Hyponatremia in Infectious Diseases—A Literature Review
Abstract
:1. Introduction
1.1. Pathogenesis of Hyponatremia
1.2. Hypotonic Hyponatremia
1.2.1. Hypotonic Hypovolemic Hyponatremia
1.2.2. Hypotonic Euvolemic Hyponatremia
1.2.3. Hypotonic Hypervolemic Hyponatremia
1.3. Non-Hypotonic Hyponatremia
2. Materials and Methods
- Age >18 years old,
- Infection and concomitant hyponatremia in the study group,
- Original articles.
- Case reports,
- Cases series.
3. Hyponatremia Due to Infections
3.1. Viral Infections
3.1.1. Influenza Virus and other Respiratory Viruses
3.1.2. HIV Infections
3.1.3. Coronaviruses Infections
3.1.4. Other Viral Infections
3.2. Fungal Infections
3.3. Overlapping Infection
3.4. Bacterial Infections
3.5. Protozoal Infections
4. Other Potentially Infection-Related Causes of Hyponatremia
4.1. SIADH
4.2. Other—Dysnatremia in Critically Ill Patients
4.3. Drug—Induced Hyponatremia
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Rondon-Berrios, H.; Agaba, E.I.; Tzamaloukas, A.H. Hyponatremia: Pathophysiology, classification, manifestations and management. Int. Urol. Nephrol. 2014, 46, 2153–2165. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Jaber, B.L.; Madias, N.E. Incidence and Prevalence of Hyponatremia. Am. J. Med. 2006, 119, S30–S35. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Gu, S.; Parikh, A.; Radhakrishnan, J. Prevalence of Hyponatremia and Association with Mortality: Results from NHANES. Am. J. Med. 2013, 126, 1127–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corona, G.; Giuliani, C.; Parenti, G.; Norello, D.; Verbalis, J.G.; Forti, G.; Maggi, M.; Peri, A. Moderate Hyponatremia Is Associated with Increased Risk of Mortality: Evidence from a Meta-Analysis. PLoS ONE 2013, 8, e80451. [Google Scholar] [CrossRef]
- Winzeler, B.; Jeanloz, N.; Nigro, N.; Suter-Widmer, I.; Schuetz, P.; Arici, B.; Bally, M.; Blum, C.; Bock, A.; Huber, A.; et al. Long-term outcome of profound hyponatremia: A prospective 12 months follow-up study. Eur. J. Endocrinol. 2016, 175, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Dineen, R.; Thompson, C.J.; Sherlock, M. Hyponatraemia—Presentations and management. Clinical Medicine. J. R. Coll. Physicians Lond. 2017, 17, 263–269. [Google Scholar]
- Sigal, S.H.; Amin, A.; Chiodo, J.A., III; Sanyal, A. Management Strategies and Outcomes for Hyponatremia in Cirrhosis in the Hyponatremia Registry. Can. J. Gastroenterol. Hepatol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Sahay, M.; Sahay, R. Hyponatremia: A practical approach. Indian J. Endocrinol. Metab. 2014, 18, 760–771. [Google Scholar] [CrossRef]
- Liamis, G.; Milionis, H.J.; Elisaf, M. Hyponatremia in patients with infectious diseases. J. Infect. 2011, 63, 327–335. [Google Scholar] [CrossRef]
- Gankam Kengne, F. Physiopathology, clinical diagnosis, and treatment of hyponatremia. Acta Clin. Belg. Int. J. Clin. Lab. Med. 2016, 71, 359–372. [Google Scholar] [CrossRef]
