A Multidimensional Model of Public Health Approaches Against COVID-19
Abstract
:1. Introduction
2. Literature Review
2.1. SNSs As a Communication Tool for the Prevention of COVID-19
2.2. Information Exchange as Mediator
2.3. Awareness Knowledge as Mediator
2.4. Social Determinants As a Control Variable
3. Materials and Methodology
3.1. Socio-Economic Characteristics of Respondents
3.2. Model of the Study
4. Results and Discussions
4.1. Structure Model
4.2. The Direct and Indirect Effect of Mediating Variables on Preventive Behavior
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prem, K.; Liu, Y.; Russell, T.W.; Kucharski, A.J.; Eggo, R.M.; Davies, N.; Abbott, S. The Effect of Control Strategies to Reduce Social Mixing on Outcomes of the COVID-19 Epidemic in Wuhan, China: A Modelling Study. Lancet Public Health 2020, 90, 210–211. [Google Scholar]
- Zhu, N. A novel COVID-19 from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 7, 1–10. [Google Scholar]
- Kumar, A.; Srivastava, P.K.; Takeuchi, Y. Modeling the role of information and limited optimal treatment on disease prevalence. J. Theor. Biol. 2017, 414, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.M.; Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 2010, 53, 59–68. [Google Scholar] [CrossRef]
- Hui, D.S. The continuing 2019-nCoV epidemic threat of novel COVID-19es to global health—The latest 2019 novel COVID-19 outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iafusco, D.; Ingenito, N.; Prisco, F. The chatline as a communication and educational tool in adolescents with insulin-dependent diabetes. Diabetes Care 2000, 23, 1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardo, T.M.; Rajic, A.; Young, I.; Robiadek, K.; Pham, M.T.; Funk, J.A. Scoping review on search queries and social media for disease surveillance: A chronology of innovation. J. Med. Internet Res. 2013, 15, e147. [Google Scholar] [CrossRef]
- Velasco, E.; Agheneza, T.; Denecke, K.; Kirchner, G.; Eckmanns, T. Social media and internet-based data in global systems for public health surveillance: A systematic review. Milbank Q. 2014, 92, 7–33. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, J.; Hobbs, J.; Kittler, A.; Fox, S.; Middleton, B.; Bates, D.W. Communicating health information to an alarmed public facing a threat such as a bioterrorist attack. J. Health Commun. 2004, 9, 67–75. [Google Scholar] [CrossRef]
- Chew, C.; Eysenbach, G. Pandemics in the age of Twitter: Content analysis of Tweets during the 2009 H1N1 outbreak. PLoS ONE 2010, 5. [Google Scholar] [CrossRef]
- Dudo, A.D.; Dahlstrom, M.F.; Brossard, D. Reporting a potential pandemic: A risk-related assessment of avian influenza coverage in US newspapers. Sci. Commun. 2007, 28, 429–454. [Google Scholar] [CrossRef]
- You, M.; Ju, Y. The influence of outrage factors on journalists’ gatekeeping of health risks. J. Mass Commun. Q. 2015, 92, 959–969. [Google Scholar] [CrossRef]
- Lin, W.Y.; Zhang, X.; Song, H.; Omori, K. Health information seeking in the Web 2.0 age: Trust in social media, uncertainty reduction, and self-disclosure. Comput. Hum. Behav. 2016, 56, 289–294. [Google Scholar] [CrossRef]
- Fox, S. The Social Life of Health Information, 2011; Pew Internet & American Life Project: Washington, DC, USA, 2011. [Google Scholar]
- Chang, C. News coverage of health-related issues and its impacts on perceptions: Taiwan as an example. Health Commun. 2012, 27, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Davies, M. Swine Flu as Social Media Epidemic: CDC Tweets Calmly Online, Nielsen: New York, NY, USA, 2009.
