Preventing and Monitoring Work-Related Diseases in Firefighters: A Literature Review on Sensor-Based Systems and Future Perspectives in Robotic Devices
Abstract
:1. Introduction
2. Literature Survey and Analysis
2.1. Search Strategy and Inclusion Criteria
2.2. Data Extraction and Quality Assessment
3. Sensor-Based Systems for Physiological Parameter Monitoring
3.1. Heart Rate
3.2. Body Temperature
3.3. Ventilatory Evaluation
3.4. Multi-Sensors Monitoring System
4. Sensor-Based Systems for Physical Parameter Monitoring
4.1. Mobility and Muscle Activity
4.2. Posture
5. Future Perspectives: Robotic and Assistive Devices
5.1. Exoskeletons
- Comfort: Two main aspects affect the comfortability of an exoskeleton, the weight and the body attachments. Extending the exoskeleton to the ground counters the weight but increases the design complexity, thereby reducing the transparency of the system.
- Transparency: The system transparency is dictated by the kinematics of the design and the back-drivability of the actuation.
- Intuitive control: The system should follow the movement of the operator, providing the correct level of assistive forces.
5.2. Assistive Devices
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gledhil, N.; Jamnik, V.K. Characterization of the Physical Demands of Firefighting-PubMed. Can. J. Sport Sci. 1992, 17, 207–213. [Google Scholar]
- Centers for Disease Control and Prefentionm. Fatalities Among Volunteer and Career firefighters-United States, 1994–2004. MMWR Morb. Mortal. Wkly. Rep. 2006, 55, 453–455. [Google Scholar]
- Ray, M.R.; Basu, C.; Roychoudhury, S.; Banik, S.; Lahiri, T. Plasma catecholamine levels and neurobehavioral problems in Indian firefighters. J. Occup. Health 2006, 48, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Perroni, F.; Tessitore, A.; Cibelli, G.; Lupo, C.; D’Artibale, E.; Cortis, C.; Cignitti, L.; De Rosas, M.; Capranica, L. Effects of simulated firefighting on the responses of salivary cortisol, alpha-amylase and psychological variables. Ergonomics 2009, 52, 484–491. [Google Scholar] [CrossRef]
- Elsner, K.L.; Kolkhorst, F.W. Metabolic demands of simulated firefighting tasks. Ergonomics 2008, 51, 1418–1425. [Google Scholar] [CrossRef]
- Holmér, I.; Gavhed, D. Classification of metabolic and respiratory demands in fire fighting activity with extreme workloads. Appl. Ergon. 2007, 38, 45–52. [Google Scholar] [CrossRef]
- Dreger, R.W.; Petersen, S.R. Oxygen cost of the CF-DND fire fit test in males and females. Appl. Physiol. Nutr. Metab. 2007, 32, 454–462. [Google Scholar] [CrossRef]
- Smith, D.L.; Petruzzello, S.J. Selected physiological and psychological responses to live-fire drills in different configurations of firefighting gear. Ergonomics 1998, 41, 1141–1154. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.B.; Banister, E.W.; Morrison, J.B. Effectiveness of rest pauses and cooling in alleviation of heat stress during simulated fire-fighting activity. Ergonomics 1999, 42, 299–313. [Google Scholar] [CrossRef]
- Smith, D.L.; Petruzzello, S.J.; Chludzinski, M.A.; Reed, J.J.; Woods, J.A. Selected hormonal and immunological reponses to strenuous live-fire firefighting drills. Ergonomics 2005, 48, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L.; Manning, T.S.; Petruzzello, S.J. Effect of strenuous live-fire drills on cardiovascular and psychological responses of recruit firefighters. Ergonomics 2001, 44, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Selkirk, G.A.; McLellan, T.M. Physical Work Limits for Toronto Firefighters in Warm Environments. J. Occup. Environ. Hyg. 2004, 1, 199–212. [Google Scholar] [CrossRef]
- Poston, W.S.C.; Haddock, C.K.; Jahnke, S.A.; Jitnarin, N.; Tuley, B.C.; Kales, S.N. The prevalence of overweight, obesity, and substandard fitness in a population-based firefighter cohort. J. Occup. Environ. Med. 2011, 53, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Durand, G.; Tsismenakis, A.J.; Jahnke, S.A.; Baur, D.M.; Christophi, C.A.; Kales, S.N. Firefighters’ physical activity: Relation to fitness and cardiovascular disease risk. Med. Sci. Sports Exerc. 2011, 43, 1752–1759. [Google Scholar] [CrossRef]