- Mullens, W.; Damman, K.; Harjola, V.P.; Mebazaa, A.; Brunner-La Rocca, H.P.; Martens, P.; Testani, J.M.; Tang, W.; Orso, F.; Rossignol, P.; et al. The use of diuretics in heart failure with congestion—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.M.; Mckenna, K.; Thompson, C.J. Hyponatraemia. Clin. Endocrinol. 2000, 552, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Hausman-Kedem, M.; Reif, S.; Danino, D.; Limor, R.; Grinspan, Z.M.; Yerushalmi-Feler, A.; Ben-Tov, A.; Birger, A. Mechanism of Hyponatremia in Community-Acquired Pneumonia: Does B-Type Natriuretic Peptide Play a Causative Role? Pediatric Emerg. Care 2018, 34, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Peri, A.; Pirozzi, N.; Parenti, G.; Festuccia, F.; Menè, P. Hyponatremia and the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J. Endocrinol. Investig. 2010, 33, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.; Tian, Z.; Chen, J.; Ma, J.; Abudureyimu, A.; Qian, Q.; Zhuo, L. HIV/AIDS-related hyponatremia: An old but still serious problem. Ren. Fail. 2018, 40, 68–74. [Google Scholar] [CrossRef]
- Baylis, P.H. The syndrome of inappropriate antidiuretic hormone secretion. Int. J. Biochem. Cell Biol. 2003, 35, 1495–1499. [Google Scholar] [CrossRef]
- Warnera, M.H.; Holding, S.; Kilpatrick, E.S. The effect of newly diagnosed hypothyroidism on serum sodium concentrations: A retrospective study. Clin. Endocrinol. 2006, 64, 598–599. [Google Scholar] [CrossRef]
- John, S.; Thuluvath, P.J. Hyponatremia in cirrhosis: Pathophysiology and management. World J. Gastroenterol. 2015, 21, 3197–3205. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.; Coats, A.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- Buffington, M.A.; Abreo, K. Hyponatremia: A Review. J. Intensive Care Med. 2014, 31, 223–236. [Google Scholar] [CrossRef]
- Ruuskanen, O.; Lahti, E.; Jennings, L.C.; Murdoch, D.R. Viral pneumonia. Lancet 2011, 377, 1264–1275. [Google Scholar] [CrossRef]
- Viasus, D.; Marinescu, C.; Villoslada, A.; Cordero, E.; Gálvez-Acebal, J.; Fariñas, M.C.; Gracia-Ahufinger, I.; Fernández-Navarro, A.; Niubo, J.; Ortega, L.; et al. Community-acquired pneumonia during the first post-pandemic influenza season: A prospective, multicentre cohort study. J. Infect. 2013, 67, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Karki, L.; Thapa, B.; Sah, M.K. Hyponatremia in Patients with Community Acquired Pneumonia. JNMA J. Nepal Med. Assoc. 2016, 54, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.B.; Durigon, E.L.; Carvalho, A.C.; Leal, A.L.; Souza, T.S.; Thomazelli, L.M.; Moraes, C.T.; Vieira, S.E.; Gilio, A.E.; Stewien, K.E. Epidemiology and Genetic Variability of Human Metapneumovirus During a 4-Year-Long Study in Southeastern Brazil. J. Med. Virol. 2009, 81, 915–921. [Google Scholar] [CrossRef]
- Xu, L.; Ye, H.; Huang, F.; Yang, Z.; Zhu, B.; Xu, Y.; Qiu, Y.; Li, L. Moderate/Severe Hyponatremia Increases the Risk of Death among Hospitalized Chinese Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome Patients. PLoS ONE 2014, 9, e111077. [Google Scholar] [CrossRef]
- World Health Organization. Annex 1. WHO Clinical Staging of HIV Disease in Adults, Adolescents and Children; World Health Organization: Geneva, Switzerland, 2007; pp. 1–2. [Google Scholar]
- Musso, C.G. Water, electrolytes, and acid-base alterations in human immunodeficiency virus infected patients. World, J. Nephrol. 2016, 5, 33. [Google Scholar] [CrossRef]
