Physico-Chemical Influence of Surface Water Contaminated by Acid Mine Drainage on the Populations of Diatoms in Dams (Iberian Pyrite Belt, SW Spain)
<p>Sampling sites: dams 1–23 located in the Spanish sector of the IPB. (adapted from [<a href="#B37-ijerph-16-04516" class="html-bibr">37</a>]).</p> "> Figure 2
<p>Dendogram resulting from the cluster of physico-chemical and biological variables using the Ward, Euclidean Square Method.</p> "> Figure 3
<p>Dendrogram resulting from the cluster of the sampling sites using the Ward, Euclidean.</p> "> Figure 4
<p>Distance based redundancy analysis (dbRDA) for the diatom resemblance matrix showing the samples’ arrangement and the environmental variables that explain 32.7% + 9.4% of total fitted variation. pH was the main variable that divided treatments into 4 groups: Maris, Aac, Gos, Cmora (pH 2–3); Andc, San, And, Dpin (pH 3–4.5); Gran, Lagu, Pleon, Oliv, Chan, SilI, SilII, Joya, Gar, Agrio, Camp, Corum (pH 4.5–6); Herr, Diq I, Diq II pH 6–7. For the meaning of the dam codes, please see <a href="#ijerph-16-04516-t002" class="html-table">Table 2</a> where the full name is given.</p> "> Figure 5
<p>Graphical treatment showing the % of contribution of each species to the observed similarity between samples in each group through SIMPER analysis. Species codes: ADMI- <span class="html-italic">Achnanthidium minutissimum</span>, ADEG- <span class="html-italic">Achnanthidium exiguum</span>, BNEO- <span class="html-italic">Brachysira neoexilis</span>, CMEN- <span class="html-italic">Cyclotella meneghiniana</span>, ENMI- <span class="html-italic">Encyonema minutum</span>, EEXI- <span class="html-italic">Eunotia exigua</span>, PALJ- <span class="html-italic">Pinnularia aljustrelica</span>, GDEC- <span class="html-italic">Geissleria decussis</span>, NVEN- <span class="html-italic">Navicula veneta</span>, NTHM- <span class="html-italic">Nitzschia thermalis</span>, NITZ- <span class="html-italic">Nitzschia sp</span>., NVDA- <span class="html-italic">Navicula vandamii</span>, NFBU- <span class="html-italic">Nitzschia frustulum</span> var. <span class="html-italic">bulnheimiana</span>, NAMP- <span class="html-italic">Nitzschia amphibia</span>, NROS- <span class="html-italic">Navicula rostellata</span>, NPAL- <span class="html-italic">Nitzschia palea</span>, PACO- <span class="html-italic">Pinnularia acoricola</span>, NNAN- <span class="html-italic">Nitzschia nana</span>, NCRY- <span class="html-italic">Navicula cryptocephala</span>, PACI- <span class="html-italic">Pinnularia acidophila</span>, PSCA- <span class="html-italic">Pinnularia subcapitata</span>.</p> ">
Abstract
:1. Introduction
Study Area
2. Methods
2.1. Sampling and Analysis of Water
2.2. Sampling and Analyse of Diatoms
2.3. Statistical Treatment
2.3.1. Cluster Analysis
2.3.2. dbRDA and SIMPER
3. Results and Discussion
3.1. Spatial Distribution of the Environmental Variables
3.2. Biogeochemical Characterization of Physico-Chemical and Biological Parameters from Cluster Analysis
3.3. Biogeochemical Characterization of Sampling Sites from Cluster Analysis
- A
- Cluster A: samples from A_Acidas to Marimillas with pH < 5.68;
- B
- Cluster B: samples from Campanario to Silillos II with pH > 5.70.