- Lowden, A.; Moreno, C.; Holmbäck, U.; Lennernäs, M.; Tucker, P. Eating and shift work—Effects on habits, metabolism, and performance. Scand. J. Work Environ. Health 2010, 36, 150–162. [Google Scholar] [CrossRef]
- Soteriades, E.S.; Smith, D.L.; Tsismenakis, A.J.; Baur, D.M.; Kales, S.N. Cardiovascular disease in US firefighters: A systematic review. Cardiol. Rev. 2011, 19, 202–215. [Google Scholar] [CrossRef]
- Vilke, G.M.; Tornabene, S.V.; Stepanski, B.; Shipp, H.E.; Ray, L.U.; Metz, M.A.; Vroman, D.; Anderson, M.; Murrin, P.A.; Davis, D.P.; et al. Paramedic self-reported medication errors. Prehosp. Emerg. Care 2006, 10, 457–462. [Google Scholar] [CrossRef]
- Puttonen, S.; Härmä, M.; Hublin, C. Shift work and cardiovascular disease—Pathways from circadian stress to morbidity. Scand. J. Work Environ. Health 2010, 36, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, T.E.; Ottmar, R.D. Baseline measurements of smoke exposure among wildland firefighters. J. Occup. Environ. Hyg. 2004, 1, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Reisen, F.; Hansen, D.; Meyer, C.P.M. Exposure to bushfire smoke during prescribed burns and wildfires: Firefighters’ exposure risks and options. Environ. Int. 2011, 37, 314–321. [Google Scholar] [CrossRef]
- Sothmann, M.S.; Landy, F.; Saupe, K. Age as a Bona Fide Occupational Qualification for Firefighting. A Review on the Importance of Measuring Aerobic Power—PubMed. J. Occup. Med. 1992, 34, 26–33. [Google Scholar]
- Sothmann, M.S.; Saupe, K.; Jasenof, D.; Blaney, J. Heart rate response of firefighters to actual emergencies: Implications for cardiorespiratory fitness. J. Occup. Med. 1992, 34, 797–800. [Google Scholar] [CrossRef]
- Violanti, J.M.; Fekedulegn, D.; Hartley, T.A.; Andrew, M.E.; Charles, L.E.; Mnatsakanova, A.; Burchfiel, C.M. Police Trauma and Cardiovascular Disease: Association Between PTSD Symptoms and Metabolic Syndrome—PubMed. Int. J. Emerg. Ment. Health 2006, 8, 227–237. [Google Scholar]
- Jonsson, A.; Segesten, K.; Mattsson, B. Post-traumatic stress among Swedish ambulance personnel. Emerg. Med. J. 2003, 20, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Perroni, F.; Tessitore, A.; Cortis, C.; Lupo, C.; D’Artibale, E.; Cignitti, L.; Capranica, L. Energy Cost and Energy Sources During a Simulated Firefighting Activity. J. Strength Cond. Res. 2010, 24, 3457–3463. [Google Scholar] [CrossRef] [PubMed]
- Young, P.M.; Partington, S.; Wetherell, M.A.; St Clair Gibson, A.; Partington, E. Stressors and coping strategies of UK firefighters during on-duty incidents. Stress Health 2014, 30, 366–376. [Google Scholar] [CrossRef]
- Baur, D.M.; Christophi, C.A.; Cook, E.F.; Kales, S.N. Age-Related Decline in Cardiorespiratory Fitness among Career Firefighters: Modification by Physical Activity and Adiposity. J. Obes. 2012, 2010, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Perroni, F.; Cignitti, L.; Cortis, C.; Capranica, L. Physical fitness profile of professional Italian firefighters: Differences among age groups. Appl. Ergon. 2014, 45, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Orr, R.; Simas, V.; Canetti, E.; Schram, B. A profile of injuries sustained by firefighters: A critical review. Int. J. Environ. Res. Public Health 2019, 16, 3931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bos, J.; Mol, E.; Visser, B.; Frings-Dresen, M.H.W. The physical demands upon (Dutch) fire-fighters in relation to the maximum acceptable energetic workload. Ergonomics 2004, 47, 446–460. [Google Scholar] [CrossRef]
- Knapik, J.J.; Sharp, M.A.; Canham-Chervak, M.; Hauret, K.; Patton, J.F.; Jones, B.H. Risk factors for training-related injuries among men and women in basic combat training. Med. Sci. Sports Exerc. 2001, 33, 946–954. [Google Scholar] [CrossRef]