- Braconnier, P.; Delforge, M.; Garjau, M.; Wissing, K.M.; De Wit, S. Hyponatremia is a marker of disease severity in HIV-infected patients: A retrospective cohort study. BMC Infect. Dis. 2017, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dao, C.N.; Peters, P.J.; Kiarie, J.N.; Zulu, I.; Muiruri, P.; Ong’Ech, J.; Mutsotso, W.; Potter, D.; Njobvu, L.; Stringer, J.S.; et al. Hyponatremia, Hypochloremia, and Hypoalbuminemia Predict an Increased Risk of Mortality During the First Year of Antiretroviral Therapy Among HIV-Infected Zambian and Kenyan Women. Aids Res. Hum. Retrovir. 2011, 27, 1149–1155. [Google Scholar] [CrossRef]
- Wen, Y.; Ding, H.B.; Chen, W.; Zhou, Y.; Wang, W.; Wang, Y.; Lu, X.; Liu, J.; Kang, J.; Geng, W.; et al. Correlation of baseline hormonal disorders with immunological failure and mortality in male HIV patients during follow-up. Medicine (United States) 2016, 95. Available online: http://journals.lww.com/md-journal%5Cnhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed18b&NEWS=N&AN=614182369 (accessed on 28 January 2019). [CrossRef]
- Aggarwal, S.; Garcia-Telles, N.; Aggarwal, G.; Lavie, C.; Lippi, G.; Henry, B.M. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): Early report from the United States. Diagnosis 2020, 7, 91–96. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, B.; Liu, J.; Chen, Y.; Zhong, P. Risk Factors Associated With Long-Term Hospitalization in Patients With COVID-19: A Single-Centered, Retrospective Study. Front. Med. 2020, 7, 315. [Google Scholar] [CrossRef] [PubMed]
- Berni, A.; Malandrino, D.; Parenti, G.; Maggi, M.; Poggesi, L.; Peri, A. Hyponatremia, IL-6, and SARS-CoV-2 (COVID-19) infection: May all ft together? J. Endocrinol. Investig. 2020. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, Z.; Liu, J.; Zhang, J.; Liu, T.; Mu, X.; Jiang, M. Analysis of clinical features and early warning indicators of death from severe fever with thrombocytopenia syndrome. Int. J. Infect. Dis. 2018, 73, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.T.T. Encefalites virais. Arquivos de Neuro-Psiquiatria. 2013, 71, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Lim, A.K.H.; Paramaswaran, S.; Jellie, L.J.; Junckerstorff, R.K. A Cross-Sectional Study of Hyponatremia Associated with Acute Central Nervous System Infections. J. Clin. Med. 2019, 8, 1801. [Google Scholar] [CrossRef] [Green Version]
- Basaran, S.; Yavuz, S.S.; Bali, E.A.; Cagatay, A.; Oncul, O.; Ozsut, H.; Eraksoy, H. Hyponatremia is predictive of HSV-1 encephalitis among patients with viral encephalitis. Tohoku J. Exp. Med. 2018, 247, 189–195. [Google Scholar] [CrossRef]
- Murakami, K.; Kohashi, S.; Sakurai, M.; Kato, J.; Toyama, T.; Koda, Y.; Yamane, Y.; Hashida, R.; Abe, R.; Yamazaki, R.; et al. Hyponatremia associated with human herpesvirus-6 (HHV-6) encephalitis after allogeneic hematopoietic stem cell transplantation: A presentation different from HHV-6 myelitis. Int. J. Hematol. 2017, 106, 436–440. [Google Scholar] [CrossRef]
- Rista, E.; Pilaca, A.; Akshija, I.; Rama, A.; Harja, E.; Puca, E.; Bino, S.; Cadri, V.; Kota, M.; Nestor, T.; et al. Hemorrhagic fever with renal syndrome in Albania. Focus on predictors of acute kidney injury in HFRS. J. Clin. Virol. 2017, 91, 25–30. [Google Scholar] [CrossRef]
- West, T.E.; von Saint André-Von Arnim, A. Clinical presentation and management of severe Ebola virus disease. Ann. Am. Thorac. Soc. 2014, 11, 1341–1350. [Google Scholar] [CrossRef]
