Determination of Glyphosate in Water from a Rural Locality in México and Its Implications for the Population Based on Water Consumption and Use Habits
<p>Human exposure routes to glyphosate. From the application of glyphosate (1) in plants (2), it can pass to different environments and expose the population through intake of contaminated food plants and by animals for human consumption that eat plants with glyphosate. A proportion of applied glyphosate reaches the soil (3) and through runoff and leaching (4) can reach surface water (5), such as rivers and lakes, and groundwater (6). Surface water (5) is used to irrigate crops (2), feed livestock and household activities, thus exposure is through animal and plant consumption and by ingestion and dermal absorption. By infiltration (7), contaminated surface water reaches the groundwater (6), which exposes people by drinking it (8), consumption of food washed with water (9) and dermal absorption by bathing. Finally, glyphosate aerosols (10) may also exert potential health risk through inhalation or dermal absorption after precipitation (11) or sedimentation.</p> "> Figure 2
<p>Geolocation of Tenampulco and sampling sites.</p> "> Figure 3
<p>Social activities that affect human exposure to glyphosate from polluted water: (<b>A</b>) drinking water; (<b>B</b>) food preparation; and (<b>C</b>) showering.</p> "> Figure 4
<p>Sampling Point 6 runoff water.</p> "> Figure 5
<p>Sample Point 9 well.</p> "> Figure 6
<p>Farmer applying glyphosate with backpack sprayer on corn crops.</p> "> Figure 7
<p>Amount of water, expressed in liters per day, used by the inhabitants for: (<b>a</b>) drinking; (<b>b</b>) preparing food; and (<b>c</b>) bathing.</p> "> Figure 8
<p>Estimation of the amount of glyphosate intake per day according to water use and consumption habits at Sampling Sites 1, 6, 8, 9 and 12.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description, Water Sample Collection and Physicochemical Water Characterization
2.2. Determination of Glyphosate
2.3. Social Evaluation
2.4. Exposure Potential
3. Results and Discussions
3.1. Study Site Results, Water Sample Collection and Water Characterization
3.2. Glyphosate Detection
3.3. Social Evaluation
3.4. Potential Glyphosate Exposure
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Okada, E.; Allinson, M.; Barral, M.P.; Clarke, B.; Allinson, G. Glyphosate and aminomethylphosphonic acid (AMPA) are commonly found in urban streams and wetlands of Melbourne, Australia. Water Res. 2020, 168. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuhra, M.; Bøhn, T.; Cuhra, P. Glyphosate: Too much of a good thing? Front. Environ. Sci. 2016, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Montanarella, L.; Jones, A.; Fernández-Ugalde, O.; Mol, H.G.J.; Ritsema, C.J.; Geissen, V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci. Total Environ. 2018, 621, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Grandcoin, A.; Piel, S.; Baurès, E. AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Res. 2017, 117, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Mamy, L.; Barriuso, E. Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops. Chemosphere 2005, 61, 844–855. [Google Scholar] [CrossRef]