- Blacker, S.D.; Fallowfield, J.L.; Bilzon, J.L.J.; Willems, M.E.T. Neuromuscular function following prolonged load carriage on level and downhill gradients. Aviat. Space Environ. Med. 2010, 81, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Yeo, J.C. Effects of load carriage and fatigue on gait characteristics. J. Biomech. 2011, 44, 1259–1263. [Google Scholar] [CrossRef]
- Punaxallio, A.; Lusa, S.; Luukkonen, R. Protective equipment affects balance abilities differently in younger and older firefighters. Aviat. Space Environ. Med. 2003, 74, 1151–1156. [Google Scholar]
- Kincl, L.D.; Bhattacharya, A.; Succop, P.A.; Clark, C.S. Postural sway measurements: A potential safety monitoring technique for workers wearing personal protective equipment. Appl. Occup. Environ. Hyg. 2002, 17, 256–266. [Google Scholar] [CrossRef]
- Adams, J.; Roberts, J.; Simms, K.; Cheng, D.; Hartman, J.; Bartlett, C. Measurement of Functional Capacity Requirements to Aid in Development of an Occupation-Specific Rehabilitation Training Program to Help Firefighters With Cardiac Disease Safely Return to Work. Am. J. Cardiol. 2009, 103, 762–765. [Google Scholar] [CrossRef]
- Almeida, M.; Bottino, A.; Ramos, P.; Araujo, C.G. Measuring Heart Rate During Exercise: From Artery Palpation to Monitors and Apps. Int. J. Cardiovasc. Sci. 2019, 32, 396–407. [Google Scholar] [CrossRef]
- Barr, D.; Gregson, W.; Reilly, T. The thermal ergonomics of firefighting reviewed. Appl. Ergon. 2010, 41, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Bizzego, A.; Gabrieli, G.; Furlanello, C.; Esposito, G. Comparison of wearable and clinical devices for acquisition of peripheral nervous system signals. Sensors 2020, 20, 6778. [Google Scholar] [CrossRef] [PubMed]
- Camera, F.; Occhiuzzi, C.; Miozzi, C.; Nappi, S.; Bozzo, A.; Tomola, P.; Bin, A.; Marrocco, G. Monitoring of temperature stress during firefighters training by means of RFID epidermal sensors. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 499–504. [Google Scholar]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195–202. [Google Scholar]
- Cornell, D.J.; Noel, S.E.; Zhang, X.; Ebersole, K.T. Influence of a training academy on the parasympathetic nervous system reactivation of firefighter recruits—An observational cohort study. Int. J. Environ. Res. Public Health 2021, 18, 109. [Google Scholar] [CrossRef]
- Cuddy, J.S.; Sol, J.A.; Hailes, W.S.; Ruby, B.C. Work Patterns Dictate Energy Demands and Thermal Strain during Wildland Firefighting. Wilderness Environ. Med. 2015, 26, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Cvirn, M.A.; Dorrian, J.; Smith, B.P.; Vincent, G.E.; Jay, S.M.; Roach, G.D.; Sargent, C.; Larsen, B.; Aisbett, B.; Ferguson, S.A. The effects of hydration on cognitive performance during a simulated wildfire suppression shift in temperate and hot conditions. Appl. Ergon. 2019, 77, 9–15. [Google Scholar] [CrossRef]
- Dolezal, B.A.; Boland, D.M.; Carney, J.; Abrazado, M.; Smith, D.L.; Cooper, C.B. Validation of heart rate derived from a physiological status monitor-embedded compression shirt against criterion ECG. J. Occup. Environ. Hyg. 2014, 11, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Ensari, I.; Motl, R.W.; Klaren, R.E.; Fernhall, B.; Smith, D.L.; Horn, G.P. Firefighter exercise protocols conducted in an environmental chamber: Developing a laboratory-based simulated firefighting protocol. Ergonomics 2017, 60, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.; Hamins, A.; Bryner, N.; Jones, A.; Koepke, G. Research Roadmap for Smart Fire Fighting Summary Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015. [Google Scholar]
- Horn, G.P.; Kesler, R.M.; Motl, R.W.; Hsiao-Wecksler, E.T.; Klaren, R.E.; Ensari, I.; Petrucci, M.N.; Fernhall, B.; Rosengren, K.S. Physiological responses to simulated firefighter exercise protocols in varying environments. Ergonomics 2015, 58, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Horn, G.P.; Kesler, R.M.; Kerber, S.; Fent, K.W.; Schroeder, T.J.; Scott, W.S.; Fehling, P.C.; Fernhall, B.; Smith, D.L. Thermal response to firefighting activities in residential structure fires: Impact of job assignment and suppression tactic. Ergonomics 2018, 61, 404–419. [Google Scholar] [CrossRef]
