The Effect of Grip Width on Muscle Strength and Electromyographic Activity in Bench Press among Novice- and Resistance-Trained Men
<p>(<b>a</b>,<b>b</b>). The mean 6-RM loads (95% CI) in narrow, medium, and wide grip widths for the RT group (<b>a</b>) and novice group (<b>b</b>). * Significant difference compared to the other grip widths.</p> "> Figure 2
<p>The normalized EMG activity (i.e., % of MVIC) for the RT group and NT group as mean (95% CI). * Significant difference between the grip widths.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Procedures
2.4. Experimental Session
2.5. Electromyography
3. Statistical Analysis
4. Results
4.1. Subgroup Analyses of 6-RM Loads and Lifting Time
4.2. Subgroup Analyses of Electromyographic Activity
4.3. Merged Groups Analysis of Electromyographic Activity
5. Discussion
6. Practical Implication
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stastny, P.; Golas, A.; Blazek, D.; Maszczyk, A.; Wilk, M.; Pietraszewski, P.; Petr, M.; Uhlir, P.; Zajac, A. A systematic review of surface electromyography analyses of the bench press movement task. PLoS ONE 2017, 12, e0171632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folland, J.P.; Williams, A.G. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Saeterbakken, A.H.; van den Tillaar, R.; Fimland, M.S. A comparison of muscle activity and 1-RM strength of three chest-press exercises with different stability requirements. J. Sports Sci. 2011, 29, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Welsch, E.A.; Bird, M.; Mayhew, J.L. Electromyographic activity of the pectoralis major and anterior deltoid muscles during three upper-body lifts. J. Strength Cond. Res. 2005, 19, 449–452. [Google Scholar]
- Saeterbakken, A.H.; Mo, D.A.; Scott, S.; Andersen, V. The effects of bench press variations in competitive athletes on muscle activity and performance. J. Hum. Kinet 2017, 57, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Glass, S.C.; Armstrong, T. Electromyographical activity of the pectoralis muscle during incline and decline bench presses. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 1997, 11, 163–167. [Google Scholar]
- van den Tillaar, R.; Ettema, G. A comparison of successful and unsuccessful attempts in maximal bench pressing. Med. Sci. Sports Exerc. 2009, 41, 2056–2063. [Google Scholar] [CrossRef]
- Elliott, B.C.; Wilson, G.J.; Kerr, G.K. A biomechanical analysis of the sticking region in the bench press. Med. Sci. Sports Exerc. 1989, 21, 450–462. [Google Scholar] [CrossRef]
- Larsen, S.; Gomo, O.; van den Tillaar, R. A biomechanical analysis of wide, medium, and narrow grip width effects on kinematics, horizontal kinetics, and muscle activity on the sticking region in recreationally trained males during 1-RM bench pressing. Front. Sports Act Living 2020, 2, 637066. [Google Scholar] [CrossRef]
- Mausehund, L.; Werkhausen, A.; Bartsch, J.; Krosshaug, T. Understanding bench press biomechanics-The necessity of measuring lateral barbell forces. J. Strength Cond. Res. 2021. [Google Scholar] [CrossRef]
- Anderson, K.G.; Behm, D.G. Maintenance of EMG activity and loss of force output with instability. J. Strength Cond. Res. 2004, 18, 637–640. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Fimland, M.S. Electromyographic activity and 6RM strength in bench press on stable and unstable surfaces. J. Strength Cond. Res. 2013, 27, 1101–1107. [Google Scholar] [CrossRef]
- Lehman, G.J. The influence of grip width and forearm pronation/supination on upper-body myoelectric activity during the flat bench press. J. Strength Cond. Res. 2005, 19, 587–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Tillaar, R.; Ettema, G. A comparison of muscle activity in concentric and counter movement maximum bench press. J Hum. Kinet 2013, 38, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, S.C.; Blanchette, T.W.; Karwan, L.A.; Pearson, S.S.; O’Neil, A.P.; Karlik, D.A. Core muscle activation during unstable bicep curl using a water-filled instability training tube. J. Strength Cond. Res. 2016, 30, 3212–3219. [Google Scholar] [CrossRef] [PubMed]