- Van Stempvoort, D.R.; Spoelstra, J.; Senger, N.D.; Brown, S.J.; Post, R.; Struger, J. Glyphosate residues in rural groundwater, Nottawasaga River Watershed, Ontario, Canada. Pest Manag. Sci. 2016, 72, 1862–1872. [Google Scholar] [CrossRef]
- Mauffrey, F.; Baccara, P.-Y.; Gruffaz, C.; Vuilleumier, S.; Imfeld, G. Bacterial Community Composition and Genes for Herbicide Degradation in a Stormwater Wetland Collecting Herbicide Runoff. Water. Air. Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Lutri, V.F.; Matteoda, E.; Blarasin, M.; Aparicio, V.; Giacobone, D.; Maldonado, L.; Becher Quinodoz, F.; Cabrera, A.; Giuliano Albo, J. Hydrogeological features affecting spatial distribution of glyphosate and AMPA in groundwater and surface water in an agroecosystem. Córdoba, Argentina. Sci. Total Environ. 2020, 711. [Google Scholar] [CrossRef]
- Rendón-Von Osten, J.; Dzul-Caamal, R. Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: A survey in Hopelchén, Campeche, Mexico. Int. J. Environ. Res. Public Health 2017, 14, 595. [Google Scholar] [CrossRef]
- Ruiz-Toledo, J.; Castro, R.; Rivero-Pérez, N.; Bello-Mendoza, R.; Sánchez, D. Occurrence of glyphosate in water bodies derived from intensive agriculture in a tropical region of southern Mexico. Bull. Environ. Contam. Toxicol. 2014, 93, 289–293. [Google Scholar] [CrossRef] [PubMed]
- IARC. IARC Monographs Volume 112: Evaluation of Five Organophosphate Insecticides and Herbicides; IARC: Lyon, France, 2015. [Google Scholar]
- Niemann, L.; Sieke, C.; Pfeil, R.; Solecki, R. A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J. Verbraucherschutz Leb. 2015, 10, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Connolly, A.; Jones, K.; Basinas, I.; Galea, K.S.; Kenny, L.; McGowan, P.; Coggins, M.A. Exploring the half-life of glyphosate in human urine samples. Int. J. Hyg. Environ. Health 2019, 222, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Krüger, M.; Schledorn, P.; Schrödl, W.; Hoppe, H.-W.; Lutz, W.; Shehata, A.A. Detection of Glyphosate Residues in Animals and Humans. J. Environ. Anal. Toxicol. 2014, 4. [Google Scholar] [CrossRef]
- Stephenson, C.L.; Harris, C.A. An assessment of dietary exposure to glyphosate using refined deterministic and probabilistic methods. Food Chem. Toxicol. 2016, 95, 28–41. [Google Scholar] [CrossRef] [Green Version]
- EPA. Guideline for Human Exposure Assessment (EPA/100/B-19/001). Risk Assess. Forum 2019, 1–206. [Google Scholar]
- Li, Z.; Jennings, A. Worldwide regulations of standard values of pesticides for human health risk control: A review. Int. J. Environ. Res. Public Health 2017, 14, 826. [Google Scholar] [CrossRef] [Green Version]
- Reynoso, E.C.; Torres, E.; Bettazzi, F.; Palchetti, I. Trends and Perspectives in Immunosensors for Determination of Currently-Used Pesticides: The Case of Glyphosate, Organophosphates, and Neonicotinoids. Biosensors 2019, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- SEGOB. Productos y servicios. Agua y hielo para consumo humano, envasados y a granel. Especificaciones sanitarias (NOM-201-SSA1-2015). D. Of. Fed. 2015. [Google Scholar]
- INEGI. Anuario Estadístico y Geográfico de Puebla 2017; INEGI: Puebla, Mexico, 2017. [Google Scholar]
- OECD Ready Biodegradability. OECD Guidel. Test. Chem. 2006, 1, 1–26.