- Hostler, D.; Pendergast, D.R. Respiratory Responses during Exercise in Self-contained Breathing Apparatus among Firefighters and Nonfirefighters. Saf. Health Work 2018, 9, 468–472. [Google Scholar] [CrossRef]
- Johnson, Q.R.; Goatcher, J.D.; Diehl, C.; Lockie, R.G.; Orr, R.M.; Alvar, B.; Smith, D.B.; Dawes, J.J. Heart rate responses during simulated fire ground scenarios among full-time firefighters. Int. J. Exerc. Sci. 2020, 13, 374–382. [Google Scholar]
- Keene, T.; Brearley, M.; Bowen, B.; Walker, A. Accuracy of tympanic temperature measurement in firefighters completing a simulated structural firefighting task. Prehosp. Disaster Med. 2015, 30, 461–465. [Google Scholar] [CrossRef]
- Kesler, R.M.; Hsiao-Wecksler, E.T.; Motl, R.W.; Klaren, R.E.; Ensari, I.; Horn, G.P. A modified SCBA facepiece for accurate metabolic data collection from firefighters. Ergonomics 2015, 58, 148–159. [Google Scholar] [CrossRef]
- Kesler, R.M.; Ensari, I.; Bollaert, R.E.; Motl, R.W.; Hsiao-Wecksler, E.T.; Rosengren, K.S.; Fernhall, B.; Smith, D.L.; Horn, G.P. Physiological response to firefighting activities of various work cycles using extended duration and prototype SCBA. Ergonomics 2018, 61, 390–403. [Google Scholar] [CrossRef] [Green Version]
- Larsen, B.; Snow, R.; Vincent, G.; Tran, J.; Wolkow, A.; Aisbett, B. Multiple days of heat exposure on firefighters’ work performance and physiology. PLoS ONE 2015, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Marcel-Millet, P.; Ravier, G.; Grospretre, S.; Gimenez, P.; Freidig, S.; Groslambert, A. Physiological responses and parasympathetic reactivation in rescue interventions: The effect of the breathing apparatus. Scand. J. Med. Sci. Sports 2018, 28, 2710–2722. [Google Scholar] [CrossRef]
- Mazgaoker, S.; Ketko, I.; Yanovich, R.; Heled, Y.; Epstein, Y. Measuring core body temperature with a non-invasive sensor. J. Therm. Biol. 2017, 66, 17–20. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Selkirk, G.A. The management of heat stress for the firefighter: A review of work conducted on behalf of the Toronto Fire Service. Ind. Health 2006, 44, 414–426. [Google Scholar] [CrossRef] [Green Version]
- McQuerry, M.; Barker, R.; DenHartog, E. Relationship between novel design modifications and heat stress relief in structural firefighters’ protective clothing. Appl. Ergon. 2018, 70, 260–268. [Google Scholar] [CrossRef]
- Moran, D.S.; Mendal, L. Core temperature measurement: Methods and current insights. Sports Med. 2002, 32, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.E.; Chander, H. The impact of firefighter physical fitness on job performance: A review of the factors that influence fire suppression safety and success. Safety 2018, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.; Gehin, C.; Delhomme, G.; Dittmar, A.; McAdams, E. Thermal parameters measurement on fire fighter during intense fire exposition. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN, USA, 3–6 September 2009; pp. 4128–4131. [Google Scholar]
- Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Parker, R.; Vitalis, A.; Walker, R.; Riley, D.; Pearce, H.G. Measuring wildland fire fighter performance with wearable technology. Appl. Ergon. 2017, 59, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Perroni, F.; Cortis, C.; Minganti, C.; Cignitti, L.; Capranica, L. Maximal oxygen uptake of Italian firefighters: Laboratory vs. field evaluations. Sport Sci. Health 2013, 9, 31–35. [Google Scholar] [CrossRef]
- Perroni, F.; Guidetti, L.; Cignitti, L.; Baldari, C. Psychophysiological Responses of Firefighters to Emergencies: A Review. Open Sports Sci. J. 2014, 7, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Petruzzello, S.J.; Gapin, J.I.; Snook, E.; Smith, D.L. Perceptual and physiological heat strain: Examination in firefighters in laboratory- and field-based studies. Ergonomics 2009, 52, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Pryor, R.R.; Seitz, J.R.; Morley, J.; Suyama, J.; Guyette, F.X.; Reis, S.E.; Hostler, D. Estimating core temperature with external devices after exertional heat stress in thermal protective clothing. Prehosp. Emerg. Care 2012, 16, 136–141. [Google Scholar] [CrossRef]