- Stronska, K.; Golas, A.; Wilk, M.; Zajac, A.; Maszczyk, A.; Stastny, P. The effect of targeted resistance training on bench press performance and the alternation of prime mover muscle activation patterns. Sports Biomech. 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Clemons, J.M.; Aaron, C. Effect of grip width on the myoelectric activity of the prime movers in the bench press. J. Strength Cond. Res. 1997, 11, 82–87. [Google Scholar]
- Barnett, C.; Kippers, V.; Turner, P. Effects of variations of the bench press exercise on the EMG activity of five shoulder muscles. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 1995, 9, 222–227. [Google Scholar]
- McBride, J.M.; Larkin, T.R.; Dayne, A.M.; Haines, T.L.; Kirby, T.J. Effect of absolute and relative loading on muscle activity during stable and unstable squatting. Int. J. Sports Physiol. Perform. 2010, 5, 177–183. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Andersen, V.; Jansson, J.; Kvellestad, A.C.; Fimland, M.S. Effects of BOSU ball(s) during sit-ups with body weight and added resistance on core muscle activation. J. Strength Cond. Res. 2014, 28, 3515–3522. [Google Scholar] [CrossRef]
- Stien, N.; Saeterbakken, A.H.; Andersen, V. Electromyographic comparison of five lower-limb muscles between single- and multi-joint exercises among trained men. J. Sports Sci. Med. 2021, 20, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Stien, N.; Pedersen, H.; Ravnoy, A.H.; Andersen, V.; Saeterbakken, A.H. Training specificity performing single-joint vs. multi-joint resistance exercises among physically active females: A randomized controlled trial. PLoS ONE 2020, 15, e0233540. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.A.; Rutherford, O.M. Human muscle strength training: The effects of three different regimens and the nature of the resultant changes. J. Physiol. 1987, 391, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.; Parker, D.F.; Rutherford, O.M.; Jones, D.A. Changes in strength and cross sectional area of the elbow flexors as a result of isometric strength training. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 57, 667–670. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Andersen, V.; Behm, D.G.; Krohn-Hansen, E.K.; Smaamo, M.; Fimland, M.S. Resistance-training exercises with different stability requirements: Time course of task specificity. Eur. J. Appl. Physiol. 2016, 116, 2247–2256. [Google Scholar] [CrossRef]
- Reeves, N.D.; Narici, M.V.; Maganaris, C.N. Effect of resistance training on skeletal muscle-specific force in elderly humans. J. Appl. Physiol. (1985) 2004, 96, 885–892. [Google Scholar] [CrossRef]
- Shima, N.; Ishida, K.; Katayama, K.; Morotome, Y.; Sato, Y.; Miyamura, M. Cross education of muscular strength during unilateral resistance training and detraining. Eur. J. Appl. Physiol. 2002, 86, 287–294. [Google Scholar] [CrossRef]
- Knight, C.A.; Kamen, G. Adaptations in muscular activation of the knee extensor muscles with strength training in young and older adults. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2001, 11, 405–412. [Google Scholar] [CrossRef]
- Schick, E.E.; Coburn, J.W.; Brown, L.E.; Judelson, D.A.; Khamoui, A.V.; Tran, T.T.; Uribe, B.P. A comparison of muscle activation between a Smith machine and free weight bench press. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2010, 24, 779–784. [Google Scholar] [CrossRef]
- Luczak, J.; Bosak, A.; Riemann, B.L. Shoulder muscle activation of novice and resistance trained women during variations of dumbbell press exercises. J. Sports Med. (Hindawi Publ. Corp.) 2013, 2013, 612650. [Google Scholar] [CrossRef]
- Lagally, K.M.; McCaw, S.T.; Young, G.T.; Medema, H.C.; Thomas, D.Q. Ratings of perceived exertion and muscle activity during the bench press exercise in recreational and novice lifters. J. Strength Cond. Res. 2004, 18, 359–364. [Google Scholar] [CrossRef]
- Birkeland, K.; Fordahl, M.; Hella, A.O. Hvilken Effekt Har Forskjellige Grepsbredder på Nevromuskulær Aktivering og Prestasjon i Benkpress Hos Godt Trente Mosjonister. 2013. Available online: https://core.ac.uk/download/pdf/52064497.pdf (accessed on 11 June 2021).