- SEGOB. Que establece los límites máximos permisibles de contaminantes para las aguas residuales tratadas que se reusen en servicios al público (NOM-003-ECOL-1997). D. Of. Fed. 1998, 1–6. [Google Scholar]
- Abraxis LLC. Glyphosate HS Assay Kit 120T, PN 500081, Operating Manual; Abraxis LLC: Warminster, PA, USA, 2017. [Google Scholar]
- Rubio, F.; Veldhuis, L.J.; Clegg, B.S.; Fleeker, J.R.; Hall, J.C. Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water. J. Agric. Food Chem. 2003, 51, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Bettazzi, F.; Romero Natale, A.; Torres, E.; Palchetti, I. Glyphosate Determination by Coupling an Immuno-Magnetic Assay with Electrochemical Sensors. Sensors 2018, 18, 2965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillén, D.; Ginebreda, A.; Darbra, R.M.; Gros, M.; Petrovic, M.; Barceló, D. Characterization of Environmental Exposure: Measuring Versus Modeling. In Global Risk-Based Management of Chemical Additives II: Risk-Based Assessment and Management Strategies; Bilitewski, B., Darbra, R.M., Barceló, D., Eds.; Springer: London, UK; Berlin/Heidelberg, Germany, 2013; pp. 25–46. [Google Scholar]
- Wester, R.C.; Melendres, J.; Sarason, R.; Mcmaster, J.; Maibach, H.I. Glyphosate Skin Binding, Absorption, Residual Tissue Distribution, and Skin Decontamination Percutaneous absorption is the process whereby a chemical in contact with skin be- comes systemically available through a series of biochemical events Wester. Fundam. Appl. Toxicol. 1991, 16, 732. [Google Scholar]
- Pérez-López, E. Control de calidad en aguas para consumo humano en la región occidental de Costa Rica. Rev. Tecnol. Marcha 2016, 29, 3. [Google Scholar] [CrossRef]
- Secretaría de Salud. NORMA Oficial Mexicana, Salud ambiental, agua para uso y consumo humano-Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización (NOM-127-SSA1-1994). D. Of. Fed. 1995, 1–71. [Google Scholar]
- Maqueda, C.; Undabeytia, T.; Villaverde, J.; Morillo, E. Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Sci. Total Environ. 2017, 593–594, 787–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- California Environmental Protection Agency. Irrigated Lands Regulatory Program, Resources for Farmers: Nitrate in Drinking Water. Calif. Water Boards 2013, 1, 1–4. [Google Scholar]
- Palomares, A.E. Contaminación del agua por nitratos y técnicas para su tratamiento. Available online: https://www.esferadelagua.es/agua-y-tecnologia/contaminacion-del-agua-por-nitratos-y-tecnicas-para-su-tratamiento (accessed on 22 May 2020).
- Mertens, M.; Höss, S.; Neumann, G.; Afzal, J.; Reichenbecher, W. Glyphosate, a chelating agent—relevant for ecological risk assessment? Environ. Sci. Pollut. Res. 2018, 25, 5298–5317. [Google Scholar] [CrossRef] [Green Version]
- Prata, F.; Cardinali, V.C.d.B.; Lavorenti, A.; Tornisielo, V.L.; Regitano, J.B. Glyphosate sorption and desorption in soils with distinct phosphorus levels. Sci. Agric. 2003, 60, 175–180. [Google Scholar] [CrossRef]
- Comisión Nacional del Agua. Estadísticas del Agua en México 2018; Secretaría del Medio Ambiente y Recursos Naturales: Ciudad de México, México, 2018. [Google Scholar]
- Santana, R. Mayas de Campeche Denuncian Siembra y Venta de Soya Transgénica de Monsanto. Proceso. 13 November 2017. Available online: https://www.proceso.com.mx/510932/mayas-campeche-denuncian-siembra-venta-soya-transgenica-monsanto (accessed on 25 May 2020).
- Montiel-León, J.M.; Munoz, G.; Vo Duy, S.; Do, D.T.; Vaudreuil, M.A.; Goeury, K.; Guillemette, F.; Amyot, M.; Sauvé, S. Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers. Environ. Pollut. 2019, 250, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Lupi, L.; Bedmar, F.; Puricelli, M.; Marino, D.; Aparicio, V.C.; Wunderlin, D.; Miglioranza, K.S.B. Glyphosate runoff and its occurrence in rainwater and subsurface soil in the nearby area of agricultural fields in Argentina. Chemosphere 2019, 225, 906–914. [Google Scholar] [CrossRef]
- Gunarathna, S.; Gunawardana, B.; Jayaweera, M.; Manatunge, J.; Zoysa, K. Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka. J. Environ. Sci. Health 2018, 53, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Alonso, L.L.; Demetrio, P.M.; Agustina Etchegoyen, M.; Marino, D.J. Glyphosate and atrazine in rainfall and soils in agroproductive areas of the pampas region in Argentina. Sci. Total Environ. 2018, 645, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, A.; Larroud, S.; Humbert, J.F. Herbicide Contamination of Freshwater Ecosystems: Impact on Microbial Communities. Pestic. Formul. Eff. Fate 2011. [Google Scholar] [CrossRef] [Green Version]
- Monsanto FAENA® FUERTE. Available online: http://dunemexicali.com.mx/archivos/AGROQUIMICOS/PROTECCION DE CULTIVOS/CONVENCIONALES/HERBICIDAS/MONSATO/FAENA FUERTE 360/FAENA FUERTE 360 HT.pdf (accessed on 25 May 2020).