- Van Griensven, J.; Bah, E.I.; Haba, N.; Delamou, A.; Camara, B.S.; Olivier, K.J.-J.; De Clerck, H.; Nordenstedt, H.; Semple, M.G.; Van Herp, M.; et al. Electrolyte and Metabolic Disturbances in Ebola Patients during a Clinical Trial, Guinea. Emerg. Infect. Dis. 2015, 22, 2120. [Google Scholar]
- Uyeki, T.M.; Mehta, A.K.; Davey, R.T., Jr.; Liddell, A.M.; Wolf, T.; Vetter, P.; Schmiedel, S.; Grünewald, T.; Jacobs, M.; Arribas, J.R.; et al. Clinical Management of Ebola Virus Disease in the United States and Europe. N. Engl. J. Med. 2016, 374, 636–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamadani, B.H.K.; Franco-Paredes, C.; McCollister, B.; Shapiro, L.; Beckham, J.D.; Henao-Martínez, A.F.; Beckham, D. Cryptococcosis and cryptococcal meningitis —New predictors and clinical outcomes at a united states academic medical center. Mycoses 2018, 61, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Van Wolfswinkel, M.E.; Hesselink, D.A.; Zietse, R.; Hoorn, E.J.; Van Genderen, P.J.J. Hyponatraemia in imported malaria is common and associated with disease severity. Malar. J. 2010, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Munyenyembe, A.; Gausi, K.; Nyirenda, T.S.; Hiestand, J.; Mallewa, J.; Mandala, W. HIV infection has a profound effect on hematological factors but not on electrolyte profile of Malawian adults presenting with uncomplicated malaria and severe malaria. J. Blood Med. 2018, 9, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Antinori, A.; LaRussa, D.; Cingolani, A.; Lorenzini, P.; Bossolasco, S.; Finazzi, M.G.; Bongiovanni, M.; Guaraldi, G.; Grisetti, S.; Vigo, B.; et al. Prevalence, Associated Factors, and Prognostic Determinants of AIDS-Related Toxoplasmic Encephalitis in the Era of Advanced Highly Active Antiretroviral Therapy. Clin. Infect. Dis. 2004, 39, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Libório, A.B.; Jr, G.B.S.; Silva, C.G.; Filho, F.J.L.; Neto, A.S.; Okoba, W.; De Bruin, V.M.; Araújo, S.M.H.A.; Daher, E.D.F. Hyponatremia, acute kidney injury, and mortality in HIV-related toxoplasmic encephalitis. Braz. J. Infect. Dis. 2012, 16, 558–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Zhou, Y.; Wang, W.; Wang, Y.; Lu, X.; Sun, C.M.; Cui, W.; Liu, J.; Geng, W.Q.; Shang, H.; et al. Baseline Factors Associated with Mortality within Six Months after Admission among Hospitalized HIV-1 Patients in Shenyang, China. Intern. Med. 2014, 53, 2455–2461. [Google Scholar] [CrossRef] [Green Version]
- Krüger, S.; Ewig, S.; Giersdorf, S.; Hartmann, O.; Frechen, D.; Rohde, G.; Suttorp, N.; Welte, T. Dysnatremia, vasopressin, atrial natriuretic peptide and mortality in patients with community-acquired pneumonia. Respir. Med. 2014, 108, 1696–1705. [Google Scholar] [CrossRef] [Green Version]
- Schuetz, P.; Haubitz, S.; Christ-Crain, M.; Albrich, W.C.; Zimmerli, W.; Mueller, B. Hyponatremia and anti-diuretic hormone in Legionnaires’ disease. BMC Infect. Dis. 2013, 13, 585. [Google Scholar] [CrossRef] [Green Version]