3.4. dbRDA Analysis
3.5. Diatom Community Ecological Preferences: SIMPER Analysis and Graphical Treatment
4. Conclusions
- Maris, Aac, Gos, Cmora (pH 2–3);
- Andc, San, And, Dpin (pH 3–4.5);
- Gran, Pleon, Oliv, Chan, Lagu, SilI, SilII, Joya, Gar, Agrio, Camp, Corum (pH 4.5–6);
- Herr, Diq I, Diq II (pH 6–7).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grande, J.A.; Borrego, J.; Morales, J.A. A study of heavy metal pollution in the Tinto-Odiel estuary in southwestern Spain using factor analysis. Environ. Geol. 2000, 39, 1095–1101. [Google Scholar] [CrossRef]
- Skousen, J.; Sextone, A.; Garbutt, K.; Sencindiver, J. Acid mine drainage treatment with wetlands and anoxic limestone drains. In Applied Wetland Science and Technology; Kent, D.M., Ed.; Lewis: Boca Raton, FL, USA, 1994; pp. 263–282. [Google Scholar]
- Grande, J.A.; Andújar, J.M.; Aroba, J.; Beltrán, R.; de la Torre, M.L.; Cerón, J.C.; Gómez, T. Fuzzy modeling of the Spatial evolution of the chemistry in the tinto river (SW Spain). Water Resour. Manag. 2010, 24, 3219–3235. [Google Scholar] [CrossRef]
- Grande, J.A.; Aroba, J.; Andújar, J.M.; Gómez-Olivera, T.; de la Torre, M.L.; Borrego, J.; Romero, S.; Barranco, C.; Santisteban, M. Tinto versus odiel: Two A.M.D. Polluted rivers and an unresolved Issue. An artificial Intelligence approach. Water Resour. Manag. 2011, 25, 3575–3594. [Google Scholar] [CrossRef]
- Letterman, R.D.; Mitsch, W.J. Impact of mine drainage on a mountain stream in Pennsylvania. Environ. Pollut. 1978, 17, 53–73. [Google Scholar] [CrossRef]
- Grande, J.A.; Jiménez, A.; Romero, S.; de la Torre, M.L.; Gómez-Olivera, T. Quantification of heavy metals from A. M.D. Discharged into a public water supply dam in the Iberian Pyrite Belt (SW Spain) using centered moving average. Water Air Soil Pollut. 2010, 212, 299–307. [Google Scholar] [CrossRef]
- Leblanc, M.; Morales, J.A.; Borrego, J.; Elbaz-Poulichet, F. 4500-year-old mining pollution in southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol. 2000, 95, 655–662. [Google Scholar]
- Grande, J.A.; Valente, T.; de la Torre, M.; Santisteban, M.; Cerón, J.C.; Perez-Ostale, E. Characterization of acid mine drainage sources in the Iberian Pyrite Belt: Base methodology for quantifying affected areas and for environmental management. Environ. Earth Sci. 2014, 71, 2729–2738. [Google Scholar] [CrossRef]
- Grande, J.A. (Ed.) Drenaje Ácido de Mina en la Faja Pirítica Ibérica: Técnicas de Estudio e Inventario de Explotaciones; Servicio de Publicaciones de la Universidad de Huelva: Huelva, Spain, 2016; p. 348. [Google Scholar]
- Luís, A.T.; Grande, J.A.; Davila, J.M.; Aroba, J.; Durães, N.; Almeida, S.F.P.; de la Torre, M.L.; Sarmiento, A.M.; Fortes, J.C.; Ferreira da Silva, E.; et al. Application of fuzzy logic tools for the biogeochemical characterisation of (un)contaminated waters from Aljustrel mining area (South Portugal). Chemosphere 2018, 211, 736–744. [Google Scholar] [CrossRef]
- Luís, A.T.; Grande, J.A.; Durães, N.; Dávila, J.M.; Santisteban, M.; Almeida, S.F.P.; Sarmiento, A.M.; de la Torre, M.L.; Fortes, J.C.; Ferreira da Silva, E. Biogeochemical characterization of surface waters in the Aljustrel mining area (South Portugal). Environ. Geochem. Health 2019, 41, 1909–1921. [Google Scholar] [CrossRef]