- Rodrigues, S.; Dias, D.; Paiva, J.S.; Cunha, J.P.S. Psychophysiological Stress Assessment among On-Duty Firefighters. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 4335–4338. [Google Scholar]
- Rodrigues, S.; Paiva, J.S.; Dias, D.; Cunha, J.P.S. Stress among on-duty firefighters: An ambulatory assessment study. PeerJ 2018, 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, S.; Paiva, J.S.; Dias, D.; Pimentel, G.; Kaiseler, M.; Cunha, J.P.S. Wearable Biomonitoring Platform for the Assessment of Stress and its Impact on Cognitive Performance of Firefighters: An Experimental Study. Clin. Pract. Epidemiol. Ment. Health 2018, 14, 250–262. [Google Scholar] [CrossRef]
- Roossien, C.C.; Heus, R.; Reneman, M.F.; Verkerke, G.J. Monitoring core temperature of firefighters to validate a wearable non-invasive core thermometer in different types of protective clothing: Concurrent in-vivo validation. Appl. Ergon. 2020, 83, 103001. [Google Scholar] [CrossRef]
- Savage, R.J.; Lord, C.; Larsen, B.L.; Knight, T.L.; Langridge, P.D.; Aisbett, B. Firefighter feedback during active cooling: A useful tool for heat stress management? J. Therm. Biol. 2014, 46, 65–71. [Google Scholar] [CrossRef]
- Sebastião, R.; Sorte, S.; Fernandes, J.M.; Miranda, A.I. Classification of critical levels of co exposure of firefigthers through monitored heart rate. Sensors 2021, 21, 1561. [Google Scholar] [CrossRef]
- Lindo Secco, E.; Curone, D.; Tognetti, A.; Bonfiglio, A.; Magenes, G. Validation of Smart Garments for Physiological and Activity-Related Monitoring of Humans in Harsh Environment. Am. J. Biomed. Eng. 2012, 2, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Siddall, A.G.; Stevenson, R.D.M.; Turner, P.F.J.; Stokes, K.A.; Bilzon, J.L.J. Development of role-related minimum cardiorespiratory fitness standards for firefighters and commanders. Ergonomics 2016, 59, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.; Mani, A.; James, K.; Rao, M.; Bhattacharya, A. Effects of Heat Exposure from Live-Burn Fire Training on Postural Stability of Firefighters. Ergon. Int. J. 2019, 3, 1–20. [Google Scholar]
- Sol, J.A.; Ruby, B.C.; Gaskill, S.E.; Dumke, C.L.; Domitrovich, J.W. Metabolic Demand of Hiking in Wildland Firefighting. Wilderness Environ. Med. 2018, 29, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Weiler, D.T.; Villajuan, S.O.; Edkins, L.; Cleary, S.; Saleem, J.J. Wearable heart rate monitor technology accuracy in research: A comparative study between PPG and ECG technology. HFES 2017, 61, 1292–1296. [Google Scholar] [CrossRef]
- Wilkinson, D.M.; Carter, J.M.; Richmond, V.L.; Blacker, S.D.; Rayson, M.P. The effect of cool water ingestion on gastrointestinal pill temperature. Med. Sci. Sports Exerc. 2008, 40, 523–528. [Google Scholar] [CrossRef]
- Williams-Bell, F.M.; Boisseau, G.; McGill, J.; Kostiuk, A.; Hughson, R.L. Physiological responses and air consumption during simulated firefighting tasks in a subway system. Appl. Physiol. Nutr. Metab. 2010, 35, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Del Sal, M.; Barbieri, E.; Garbati, P.; Sisti, D.; Rocchi, M.; Stocchi, V. Physiologic Responses of Firefighter Recruits during a supervised live-fire work performance test. J. Strenght Cond. Res. 2009, 23, 2396–2404. [Google Scholar] [CrossRef]
- Rodríguez-Marroyo, J.A.; Villa, J.G.; López-Satue, J.; Pernía, R.; Carballo, B.; García-López, J.; Foster, C. Physical and thermal strain of firefighters according to the firefighting tactics used to suppress wildfires. Ergonomics 2011, 54, 1101–1108. [Google Scholar] [CrossRef]
- Meina, M.; Ratajczak, E.; Sadowska, M.; Rykaczewski, K.; Dreszer, J.; Bałaj, B.; Biedugnis, S.; Węgrzyński, W.; Krasuski, A. Heart rate variability and accelerometry as classification tools for monitoring perceived stress levels—A pilot study on firefighters. Sensors 2020, 20, 2834. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable sensors for remote health monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef]