- Saraya, T.; Nunokawa, H.; Ohkuma, K.; Watanabe, T.; Sada, M.; Inoue, M.; Honda, K.; Oda, M.; Ogawa, Y.; Tamura, M.; et al. A Novel Diagnostic Scoring System to Differentiate between Legionella pneumophila Pneumonia and Streptococcus pneumoniae Pneumonia. Intern. Med. 2018, 57, 2479–2487. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Ishida, T.; Washio, Y.; Yamazaki, A.; Tachibana, H. Legionella pneumonia due to non-Legionella pneumophila serogroup 1: Usefulness of the six-point scoring system. BMC Pulm. Med. 2017, 17, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arancibia, F.; Cortes, C.P.; Valdés, M.; Cerda, J.; Hernández, A.; Soto, L.; Torres, A. Importance of Legionella pneumophila in the Etiology of Severe Community-Acquired Pneumonia in Santiago, Chile. Chest 2013, 145, 290–296. [Google Scholar]
- Bellew, S.; Grijalva, C.G.; Williams, D.J.; Anderson, E.J.; Wunderink, R.G.; Zhu, Y.; Waterer, G.W.; Bramley, A.M.; Jain, S.; Edwards, K.M.; et al. Pneumococcal and Legionella Urinary Antigen Tests in Community-acquired Pneumonia: Prospective Evaluation of Indications for Testing. Clin. Infect. Dis. 2019, 68, 2026–2033. [Google Scholar] [CrossRef] [PubMed]
- Haubitz, S.; Hitz, F.; Graedel, L.; Batschwaroff, M.; Wiemken, T.L.; Peyrani, P.; Ramirez, J.; Fux, C.A.; Mueller, B.; Schuetz, P. Ruling out Legionella in community-acquired pneumonia. Am. J. Med. 2014, 127, 1010.e11–1010.e19. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, N.; Higa, F.; Aoki, Y.; Kikuchi, T.; Seki, M.; Tateda, K.; Maki, N.; Uchino, K.; Ogasawara, K.; Kiyota, H.; et al. Clinical presentation of Legionella pneumonia: Evaluation of clinical scoring systems and therapeutic efficacy. J. Infect. Chemother. 2017, 23, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Akyil, F.T.; Akyil, M.; Ağca, M. Çoban; Güngör, A.; Ozantürk, E.; Söğüt, G.; Bekir, S.A.; Topbaş, A.; Türker, H.; Sevim, T. Hyponatremia prolongs hospital stay and hypernatremia better predicts mortality than hyponatremia in hospitalized patients with community-acquired pneumonia. Tuberkuloz Ve Toraks 2019, 67, 239–247. [Google Scholar] [CrossRef]
- Jain, D.; Nand, N.; Giri, K.; Bhutani, J. Scrub typhus infection, not a benign disease: An experience from a tertiary care center in Northern India. Med. Pharm. Rep. 2019, 92, 36–42. [Google Scholar] [CrossRef]
- Goel, G.A.; Deshpande, A.; Lopez, R.; Hall, G.S.; Van Duin, D.; Carey, W.D. Increased Rate of Spontaneous Bacterial Peritonitis Among Cirrhotic Patients Receiving Pharmacologic Acid Suppression. Clin. Gastroenterol. Hepatol. 2012, 10, 422–427. [Google Scholar] [CrossRef]
- Schwabl, P.; Bucsics, T.; Soucek, K.; Mandorfer, M.; Bota, S.; Blacky, A.; Hirschl, A.M.; Ferlitsch, A.; Trauner, M.; Peck-Radosavljevic, M.; et al. Risk factors for development of spontaneous bacterial peritonitis and subsequent mortality in cirrhotic patients with ascites. Liver Int. 2015, 35, 2121–2128. [Google Scholar] [CrossRef]
- Tseng, M.-H.; Cheng, C.-J.; Sung, C.-C.; Chou, Y.-C.; Chu, P.; Chen, J.-S.; Lin, S.-H. Hyponatremia is a surrogate marker of poor outcome in peritoneal dialysis-related peritonitis. BMC Nephrol. 2014, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ra, G.; Tsien, C.; Renner, E.L.; Wong, F.S.H. The negative prognostic impact of a first ever episode of spontaneous bacterial peritonitis in cirrhosis and ascites. J. Clin. Gastroenterol. 2015, 49, 858–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-H.; Huang, C.-H.; Kuo, M.-C.; Lin, S.-Y.; Hsu, C.-H.; Lee, C.-Y.; Chiu, Y.-W.; Chen, Y.-H.; Lu, P.-L.; Lu, P.-L. Microbiology of peritoneal dialysis-related infection and factors of refractory peritoneal dialysis related peritonitis: A ten-year single-center study in Taiwan. J. Microbiol. Immunol. Infect. 2019, 52, 752–759. [Google Scholar] [CrossRef]