- Sarmiento, A.M.; Grande, J.A.; Luís, A.T.; Dávila, J.M.; Fortes, J.C.; Santisteban, M.; Curiel, J.; de la Torre, M.L.; Ferreira da Silva, E. Negative pH values in an open air radical environment affected by acid mine drainage. Characterization and proposal of a hydrogeochemical model. Sci. Total Environ. 2018, 644, 1244–1253. [Google Scholar] [CrossRef]
- Mulholland, P.J.; Elwood, J.W.; Palumbo, A.V.; Stevenson, R.J. Effects of stream acidification on periphyton composition, chlorophyll and productivity. Can. J. Fish. Aquat. Sci. 1986, 43, 1846–1858. [Google Scholar] [CrossRef]
- Planas, D. Acidification effects. In Algal Ecology: Freshwater Benthic Ecosystems; Stevenson, R.J., Bothwell, M.L., Lowe, R.L., Eds.; Academic: San Diego, CA, USA, 1996; pp. 497–530. [Google Scholar]
- Verb, R.G.; Vis, M.L. Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and nonimpacted sites. J. North Am. Benthol. Soc. 2000, 19, 274–288. [Google Scholar] [CrossRef]
- Verb, R.G.; Vis, M.L. Survey of benthic diatom communities from lotic systems within the Western Allengheny Plateau. J. Phycol. 2000, 36, 68. [Google Scholar] [CrossRef]
- Luís, A.T.; Teixeira, P.; Almeida, S.F.P.; Ector, L.; Matos, J.X.; Ferreira da Silva, E.A. Impact of acid mine drainage (AMD) on water quality, stream sediments and periphytic diatom communities in the surrounding streams of Aljustrel mining area (Portugal). Water Air Soil Pollut. 2009, 200, 147–167. [Google Scholar] [CrossRef]
- Luís, A.T.; Novais, M.H.; Van de Vijver, B.; Almeida, S.F.P.; Ferreira da Silva, E.A.; Hoffmann, L.; Ector, L. Pinnularia aljustrelica sp. nov. (Bacillariophyceae), a new diatom species found in acidic waters in the Aljustrel mining area (Portugal), and further observations on the taxonomy, morphology and ecology of P. acidophila HOFMANN et KRAMMER and P. acoricola HUSTEDT. Fottea 2012, 12, 27–40. [Google Scholar]
- Luís, A.T.; Durães, N.; Almeida, S.F.P.; Ferreira da Silva, E. Integrating geochemical (surface waters, stream sediments) and biological (diatoms) approaches to assess environmental impact in a pyritic mining area: Aljustrel (Alentejo, Portugal). J. Environ. Sci. 2016, 42, 215–226. [Google Scholar] [CrossRef]
- Valente, T.; Rivera, M.J.; Almeida, S.F.P.; Delgado, C.; Gomes, P.; Grande, J.A.; de la Torre, M.L. Characterization of water reservoirs affected by acid mine drainage: Geochemical, mineralogical and biological (diatoms) properties of the water. Environ. Sci. Pollut. Res. Int. 2016, 23, 6002–6011. [Google Scholar] [CrossRef]
- Bahls, L.L. Periphyton Bioassessment Methods for Montana Streams; Water Quality Bureau: Helena, Montana, MT, USA, 1993. [Google Scholar]
- European Community (EC). Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off. J. Eur. Commun. 2000, 327, 1–72. [Google Scholar]
- Bao, R.; Alonso, A.; Delgado, C.; Pagés, J.L. Identification of the main driving mechanisms in the evolution of a small coastal wetland (Traba, Galicia, NW Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 247, 296–312. [Google Scholar] [CrossRef]
- Delgado, C. Evolución Holocena de la Laguna de Traba (A Coruña) a Partir del Estudio de Las Asociaciones Fósiles de Diatomeas. Bachelor’s Thesis, Universidad de La Coruña, La Coruña, Spain, 2006; p. 87. [Google Scholar]