- Ball-Rokeach, S.J.; DeFleur, M.L. A dependency model of mass-media effects. Commun. Res. 1976, 3, 3–21. [Google Scholar] [CrossRef]
- Tai, Z.; Sun, T. Media dependencies in a changing media environment: The case of the 2003 SARS epidemic in China. New Media Soc. 2007, 9, 987–1009. [Google Scholar] [CrossRef]
- Al-Surimi, K.; Khalifa, M.; Bahkali, S.; Ashraf, E.M.; Househ, M. The potential of social media and internet-based data in preventing and fighting infectious diseases: From internet to twitter. In Emerging and Re-Emerging Viral Infections; Springer: Berlin/Heidelberg, Germany, 2016; pp. 131–139. [Google Scholar]
- Lemon, S.M. Global infectious disease surveillance and detection: Assessing the challenges. Workshop summary; In Global Infectious Disease Surveillance and Detection: Assessing the Challenges Workshop Summary; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Brownstein, J.S.; Freifeld, C.C.; Madoff, L.C. Digital disease detection—harnessing the Web for public health surveillance. N. Engl. J. Med. 2009, 360, 2153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, K.; Brownstein, J.S. Early detection of disease outbreaks using the Internet. CMAJ 2009, 180, 829–831. [Google Scholar] [CrossRef] [Green Version]
- Kass-Hout, T.A.; Alhinnawi, H. Social media in public health. Br. Med. Bull. 2013, 108, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Milinovich, G.J.; Williams, G.M.; Clements, A.C.; Hu, W. Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect. Dis. 2014, 14, 160–168. [Google Scholar] [CrossRef]
- Misra, A.; Sharma, A.; Shukla, J. Stability analysis and optimal control of an epidemic model with awareness programs by media. Biosystems 2015, 138, 53–62. [Google Scholar] [CrossRef]
- Xiao, Y.; Tang, S.; Wu, J. Media impact switching surface during an infectious disease outbreak. Sci. Rep. 2015, 5, 7838. [Google Scholar] [CrossRef]
- Pawelek, K.A.; Oeldorf-Hirsch, A.; Rong, L. Modeling the impact of Twitter on influenza epidemics. Math. Biosci. Eng. 2014, 11, 1337–1356. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.T.; Kim, J.H.; Tsui, H.Y.; Griffiths, S. Anticipated and current preventive behaviors in response to an anticipated human-to-human H5N1 epidemic in the Hong Kong Chinese general population. BMC Infect. Dis. 2007, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, J.T.F.; Yang, X.; Tsui, H.; Kim, J.H. Monitoring community responses to the SARS epidemic in Hong Kong: From day 10 to day 62. J. Epidemiol. Community Health 2003, 57, 864–870. [Google Scholar] [CrossRef]
- Liao, Q.; Cowling, B.J.; Lam, W.W.T.; Fielding, R. The influence of social-cognitive factors on personal hygiene practices to protect against influenzas: Using modelling to compare avian A/H5N1 and 2009 pandemic A/H1N1 influenzas in Hong Kong. Int. J. Behav. Med. 2011, 18, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, G.M.; Lam, T.H.; Ho, L.M.; Ho, S.Y.; Chan, B.H.Y.; Wong, I.O.L.; Hedley, A.J. The impact of community psychological responses on outbreak control for severe acute respiratory syndrome in Hong Kong. J. Epidemiol. Community Health 2003, 57, 857–863. [Google Scholar] [CrossRef] [Green Version]
- Rubin, G.J.; Amlôt, R.; Page, L.; Wessely, S. Public perceptions, anxiety, and behaviour change in relation to the swine flu outbreak: Cross sectional telephone survey. BMJ 2009, 339, b2651. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.H.; Salathe, M. Early assessment of anxiety and behavioral response to novel swine-origin influenza A (H1N1). PLoS ONE 2009, 4, 11–15. [Google Scholar] [CrossRef]
- Lau, J.T.; Kim, J.H.; Tsui, H.; Griffiths, S. Perceptions related to human avian influenza and their associations with anticipated psychological and behavioral responses at the onset of outbreak in the Hong Kong Chinese general population. Am. J. Infect. Control 2007, 35, 38–49. [Google Scholar] [CrossRef]
- Funk, S.; Gilad, E.; Jansen, V. Endemic disease, awareness, and local behavioural response. J. Theor. Biol. 2010, 264, 501–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gluskin, R.T.; Johansson, M.A.; Santillana, M.; Brownstein, J.S. Evaluation of Internet-based dengue query data: Google Dengue Trends. PLoS Negl. Trop. Dis. 2014, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Eke, P.I. Using social media for research and public health surveillance. J. Dent. Res. 2011, 90, 1045. [Google Scholar] [CrossRef]