- Underwood, J.; Cresswell, F.; Salam, A.P.; Keeley, A.J.; Cleland, C.R.; John, L.; Davidson, R.N. Complications of miliary tuberculosis: Low mortality and predictive biomarkers from a UK cohort. BMC Infect. Dis. 2017, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Misra, U.K.; Kalita, J.; Bhoi, S.K.; Singh, R.K. A study of hyponatremia in tuberculous meningitis. J. Neurol. Sci. 2016, 367, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Afzal, Z.; Kallumadanda, S.; Wang, F.; Hemmige, V.; Musher, D. Acute febrile illness and complications due to murine typhus, Texas, USA. Emerg. Infect. Dis. 2017, 23, 1268–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsioutis, C.; Chaliotis, G.; Kokkini, S.; Doukakis, S.; Tselentis, Y.; Psaroulaki, A.; Gikas, A. Murine typhus in elderly patients: A prospective study of 49 patients. Scand. J. Infect. Dis. 2014, 46, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Nagappa, M.; Rahul, W.; Sinha, S.; Bindu, P.; Mathuranath, P.; Rao, S.; Periyavan, S.; Rao, G.U.; Taly, A.B. Guillain Barre Syndrome in the elderly: Experience from a tertiary-care hospital in India. J. Clin. Neurosci. 2017, 46, 45–49. [Google Scholar] [CrossRef]
- Lien, C.-Y.; Huang, C.-R.; Tsai, W.-C.; Hsu, C.-W.; Tsai, N.-W.; Chang, C.-C.; Lu, C.-H.; Chien, C.-C.; Chang, W.-N. Epidemiologic trend of adult bacterial meningitis in southern Taiwan (2006–2015). J. Clin. Neurosci. 2017, 42, 59–65. [Google Scholar] [CrossRef]
- Pereira, G.; Guevara, M.; Fagundes, C.; Solà, E.; Rodríguez, E.; Fernandez, J.; Pavesi, M.; Arroyo, V.; Ginès, P. Renal failure and hyponatremia in patients with cirrhosis and skin and soft tissue infection. A retrospective study. J. Hepatol. 2012, 56, 1040–1046. [Google Scholar] [CrossRef]
- Song, Y.H.; Shin, T.G.; Kang, M.J.; Sim, M.S.; Jo, I.J.; Song, K.J.; Jeong, Y.K. Predicting Factors Associated With Clinical Deterioration of Sepsis Patients With Intermediate Levels of Serum Lactate. Shock. 2012, 38, 249–254. [Google Scholar] [CrossRef]
- Espejo, E.; Andrés, M.; Garcia, M.-C.; Fajardo, A.; Mauri, M.; Pérez, J.; Bella, F. Mediterranean spotted fever in the elderly: A prospective cohort study. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Parida, M.; Thatoi, P.K.; Choudhury, A.; Bhuin, S.; Behera, S.; Mohanty, R. Hyponatremia as a Mortality Predictor of Severe Malaria: A Hospital Based Cross-sectional Study. J. Clin. Diagn. Res. 2019, 13, 05–08. [Google Scholar] [CrossRef]
- Van Wolfswinkel, M.E.; Hesselink, D.A.; Hoorn, E.J.; De Rijke, Y.B.; Koelewijn, R.; Van Hellemond, J.J.; Van Genderen, P. Copeptin does not accurately predict disease severity in imported malaria. Malar. J. 2012, 11, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Severe malaria 2014. Trop. Med. Int. Health 2014, 19 (Suppl. 7–131). Available online: http://www.who.int/malaria/publications/atoz/who-severe-malaria-tmih-supplement-2014.pdf (accessed on 21 April 2020).