- Zalack, J.T.; Smucker, N.J.; Vis, M.L. Development of a Diatom Index of biotic integrity for acid mine drainage impacted streams. Ecol. Indic. 2010, 10, 287–295. [Google Scholar] [CrossRef]
- Bray, J.P.; Broady, P.A.; Niyogi, D.K.; Harding, J.S. Periphyton communities in New Zealand streams impacted by acid mine drainage. Mar. Freshw. Res. 2008, 59, 1084–1091. [Google Scholar] [CrossRef]
- Gustavson, K.; Wängberg, S.-Å. Tolerance induction and succession in microalgae communities exposed to copper and atrazine. Aquat. Toxicol. 1995, 32, 283–302. [Google Scholar] [CrossRef]
- Hirst, H.; Chaud, F.; Delabie, C.; Jüttner, I.; Ormerod, S.J. Assessing the short-term response of stream diatoms to acidity using inter-basin transplantation and chemical diffusing substrates. Freshw. Biol. 2004, 49, 1072–1088. [Google Scholar] [CrossRef]
- Leland, H.V.; Carter, J.L. Effects of copper on species composition of periphyton in a Sierra Nevada, California stream. Freshw. Biol. 1984, 14, 281–296. [Google Scholar] [CrossRef]
- Medley, C.N.; Clements, W.H. Responses of diatom communities to heavy metals in streams: The influence of longitudinal variation. Ecol. Appl. 1998, 8, 631–644. [Google Scholar] [CrossRef]
- Leistel, J.M.; Marcoux, E.; Thieblemont, D.; Quesada, C.; Sánchez, A.; Almodóvar, G.R.; Pascual, E.; Sáez, R. The volcanic hosted massive sulphide deposits of the Iberian Pyrite Belt. Review and preface to the special issue. Miner. Depos. 1998, 33, 2–30. [Google Scholar] [CrossRef]
- Olías, M.; Nieto, J.M.; Sarmiento, A.M.; Cerón, J.C.; Cánovas, C.R. Seasonal water quality variations in a river affected by acid mine drainage: The Odiel River (South West Spain). Sci. Total Environ. 2004, 333, 267–281. [Google Scholar] [CrossRef]
- Pinedo Vara, I. Piritas de Huelva, su Historia, Minería y Aprovechamiento; Summa: Madrid, Spain, , 1963; p. 1003. [Google Scholar]
- Nordstrom, K. Mine Waters: Acidic to Circmneutral. Elements 2011, 7, 393–398. [Google Scholar] [CrossRef]
- De la Torre, M.L.; Grande, J.A.; Santisteban, M.; Valente, T.; Borrego, J.; Salguero, F. Statistical Contrast Analysis of Hydrochemical Parameters Upstream of the Tidal Influence in Two AMD-Affected Rivers. Mine Water Environ. 2014, 33, 217–227. [Google Scholar] [CrossRef]
- Cerón, J.C.; Grande, J.A.; de la Torre, M.L.; Santisteban, M.; Valente, T. Impact of AMD Processes on the Water Dams of the Iberian Pyrite Belt: Overall Hydrochemical Characterization (Huelva, SW Spain). Water Air Soil Pollut. 2013, 224, 1–11. [Google Scholar] [CrossRef]
- Prygiel, J.; Coste, M. Guide méthodologique pour la mise en oeuvre de l’Indice Biologique Diatomées NF T 90–354; Agence de l’eau Artois Picardie: Douai, France, 2000; p. 340. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. Naviculaceae. Süßwasserflora von Mitteleuropa; Gustav Fischer Verlag: Stuttgart, Germany, 1986; Volume 1, p. 876. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. Bacillariaceae Epithemiaceae, Surirellacea. Süßwasserflora von Mitteleuropa; Gustav Fischer Verlag: Stuttgart, Germany, 1988; Volume 2, p. 596. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. Centrales, Fragilariaceae, Eunoticeae. Süßwasserflora von Mitteleuropa; Gustav Fischer Verlag: Stuttgart, Germany, 1991; Volume 3, p. 577. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. Achnanthaceae, Kristische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis. Süßwasserflora von Mitteleuropa; Gustav Fischer Verlag: Stuttgart, Germany, 1991; Volume 4, p. 437. [Google Scholar]