- Magenes, G.; Curone, D.; Secco, E.L.; Bonfiglio, A. Biosensing and environmental sensing for emergency and protection e-Textiles. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August 2011–3 September 2011; pp. 8365–8366. [Google Scholar]
- MacRae, B.A.; Annaheim, S.; Spengler, C.M.; Rossi, R.M. Skin temperature measurement using contact thermometry: A systematic review of setup variables and their effects on measured values. Front. Physiol. 2018, 9, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coca, A.; Williams, W.J.; Roberge, R.J.; Powell, J.B. Effects of fire fighter protective ensembles on mobility and performance. Appl. Ergon. 2010, 41, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.G.; Sobeih, T.M.; Succop, P.; Jetter, W.; Kotowski, S.E.; Bhattacharya, A. Impact of obesity on the postural balance of firefighters. Occup. Ergon. 2009, 8, 115–123. [Google Scholar] [CrossRef]
- Hur, P.; Park, K.; Rosengren, K.S.; Horn, G.P.; Hsiao-Wecksler, E.T. Effects of air bottle design on postural control of firefighters. Appl. Ergon. 2015, 48, 49–55. [Google Scholar] [CrossRef]
- Kesler, R.M.; Horn, G.P.; Rosengren, K.S.; Hsiao-Wecksler, E.T. Analysis of foot clearance in firefighters during ascent and descent of stairs. Appl. Ergon. 2016, 52, 18–23. [Google Scholar] [CrossRef]
- Park, H.; Kim, S.; Morris, K.; Moukperian, M.; Moon, Y.; Stull, J. Effect of firefighters’ personal protective equipment on gait. Appl. Ergon. 2015, 48, 42–48. [Google Scholar] [CrossRef]
- Park, H.; Trejo, H.; Miles, M.; Bauer, A.; Kim, S.; Stull, J. Impact of firefighter gear on lower body range of motion. Int. J. Cloth. Sci. Technol. 2015, 27, 315–334. [Google Scholar] [CrossRef]
- Chander, H.; Garner, J.C.; Wade, C. Slip outcomes in firefighters: A comparison of rubber and leather boots. Occup. Ergon. 2016, 13, 67–77. [Google Scholar] [CrossRef]
- Vu, V.; Walker, A.; Ball, N.; Spratford, W. Ankle restrictive firefighting boots alter the lumbar biomechanics during landing tasks. Appl. Ergon. 2017, 65, 123–129. [Google Scholar] [CrossRef]
- Hanks, M.M.; Sefton, J.E.M.; Oliver, G.D. Neck kinematics and electromyography while wearing head supported mass during running. Aerosp. Med. Hum. Perform. 2018, 89, 9–13. [Google Scholar] [CrossRef]
- Park, K.; Sy, J.F.; Horn, G.P.; Kesler, R.M.; Petrucci, M.N.; Rosengren, K.S.; Hsiao-Wecksler, E.T. Assessing gait changes in firefighters after firefighting activities and while carrying asymmetric loads. Appl. Ergon. 2018, 70, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kakar, R.S.; Pei, J.; Tome, J.M.; Stull, J. Impact of Size of Fire boot and SCBA Cylinder on Firefighters’ Mobility. Cloth. Text. Res. J. 2019, 37, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.N.; Char, R.M.M.L.; Henry, S.O.; Tanigawa, J.; Yasui, S. The effect of firefighter personal protective equipment on static and dynamic balance. Ergonomics 2019, 62, 1193–1201. [Google Scholar] [CrossRef]
- Games, K.E.; Csiernik, A.J.; Winkelmann, Z.K.; True, J.R.; Eberman, L.E. Personal protective ensembles’ effect on dynamic balance in firefighters. Work 2019, 62, 507–514. [Google Scholar] [CrossRef]
- Hawke, A.L.; Drum, S.N.; Medina, J.J.; Breen, S. The Effect of Shoe Type on Various Kinetic and Kinematic Variables during Step-Up and Step-Down Motions. ISBS Proc. Arch. 2019, 37, 459–462. [Google Scholar]
- Orr, R.; Simas, V.; Canetti, E.; Maupin, D.; Schram, B. Impact of various clothing variations on firefighter mobility: A pilot study. Safety 2019, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Son, S.-Y. Effect of Different Types of Firefighter Station Uniforms on Wearer Mobility using Range of Motion and Electromyography Evidence. Fash. Text. Res. J. 2019, 21, 209–219. [Google Scholar] [CrossRef]