- Prabhash, K.; Noronha, V.; Goyal, G.; Joshi, A.; Gupta, S.; Ghosh, J.; Bajpai, J.; V, N.; G, G.; A, J.; et al. Presentation, complications, and impact of concurrent malaria infection on anticancer therapy. Indian J. Cancer 2013, 50, 254. [Google Scholar] [CrossRef]
- Basu, A.; Ryder, R.E. The syndrome of inappropriate antidiuresis is associated with excess long-term mortality: A retrospective cohort analyses. J. Clin. Pathol. 2014, 67, 802–806. [Google Scholar] [CrossRef]
- Shepshelovich, D.; Leibovitch, C.; Klein, A.; Zoldan, S.; Milo, G.; Shochat, T.; Rozen-Zvi, B.; Gafter-Gvili, A.; Lahav, M. The syndrome of inappropriate antidiuretic hormone secretion: Distribution and characterization according to etiologies. Eur. J. Intern. Med. 2015, 26, 819–824. [Google Scholar] [CrossRef]
- Shepshelovich, D.; Leibovitch, C.; Klein, A.; Zoldan, S.; Shochat, T.; Green, H.; Rozen-Zvi, B.; Lahav, M.; Gafter-Gvili, A. Yield of workup for patients with idiopathic presentation of the syndrome of inappropriate antidiuretic hormone secretion. Eur. J. Intern. Med. 2016, 32, 60–64. [Google Scholar] [CrossRef]
- VanderGheynst, F.; Sakr, Y.; Felleiter, P.; Hering, R.; Groeneveld, J.; Vanhems, P.; Taccone, F.S.; Vincent, J.-L. Incidence and prognosis of dysnatraemia in critically ill patients: Analysis of a large prevalence study. Eur. J. Clin. Investig. 2013, 43, 933–948. [Google Scholar] [CrossRef] [Green Version]
- Tsapepas, D.; Chiles, M.; Babayev, R.; Rao, M.K.; Jaitly, M.; Salerno, D.; Mohan, S. Incidence of Hyponatremia with High-Dose Trimethoprim-Sulfamethoxazole Exposure. Am. J. Med. 2016, 129, 1322–1328. [Google Scholar] [CrossRef]
- Coppens, R.; Yang, J.; Ghosh, S.; Gill, J.; Chambers, C.; Easaw, J.C. Evaluation of laboratory disturbance risk when adding low-dose cotrimoxazole for PJP prophylaxis to regimens of high-grade glioma patients taking RAAS inhibitors. J. Oncol. Pharm. Pr. 2018, 25, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
Bacterial | Viral | Fungal | Protozoal |
---|---|---|---|
CAP—mainly caused by Legionella pneumophila SBP Tuberculosis Murine typhus Sepsis Meningitidis Skin and soft tissue infection | HIV/AIDS HHV-6 Hantavirus SFTSV Ebola virus CNS infections | Cryptococcosis | Malaria |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Królicka, A.L.; Kruczkowska, A.; Krajewska, M.; Kusztal, M.A. Hyponatremia in Infectious Diseases—A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 5320. https://doi.org/10.3390/ijerph17155320
Królicka AL, Kruczkowska A, Krajewska M, Kusztal MA. Hyponatremia in Infectious Diseases—A Literature Review. International Journal of Environmental Research and Public Health. 2020; 17(15):5320. https://doi.org/10.3390/ijerph17155320
Chicago/Turabian StyleKrólicka, Anna L., Adrianna Kruczkowska, Magdalena Krajewska, and Mariusz A. Kusztal. 2020. "Hyponatremia in Infectious Diseases—A Literature Review" International Journal of Environmental Research and Public Health 17, no. 15: 5320. https://doi.org/10.3390/ijerph17155320
APA StyleKrólicka, A. L., Kruczkowska, A., Krajewska, M., & Kusztal, M. A. (2020). Hyponatremia in Infectious Diseases—A Literature Review. International Journal of Environmental Research and Public Health, 17(15), 5320. https://doi.org/10.3390/ijerph17155320