- SEMARNAT. Plan de Manejo y Recolección de Envases vacíos de Plaguicidad. 2012. Available online: https://siiba.conadesuca.gob.mx/siiaca/Consulta/verDoc.aspx?num=202 (accessed on 22 May 2020).
- Tangamornsuksan, W.; Lohitnavy, O.; Sruamsiri, R.; Chaiyakunapruk, N.; Norman Scholfield, C.; Reisfeld, B.; Lohitnavy, M. Paraquat exposure and Parkinson’s disease: A systematic review and meta-analysis. Arch. Environ. Occup. Health 2019, 74, 225–238. [Google Scholar] [CrossRef]
- Smith, A.M.; Smith, M.T.; La Merrill, M.A.; Liaw, J.; Steinmaus, C. 2,4-dichlorophenoxyacetic acid (2,4-D) and risk of non-Hodgkin lymphoma: A meta-analysis accounting for exposure levels. Ann. Epidemiol. 2017, 27, 281–289.e4. [Google Scholar] [CrossRef]
- Lucadamo, L.; Corapi, A.; Gallo, L. Evaluation of glyphosate drift and anthropogenic atmospheric trace elements contamination by means of lichen transplants in a southern Italian agricultural district. Air Qual. Atmos. Health 2017, 11, 325–339. [Google Scholar] [CrossRef]
- Mercurio, P.; Flores, F.; Mueller, J.F.; Carter, S.; Negri, A.P. Glyphosate persistence in seawater. Mar. Pollut. Bull. 2014, 85, 385–390. [Google Scholar] [CrossRef]
- Chang, F.C.; Simcik, M.F.; Capel, P.D. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere. Environ. Toxicol. Chem. 2011, 30, 548–555. [Google Scholar] [CrossRef]
- von Mérey, G.; Manson, P.S.; Mehrsheikh, A.; Sutton, P.; Levine, S.L. Glyphosate and aminomethylphosphonic acid chronic risk assessment for soil biota. Environ. Toxicol. Chem. 2016, 35, 2742–2752. [Google Scholar] [CrossRef]
- Kumar, S.; Khodoun, M.; Kettleson, E.M.; McKnight, C.; Reponen, T.; Grinshpun, S.A.; Adhikari, A. Glyphosate-rich air samples induce IL-33, TSLP and generate IL-13 dependent airway inflammation. Toxicology 2014, 325, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyton, K.Z.; Loomis, D.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; Straif, K. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 2015, 16, 490–491. [Google Scholar] [CrossRef]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Number | Water Type | Coordinates | |
---|---|---|---|
Latitude N | Longitude W | ||
1 | Groundwater | 20°10′31.12″ | 97°23′33.22″ |
2 | Bottled water | 20°10′31.16″ | 97°23′33.18″ |
3 | Surface water | 20°10′37.22″ | 97°23′22.68″ |
4 | Surface water | 20°11′27.80″ | 97°22′36.44″ |
5 | Surface water | 20°11′27.79″ | 97°22′36.43″ |
6 | Runoff water | 20°11′16.33″ | 97°22′01.99″ |
7 | Surface water | 20°11′33.95″ | 97°22′21.17″ |
8 | Groundwater | 20°11′37.44″ | 97°22′25.95″ |
9 | Groundwater | 20°11′52.99″ | 97°22′04.99″ |
10 | Surface water | 20°12′34.44″ | 97°21′50.32″ |
11 | Surface water | 20°11′39.37″ | 97°23′34.19″ |
12 | Groundwater | 20°11′08.79″ | 97°23′58.87″ |
