar] [CrossRef]
- Rguibi, M.A.; Moussa, N.; Madani, A.; Aaroud, A.; Zine-Dine, K. Forecasting COVID-19 Transmission with ARIMA and LSTM Techniques in Morocco. SN Comput. Sci. 2022, 3, 133. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, R.; Algarni, F.; Kumar, I.; Choudhary, A.; Srivastava, A. Zhao 2020. Ain Shams Eng. J. 2022, 13, 101574. [Google Scholar] [CrossRef]
- Guleria, P.; Ahmed, S.; Alhumam, A.; Srinivasu, P.N. Empirical Study on Classifiers for Earlier Prediction of COVID-19 Infection Cure and Death Rate in the Indian States. Healthcare 2022, 10, 85. [Google Scholar] [CrossRef]
- Ayris, D.; Imtiaz, M.; Horbury, K.; Williams, B.; Blackney, M.; See, C.S.H.; Shah, S.A.A. Novel Deep Learning Approach to Model and Predict the spread of COVID-19. Intell. Syst. Appl. 2022, 14, 200068. [Google Scholar] [CrossRef]
- Chyon, F.A.; Suman, M.N.H.; Fahim, M.R.I.; Ahmmed, M.S. Time series analysis and predicting COVID-19 affected patients by ARIMA model using machine learning. J. Virol. Methods 2022, 301, 114433. [Google Scholar] [CrossRef] [PubMed]
- Shil, P.; Atre, N.M.; Patil, A.A.; Tandale, B.V.; Abraham, P. District-wise estimation of Basic reproduction number (R0) for COVID-19 in India in the initial phase. Spat. Inf. Res. 2022, 30, 37–45. [Google Scholar] [CrossRef]
- Zhao, S.; Musa, S.S.; Lin, Q.; Ran, J.; Yang, G.; Wang, W.; Lou, Y.; Yang, L.; Gao, D.; He, D. Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-driven modelling analysis of the early outbreak. J. Clin. Med. 2020, 9, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallela, A.; Neumann, J.; Miller, E.F.; Chen, Y.; Posner, R.G.; Lin, Y.T.; Hlavacek, W.S. Bayesian Inference of State-Level COVID-19 Basic Reproduction Numbers across the United States. Viruses 2022, 14, 157. [Google Scholar] [CrossRef]
- Hyafil, A.; Moriña, D. Analysis of the impact of lockdown on the reproduction number of the SARS-Cov-2 in Spain. Gac. Sanit. 2022, 35, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Pastore y Piontti, A.; Mu, K.; Rossi, L.; Sun, K. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Chen, Y.; Small, D.S. Analysis of the epidemic growth of the early 2019-nCoV outbreak using internationally confirmed cases. MedRxiv 2020, 1–10. [Google Scholar] [CrossRef]
- Grabowski, F.; Kochańczyk, M.; Lipniacki, T. The spread of SARS-CoV-2 variant Omicron with a doubling time of 2.0–3.3 days can be explained by immune evasion. Viruses 2022, 14, 294. [Google Scholar] [CrossRef]
- Herng, L.C.; Singh, S.; Sundram, B.M.; Zamri, A.S.S.M.; Vei, T.C.; Aris, T.; Ibrahim, H.; Abdullah, N.H.; Dass, S.C.; Gill, B.S. The effects of super spreading events and movement control measures on the COVID-19 pandemic in Malaysia. Sci. Rep. 2022, 12, 2197. [Google Scholar] [CrossRef]
- Simoy, M.I.; Aparicio, J.P. Socially structured model for COVID-19 pandemic: Design and evaluation of control measures. Comput. Appl. Math. 2021, 41, 1–23. [Google Scholar] [CrossRef]
- Agbelusi, O.; Olayemi, O.C. Prediction of mortality rate of COVID-19 patients using machine learning techniques in nigeria. Int. J. Comput. Sci. Softw. Eng. 2020, 9, 30–34. [Google Scholar]
- An, C.; Lim, H.; Kim, D.-W.; Chang, J.H.; Choi, Y.J.; Kim, S.W. Machine learning prediction for mortality of patients diagnosed with COVID-19: A nationwide Korean cohort study. Sci. Rep. 2020, 10, 18716. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Shukla, S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; pp. 78–83. [Google Scholar]
Types of Modeling | Authors |
---|---|
Deep Learning Models | [15,27,28,29,32,33,34,35,36,38,39,41,42,43,44,48,50,59,64,65,68] |
Machine Learning Models | [25,26,27,30,37,47,49,51,52,54,55,56,57,63,67,72] |