Variable | Category | Frequency | Percentage |
---|---|---|---|
Gender | Male | 361 | 72.2 |
Female | 139 | 27.8 | |
Age (Years) | 20–30 | 79 | 15.8 |
31–40 | 150 | 30.0 | |
41–50 | 100 | 20.0 | |
51–60 | 80 | 16.0 | |
61 and above | 91 | 18.2 | |
Qualification | Bachelors | 114 | 22.8 |
Masters | 192 | 38.4 | |
Postgraduates | 132 | 26.4 | |
Diplomas | 51 | 10.2 | |
Others | 11 | 2.2 | |
Income | 1–10,000 | 48 | 9.6 |
10,000–20,000 | 99 | 19.8 | |
20,000–30,000 | 165 | 33.0 | |
30,000–40,000 | 113 | 22.6 | |
40,000–above | 75 | 15.0 |
Contract | Item | Loading | Mean | SD | AVE | CR |
---|---|---|---|---|---|---|
Social Media Exposure | SC1 | 0.65 | 3.57 | 0.76 | 0.55 | 0.82 |
SC2 | 0.73 | |||||
SC3 | 0.69 | |||||
SC4 | 0.75 | |||||
Awareness Knowledge | AW1 | 0.74 | 3.54 | 0.79 | 0.62 | 0.89 |
AW2 | 0.66 | |||||
AW3 | 0.75 | |||||
Information Exchange | IF1 | 0.72 | 3.40 | 0.84 | 0.63 | 0.83 |
IF2 | 0.74 | |||||
IF3 | 0.68 | |||||
IF4 | 0.71 | |||||
Preventive Behavior | PB1 | 0.79 | 3.55 | 0.86 | 0.79 | 0.92 |
PB2 | 0.78 | |||||
PB3 | 0.61 |
Fit Index | Score | Recommended Threshold Value |
---|---|---|
Absolute fit measures | ||
CMIN/df | 1.787 | ≤2 a; ≤ 5 b |
GFI | 0.952 | ≥0.90 a; ≥0.80 b |
RMSEA | 0.040 | ≤0.8 a; ≤0.10 b |
Incremental fit measures | ||
NFI | 0.828 | ≥0.90 a |
AGFI | 0.936 | ≥0.90 a; ≥0.80 b |
CFI | 0.914 | ≥0.90 a |
Parsimonious fit measures | ||
PGFI | 0.071 | The higher the better |
Hypothesis | Estimate | S.E. | C.R. | P | Effect | Results | ||
---|---|---|---|---|---|---|---|---|
Information Exchange | <-- | Social exposure | 0.377 | 0.093 | 5.306 | *** | + | Supported |
Awareness Knowledge | <-- | Social exposure | 0.389 | 0.094 | 5.090 | *** | + | Supported |
Preventive Behavior | <-- | Social exposure | −0.097 | 0.118 | −1.181 | 0.238 | - | Not Supported |
Preventive Behavior | <-- | Information Exchange | 0.199 | 0.079 | 2.781 | 0.005 | + | Supported |
Preventive Behavior | <-- | Awareness Knowledge | 0.454 | 0.108 | 4.956 | *** | + | Supported |
Preventive Behavior | <-- | Income | 0.023 | 0.037 | 0.433 | 0.665 | − | Supported |
Preventive Behavior | <-- | Education | 0.106 | 0.042 | 2.028 | 0.043 | − | Supported |
Preventive Behavior | <-- | Age | −0.052 | 0.032 | −0.986 | 0.324 | − | Supported |
Preventive Behavior | <-- | Gender | 0.041 | 0.098 | 0.790 | 0.429 | − | Supported |
Predictor | Education | Age | Income | Gender | Social Exposure | Knowledge | Information Exchange |
---|---|---|---|---|---|---|---|
Direct Effect | |||||||
Awareness Knowledge | 0.000 | 0.000 | 0.000 | 0.000 | 0.476 | 0.000 | 0.000 |
Information Exchange | 0.000 | 0.000 | 0.000 | 0.000 | 0.492 | 0.000 | 0.000 |
Preventive Behavior | 0.085 | −0.032 | 0.016 | 0.077 | −0.140 | 0.535 | 0.220 |
Indirect Effect | |||||||
Preventive Behavior | 0.363 | ||||||
Total Effect | |||||||
0.085 | −0.32 | 0.016 | 0.077 | 0.363 + (−0.140) = 0.223 | 0.535 | 0.220 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, M.; Hussain, I.; Tian, J.; Akram, S.; Mangenda Tshiaba, S.; Mushtaq, S.; Shad, M.A. A Multidimensional Model of Public Health Approaches Against COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 3780. https://doi.org/10.3390/ijerph17113780
Nazir M, Hussain I, Tian J, Akram S, Mangenda Tshiaba S, Mushtaq S, Shad MA. A Multidimensional Model of Public Health Approaches Against COVID-19. International Journal of Environmental Research and Public Health. 2020; 17(11):3780. https://doi.org/10.3390/ijerph17113780
Chicago/Turabian StyleNazir, Mehrab, Iftikhar Hussain, Jian Tian, Sabahat Akram, Sidney Mangenda Tshiaba, Shahrukh Mushtaq, and Muhammad Afzal Shad. 2020. "A Multidimensional Model of Public Health Approaches Against COVID-19" International Journal of Environmental Research and Public Health 17, no. 11: 3780. https://doi.org/10.3390/ijerph17113780
APA StyleNazir, M., Hussain, I., Tian, J., Akram, S., Mangenda Tshiaba, S., Mushtaq, S., & Shad, M. A. (2020). A Multidimensional Model of Public Health Approaches Against COVID-19. International Journal of Environmental Research and Public Health, 17(11), 3780. https://doi.org/10.3390/ijerph17113780