- Wiszomirska, I.; Iwańska, D.; Tabor, P.; Karczewska-Lindinger, M.; Urbanik, C.; Mastalerz, A. Postural stability pattern as an important safety factor of firefighters. Work 2019, 62, 469–476. [Google Scholar] [CrossRef] [PubMed]
- McQuerry, M. Effect of structural turnout suit fit on female versus male firefighter range of motion. Appl. Ergon. 2020, 82, 102974. [Google Scholar] [CrossRef]
- Marciniak, R.A.; Ebersole, K.T.; Cornell, D.J. Relationships between balance and physical fitness variables in firefighter recruits. Work 2021, 68, 667–677. [Google Scholar] [CrossRef]
- Cain, S.M.; McGinnis, R.S.; Davidson, S.P.; Vitali, R.V.; Perkins, N.C.; McLean, S.G. Quantifying performance and effects of load carriage during a challenging balancing task using an array of wireless inertial sensors. Gait Posture 2016, 43, 65–69. [Google Scholar] [CrossRef]
- Park, K.; Rosengren, K.S.; Horn, G.P.; Smith, D.L.; Hsiao-Wecksler, E.T. Assessing gait changes in firefighters due to fatigue and protective clothing. Saf. Sci. 2011, 49, 719–726. [Google Scholar] [CrossRef]
- Simeonov, P.; Hsiao, H.; Armstrong, T.; Fu, Q.; Woolley, C.; Kau, T.-Y. Effects of aerial ladder rung spacing on firefighter climbing biomechanics. Appl. Ergon. 2020, 82, 102911. [Google Scholar] [CrossRef] [PubMed]
- Ajala, M.; Khan, R.; Shafie, A.A. Development of a New Concept for Fire Fighting Robot Propulsion System. In Proceedings of the International Conference on Material, Industrial and Mechanical Engineering (ICMIME2016), London, UK, 18–19 January 2016; pp. 90–91. [Google Scholar]
- Deshpande, N.; Ortiz, J.; Sarakoglou, I.; Semini, C.; Tsagarakis, N.; Brygo, A.; Fernandez, J.; Frigerio, M.; Saccares, L.; Toxiri, S.; et al. Next-generation collaborative robotic systems for industrial safety and health. WIT Trans. Built Environ. 2018, 174, 187–200. [Google Scholar]
- Hong, J.H.; Taylor, J.; Matson, E.T. Natural multi-language interaction between firefighters and fire fighting robots. In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology—Workshops, WI-IAT 2014, Washington, DC, USA, 11–14 August 2014; Volume 3, pp. 183–189. [Google Scholar]
- Varghese, S.; Paul, A.; George, B.; Ali, M.A.F.; Warier, S. Design and Fabrication of Fire Fighting Robotic Arm for Petrochemical Industries. Int. J. Ind. Eng. 2018, 5, 14–17. [Google Scholar]
- Osipov, A. Fire exoskeleton to facilitate the work of the fireman. E3S Web Conf. 2019, 126, 15. [Google Scholar] [CrossRef]
- Winder, S.B.; Esposito, J.M. Modeling and control of an upper-body exoskeleton. In Proceedings of the Annual Southeastern Symposium on System Theory, New Orleans, LA, USA, 16–18 March 2008; pp. 263–268. [Google Scholar]
- Chen, F.; Yu, Y.; Ge, Y.; Wu, B.; Sun, J. Basic research on power assist walking leg using force/velocity control strategies. In Proceedings of the 2006 IEEE International Conference on Information Acquisition, Veihai, China, 20–23 August 2006; pp. 701–706. [Google Scholar]
- Rajkumar, R.; Kannadhasan, S.; Rajkumar, R.; Suresh Kumar, D.; Lingeshwaran, T.; Praveenkumar, D. Energy Efficient Environment Robotic Assistant for Fire Fighters. Int. J. Innov. Res. Sci. Eng. 2021, 10, 3427–3432. [Google Scholar]
- Tamers, S.L.; Streit, J.; Pana-Cryan, R.; Ray, T.; Syron, L.; Flynn, M.A.; Castillo, D.; Roth, G.; Geraci, C.; Guerin, R.; et al. Envisioning the future of work to safeguard the safety, health, and well-being of the workforce: A perspective from the CDC’s National Institute for Occupational Safety and Health. Am. J. Ind. Med. 2020, 63, 1065–1084. [Google Scholar] [CrossRef]