Others (Regression and Mathematical Models) | [25,30,31,45,46,53,58,60,61,62,64,66,69,70,71,73,74,75,76,77,78] |
Author | Country | Method | Dataset | Doubling Time | Tool Used | Recommendation by Author |
---|---|---|---|---|---|---|
[70] | India | Exponential Growth Model | February 2020–March 2021 | 1.7 to 46.2 days (based on districts) | Q-GIS software | no uniformity across country to analyze and study epidemics in future |
[74] | China | Global Epidemic and Mobility Model (GLEAM) | By 23 January 2020 | 4.2 days | - | travel restrictions |
[66] | Multi-Countries | Linear Regression and Support Vector Machine | 22 January 2020, to 12 July 2021 | Min = if (5000 cases) double in 5 days Max = if (163,840,000 cases) double in 140 days | - | government and individuals aware about the severity |
[75] | China | Exponential Growth Model | 1–23 January 2020 | 3.6 days | - | prevention measures were effective |
[76] | South Africa | Susceptible–Exposed– Infectious–Recovered (SEIR) model | By 23 November 2021 | 3.3 days | - | immune evasion is more concerning increased transmissibility |
[78] | Argentina | Agent-based Model | Multiple Scenario | 2.0 to 7.14 days | social distancing measures |
Author | Country | Dataset | Basic Reproduction Number | Method | Confidence Interval (CI) | Tool Used |
---|---|---|---|---|---|---|
[71] | China | 1–15 January 2020 | 2.56 | Exponential Growth Model | 95% CI | - |
[70] | India | February 2020–March 2021 | 0 to > 7 (based on district) | Exponential Growth Model | - | Q-GIS software |
[72] | USA | 21 January 2020–21 June 2020 | 2.3 to 7.1 (based on different states) | Bayesian inference | 95% CI | PyBioNetFit |
[73] | Spain | March–April 2020 | 0.48 to 5.89 (different conditions) | SIR (Susceptible-Infected-Recovered) | 95% CI | - |
[64] | USA | 22 January 2020–10 August 2020 | 2.747 to 3.856 (increase as days increase) | Mathematical Epidemic Model (MEM) + DL | - | MATLAB |
[65] | Morocco | 22 January 2020–22 November 2020 | 0.9 and 1.3 (increase as days increase) | Auto-Regressive Integrated Moving Average (ARIMA) and Long short-term memory (LSTM) | 95% CI | Python |
[74] | China | By 23 January 2020 | 2.57 | Global Epidemic and Mobility Model (GLEAM) | 90% CI | - |
[75] | China | 1–23 January 2020 | 4.2 | Exponential Growth Model | 95% CI | - |
[77] | Malaysia | 1 February 2020–8 November 2020 | 3.96 | Susceptible-Exposed-Infectious-Removed (SEIR) Model | 95% CI | Excel |
[31] | China, USA | By 10 February 2020 | 0.023 (China) 0.020 (USA) | Retrospective Regression Analysis | 95% CI | Python |
[46] | USA | 8 March–12 April | 3.96 | Linear Regression | 95% CI | - |
[25] | USA | By 16 April 2020 | 3.81 to 4.07 (based on method) | SIR (Susceptible-Infected-Recovered) | 95% CI | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, F.; AL-Ghamdi, A.S.A.-M.; Alassafi, M.O.; AlGhamdi, S.A. Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 5099. https://doi.org/10.3390/ijerph19095099
Saleem F, AL-Ghamdi ASA-M, Alassafi MO, AlGhamdi SA. Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review. International Journal of Environmental Research and Public Health. 2022; 19(9):5099. https://doi.org/10.3390/ijerph19095099
Chicago/Turabian StyleSaleem, Farrukh, Abdullah Saad AL-Malaise AL-Ghamdi, Madini O. Alassafi, and Saad Abdulla AlGhamdi. 2022. "Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review" International Journal of Environmental Research and Public Health 19, no. 9: 5099. https://doi.org/10.3390/ijerph19095099
APA StyleSaleem, F., AL-Ghamdi, A. S. A. -M., Alassafi, M. O., & AlGhamdi, S. A. (2022). Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review. International Journal of Environmental Research and Public Health, 19(9), 5099. https://doi.org/10.3390/ijerph19095099