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Fimland, M.S. Effects of body position and loading modality on muscle activity and strength in shoulder presses. J. Strength Cond. Res. 2013, 27, 1824–1831. [Google Scholar] [CrossRef]
- Andersen, V.; Fimland, M.S.; Wiik, E.; Skoglund, A.; Saeterbakken, A.H. Effects of grip width on muscle strength and activation in the lat pull-down. J. Strength Cond. Res. 2014, 28, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Saeterbakken, A.H.; Fimland, M.S. Muscle activity of the core during bilateral, unilateral, seated and standing resistance exercise. Eur. J. Appl. Physiol. 2012, 112, 1671–1678. [Google Scholar] [CrossRef]
- Jarosz, J.; Golas, A.; Krzysztofik, M.; Matykiewicz, P.; Stronska, K.; Zajac, A.; Maszczyk, A. Changes in muscle pattern activity during the asymmetric flat bench press (offset training). Int. J. Environ. Res. Public Health 2020, 17, 3912. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, MI, USA; Hove, UK, 1988. [Google Scholar]
- Vigotsky, A.D.; Halperin, I.; Lehman, G.J.; Trajano, G.S.; Vieira, T.M. Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front. Physiol. 2017, 8, 985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doheny, E.P.; Lowery, M.M.; Fitzpatrick, D.P.; O’Malley, M.J. Effect of elbow joint angle on force-EMG relationships in human elbow flexor and extensor muscles. J. Electromyogr. Kinesiol. 2008, 18, 760–770. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Sale, D.G. Velocity specificity of resistance training. Sports Med. 1993, 15, 374–388. [Google Scholar] [CrossRef]
- Wheeler, K.W.; Sayers, M.G.L. Rugby union contact skills alter evasive agility performance during attacking ball carries. Int J Sports Sci. Coach. 2011, 6, 419–432. [Google Scholar] [CrossRef]
- Stokes, J.V.; Luiselli, J.K.; Reed, D.D.; Fleming, R.K. Behavioral coaching to improve offensive line pass-blocking skills of high school football athletes. J. Appl. Behav. Anal. 2010, 43, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fees, M.; Decker, T.; Snyder-Mackler, L.; Axe, M.J. Upper extremity weight-training modifications for the injured athlete. A clinical perspective. Am. J. Sports Med. 1998, 26, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Haupt, H.A. Upper extremity injuries associated with strength training. Clin. Sports Med. 2001, 20, 481–490. [Google Scholar] [CrossRef]
Group | Age (Years) | Height (cm) | Weight (kg) | Resistance Training Experience (Years) | Relative Strength (6-RM Wide Grip/Body Weight) |
---|---|---|---|---|---|
RT | 23.7 ± 2.0 | 180 ± 4.8 | 81.7 ± 8.2 | 5.5 ± 1.9 | 1.11 |
NT | 23.7 ± 3.8 | 183 ± 6.2 | 79.0 ± 9.3 | 1.0 ± 0.7 | 0.79 |
Grip Width | Group | Latissimus Dorsi | Biceps Brachii | Triceps Brachii | Posterior Deltoid | Medial Deltoid | Anterior Deltoid | Pectoralis Major Clavicula | Pectoralis Major Sternum |
---|---|---|---|---|---|---|---|---|---|