Parameter | Phosphate (mg/L) | Sulfate (mg/L) | Iron (μg/L) | Nitrate (mg/L) | Free Chlorine (mg/L) | Calcium (mg/L) | Magnesium (mg/L) | COD * (mg/L) | BOD ** (mg/L) |
---|---|---|---|---|---|---|---|---|---|
Mean | 0.5 | 15.9 | 77.1 | 5.5 | 0.05 | 141 | 8.1 | 167 | 0.26 |
SD *** | 0.2 | 5.7 | 45.8 | 8.8 | 0.03 | 32 | 7.9 | 103 | 0.16 |
Maximum | 1.1 | 30.0 | 165.0 | 27.7 | 0.13 | 220 | 35.0 | 483 | 0.70 |
Minimum | 0.0 | 0.0 | 6.0 | 0.0 | 0.01 | 80 | 0.0 | 37 | 0.05 |
Sample Point | Concentration 1st Sampling (µg/L) (Spring) | Concentration 2nd Sampling (µg/L) (Summer) | Concentration 3rd Sampling (µg/L) (Winter) | Concentration 4th Sampling (µg/L) (Autumn) |
---|---|---|---|---|
1 | 0.26 ± 0.01 | 0.49 ± 0.03 | 1.43 ± 0.01 | 0.38 ± 0.02 |
2 | <LOD | <LOD | <LOD | <LOD |
3 | 0.37 ± 0.03 | 1.11 ± 0.10 | 2.59 ± 0.14 | 1.55 ± 0.11 |
4 | <LOD | <LOD | <LOD | <LOD |
5 | <LOD | <LOD | <LOD | <LOD |
6 | <LOD | <LOD | 0.11 ± 0.01 | 0.17 ± 0.02 |
7 | 0.33 ± 0.02 | 0.52 ± 0.07 | 1.58 ± 0.08 | 3.28 ± 0.10 |
8 | <LOD | 0.39 ± 0.02 | 0.88 ± 0.03 | 0.42 ± 0.04 |
9 | 0.77 ± 0.06 | 1.64 ± 0.18 | 2.46 ± 0.24 | 3.17 ± 0.33 |
10 | 0.53 ± 0.03 | 0.48 ± 0.031 | 1.31 ± 0.15 | 0.58 ± 0.03 |
11 | 0.81 ± 0.04 | 4.36 ± 0.20 | 3.11 ± 0.26 | 4.33 ± 0.35 |
12 | <LOD | 0.16 ± 0.02 | 0.36 ± 0.05 | 0.33 ± 0.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynoso, E.C.; Peña, R.D.; Reyes, D.; Chavarin-Pineda, Y.; Palchetti, I.; Torres, E. Determination of Glyphosate in Water from a Rural Locality in México and Its Implications for the Population Based on Water Consumption and Use Habits. Int. J. Environ. Res. Public Health 2020, 17, 7102. https://doi.org/10.3390/ijerph17197102
Reynoso EC, Peña RD, Reyes D, Chavarin-Pineda Y, Palchetti I, Torres E. Determination of Glyphosate in Water from a Rural Locality in México and Its Implications for the Population Based on Water Consumption and Use Habits. International Journal of Environmental Research and Public Health. 2020; 17(19):7102. https://doi.org/10.3390/ijerph17197102
Chicago/Turabian StyleReynoso, Eduardo C., Ricardo D. Peña, Delfino Reyes, Yaselda Chavarin-Pineda, Ilaria Palchetti, and Eduardo Torres. 2020. "Determination of Glyphosate in Water from a Rural Locality in México and Its Implications for the Population Based on Water Consumption and Use Habits" International Journal of Environmental Research and Public Health 17, no. 19: 7102. https://doi.org/10.3390/ijerph17197102
APA StyleReynoso, E. C., Peña, R. D., Reyes, D., Chavarin-Pineda, Y., Palchetti, I., & Torres, E. (2020). Determination of Glyphosate in Water from a Rural Locality in México and Its Implications for the Population Based on Water Consumption and Use Habits. International Journal of Environmental Research and Public Health, 17(19), 7102. https://doi.org/10.3390/ijerph17197102