- Kuijpers, T.; van der Windt, D.A.W.M.; van der Heijden, G.J.M.G.; Bouter, L.M. Systematic review of prognostic cohort studies on shoulder disorders. Pain 2004, 109, 420–431. [Google Scholar] [CrossRef]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.J.H.; Zitman, F.G. Overweight, Obesity, and Depression. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, K.I.; Roushias, A.; Varitimidis, S.E.; Malizos, K.N. Quality of life and psychological consequences in elderly patients after a hip fracture: A review. Clin. Interv. Aging 2018, 13, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Taborri, J.; Keogh, J.; Kos, A.; Santuz, A.; Umek, A.; Urbanczyk, C.; van der Kruk, E.; Rossi, S. Sport biomechanics applications using inertial, force, and EMG sensors: A literature overview. Appl. Bionics Biomech. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Massaroni, C.; Nicolò, A.; Lo Presti, D.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-based methods for measuring respiratory rate. Sensors 2019, 19, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karter, M.J. Patterns of Firefighter Fireground Injuries; National Fire Protection Association Fire Analysis and Research Division: Quincy, MA, USA, 2012. [Google Scholar]
- Kakar, R.S.; Tome, J.M.; King, D.L. Biomechanical and physiological load carrying efficiency of two firefighter harness variations. Cogent Eng. 2018, 5, 1502231. [Google Scholar] [CrossRef]
- Viteckova, S.; Kutilek, P.; De Boisboissel, G.; Krupicka, R.; Galajdova, A.; Kauler, J.; Lhotska, L.; Szabo, Z. Empowering lower limbs exoskeletons: State-of-the-art. Robotica 2018, 36, 1743–1756. [Google Scholar] [CrossRef]
Criteria | Type of Validity |
---|---|
Aim of the work | |
Description of a specific, clearly stated purpose | IV |
The research question is scientifically relevant | EV |
Inclusion criteria (selection bias) | |
Description of inclusion and exclusion criteria | IV-EV |
Inclusion and exclusion criteria are the same for all tested groups | IV |
Inclusion and exclusion criteria reflect the general population | EV |
Data collection (performance bias) | |
Data collection is clearly described and reliable | IV-EV |
Same data collection method used for all the subjects | IV |
The used setup is wearable | EV |
Data loss (attrition bias) | |
Different data loss between groups | IV |
Data loss < 20% | EV |
Outcome (detection bias) | |
Outcomes allow tangible applications | EV |
Outcomes are the same for all the subjects | IV |
Data presentation | |
Frequencies of most important outcome measures | IV |
Presentation of the data is sufficient to assess the adequacy of the analyses | IV |
Statistical approach | |
Appropriate statistical analysis techniques | SV |
Clearly state the statistical test used | SV |
State and reference the analytical software used | SV |
At least five tested subjects | SV |
Parameter | Number of Papers | References |
---|---|---|
Heart rate | 18 | [25,36,46,48,51,56,64,69,70,71,74,75,76,77,78,82,84,86] |
Body temperature | 18 | [40,43,46,48,49,54,55,62,68,72,73,75,77,78,80,82,83,86] |
Ventilatory evaluation | 10 | [6,25,36,46,54,56,75,76,81,86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taborri, J.; Pasinetti, S.; Cardinali, L.; Perroni, F.; Rossi, S. Preventing and Monitoring Work-Related Diseases in Firefighters: A Literature Review on Sensor-Based Systems and Future Perspectives in Robotic Devices. Int. J. Environ. Res. Public Health 2021, 18, 9723. https://doi.org/10.3390/ijerph18189723
Taborri J, Pasinetti S, Cardinali L, Perroni F, Rossi S. Preventing and Monitoring Work-Related Diseases in Firefighters: A Literature Review on Sensor-Based Systems and Future Perspectives in Robotic Devices. International Journal of Environmental Research and Public Health. 2021; 18(18):9723. https://doi.org/10.3390/ijerph18189723
Chicago/Turabian StyleTaborri, Juri, Simone Pasinetti, Ludovica Cardinali, Fabrizio Perroni, and Stefano Rossi. 2021. "Preventing and Monitoring Work-Related Diseases in Firefighters: A Literature Review on Sensor-Based Systems and Future Perspectives in Robotic Devices" International Journal of Environmental Research and Public Health 18, no. 18: 9723. https://doi.org/10.3390/ijerph18189723
APA StyleTaborri, J., Pasinetti, S., Cardinali, L., Perroni, F., & Rossi, S. (2021). Preventing and Monitoring Work-Related Diseases in Firefighters: A Literature Review on Sensor-Based Systems and Future Perspectives in Robotic Devices. International Journal of Environmental Research and Public Health, 18(18), 9723. https://doi.org/10.3390/ijerph18189723