Narrow | All | 21.4 (15.2–27.5) | 12.6 (7.6–17.7) * | 70.3 (60.7–79.9) | 11.6 (7.3–15.9) | 29.4 (23.8–35.0) | 90.0 (74.7–105.4) ‡ | 88.0 (75.2–100.7) | 100 (85.3–115.2) |
NT | 16.3 (10.8–21.8) | 10.4 (6.2–14.6) # | 61.3 (46.0–76.6) | 8.3 (5.9–10.7) | 30.0 (22.1–38.0) | 65.4 (55.8–75.0) ‡ | 69.7 (59.7–79.7) | 69.7 (58.7–80.8) | |
RT | 25.8 (15.2–36.4) | 14.6 (5.3–23.8) * | 77.6 (65.0–90.1) * | 14.40 (6.5–22.3) | 28.9 (20.2–37.6) | 111.4 (88.1–134.6) | 103.8 (84.0–123.6) | 125.7 (106.5–145.0) | |
Medium | All | 23.3 (17.0–29.7) | 19.0 (11.3–26.7) # | 69.2 (59.1–79.3) | 9.9 (7.8–11.9) | 30.8 (23.8–37.8) | 95.8 (79.1–112.6) | 89.0 (77.2–95.1) | 97.9 (85.2–110.7) |
NT | 18.3 (12.0–24.6) | 15.9 (6.6–25.3) | 60.5 (42.1–78.9) | 7.6 (5.3–9.8) | 32.8 (19.5–46.2) | 73.1 (61.0–85.1) | 70.5 (59.0–82.0) | 74.5 (63.1–85.9) | |
RT | 27.7 (17.0–38.5) | 21.7 (8.8–34.5) | 76.1 (64.6–87.6) | 11.9 (8.7–15.0) | 29.0 (21.0–37.0) | 115.53 (88.7–142.4) | 105.0 (88.7–121.3) | 118.3 (102.4–134.1) | |
Wide | All | 24.1 (17.2–31.0) | 24.9 (16.5–33.2) | 62.7 (54.2–71.6) * | 9.6 (7.8–11.4) | 31.2 (24.9–37.6) | 95.3 (79.0–111.5) | 84.8 (74.4–95.1) | 96.1 (85.1–107.1) |
NT | 17.6 (12.0–23.7) | 17.3 (9.3–25.3) | 55.5 (39.3–71.7) | 7.7 (5.3–10.1) | 33.6 (21.9–45.3) | 76.1 (61.7–90.5) | 68.0 (59.2–76.7) | 76.1 (66.8–85.3) | |
RT | 29.7 (17.9–41.5) | 31.4 (17.3–45.5) ‡ | 68.8 (59.2–78.4) ‡ | 11.3 (8.7–13.9) | 29.1 (21.6–36.7) | 111.9 (85.5–138.2) | 99.3 (88.7–121.3) | 113.5 (99.4–127.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeterbakken, A.H.; Stien, N.; Pedersen, H.; Solstad, T.E.J.; Cumming, K.T.; Andersen, V. The Effect of Grip Width on Muscle Strength and Electromyographic Activity in Bench Press among Novice- and Resistance-Trained Men. Int. J. Environ. Res. Public Health 2021, 18, 6444. https://doi.org/10.3390/ijerph18126444
Saeterbakken AH, Stien N, Pedersen H, Solstad TEJ, Cumming KT, Andersen V. The Effect of Grip Width on Muscle Strength and Electromyographic Activity in Bench Press among Novice- and Resistance-Trained Men. International Journal of Environmental Research and Public Health. 2021; 18(12):6444. https://doi.org/10.3390/ijerph18126444
Chicago/Turabian StyleSaeterbakken, Atle Hole, Nicolay Stien, Helene Pedersen, Tom Erik Jorung Solstad, Kristoffer Toldnes Cumming, and Vidar Andersen. 2021. "The Effect of Grip Width on Muscle Strength and Electromyographic Activity in Bench Press among Novice- and Resistance-Trained Men" International Journal of Environmental Research and Public Health 18, no. 12: 6444. https://doi.org/10.3390/ijerph18126444
APA StyleSaeterbakken, A. H., Stien, N., Pedersen, H., Solstad, T. E. J., Cumming, K. T., & Andersen, V. (2021). The Effect of Grip Width on Muscle Strength and Electromyographic Activity in Bench Press among Novice- and Resistance-Trained Men. International Journal of Environmental Research and Public Health, 18(12), 6444. https://doi.org/10.3390/ijerph18126444