- Grande, J.A.; Borrego, J.; de la Torre, M.L.; Sáinz, A. Application of cluster analysis to the geochemistry zonation of the estuary waters in the Tinto and Odiel Rivers (Huelva, Spain). Environ. Geochem. Health 2003, 25, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Grande, J.A.; de la Torre, M.L.; Valente, T.; Fernández, J.P.; Borrego, J.; Santisteban, M.; Cerón, J.C.; Sánchez-Rodas, D. Stratification of metal and sulphate loads in acid mine drainage receiving water dams—Variables regionalization by cluster analysis. Water Environ. Res. 2015, 87, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.R.; Gorley, R.N. PRIMER v.6 User Manual/Tutorial; PRIMER-E: Plymouth, UK, 2006. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; Primer-E: Plymouth, UK, 2008. [Google Scholar]
- López-Pamo, E.; Sánchez España, J.; Diez Ercilla, M.; Santofimia Pastor, E.; Reyes Andrés, J. Cortas mineras inundadas de la Faja Pirítica: Inventario e hidroquímica. Serie: Medio Ambiente, Número; Instituto Geológico y Minero de España: Madrid, Spain, 2009; Volume 13. [Google Scholar]
- Santofimia, E.; López-Pamo, E.; Reyes, J. Changes in stratification and iron redox cycle of an acidic pit lake in relation with climatic factors and physical processes. J. Geochem. Explor. 2012, 116, 40–50. [Google Scholar] [CrossRef]
- De la Torre, M.L.; Grande, J.; Valente, T.; Perez-Ostalé, E.; Santisteban, M.; Aroba, J.; Ramos, I. Definition of redox and pH influence in the AMD mine system using a fuzzy qualitative tool (Iberian Pyrite Belt, SW Spain). Environ. Sci. Pollut. Res. 2016, 23, 5451–5458. [Google Scholar] [CrossRef]
- Santisteban, M. Incidencia de procesos AMD en la hidroquinona de embalses afectados en la Faja Pirítica Ibérica. Ph.D. Thesis, Universidad de Huelva, Huelva, Spain, 2015. [Google Scholar]
- Directiva 98/83/CE del Consejo de 3 de noviembre de 1998 relativa a la calidad de las aguas destinadas al consumo humano. Available online: https://eur-lex.europa.eu/legal-content/ES/ALL/?uri=celex%3A31998L0083 (accessed on 7 October 2019).
- Valente, T.; Grande, J.A.; Cerón, J.C.; de la Torre, M.L.; Santisteban, M.; Borrego, J.; Fernández, P. Sanchez-Rodas, D.Spatial distribution of major and trace elements in a mining dam: Sources and relationships among elements of environmental concern. Environ. Earth Sci. 2016, 75, 342. [Google Scholar] [CrossRef]
- Kim, Y.S.; Choi, J.S.; Kim, J.H.; Kim, S.C.; Park, J.W.; Kim, H.S. The effects of effluent from a closed mine and treated sewage on epilithic diatom communities in a Korean stream. Nova Hedwig. 2008, 86, 507–524. [Google Scholar] [CrossRef]
Variables | Average | %Variance | Minimum | Maximum | Range |
---|---|---|---|---|---|
Al (mg/L) | 0.37 | 44.43 | 0.07 | 0.74 | 0.67 |
As (mg/L) | 0.12 | 299.66 | 0.00 | 1.69 | 1.68 |
Cd (mg/L) | 0.24 | 142.60 | 0.07 | 1.58 | 1.52 |
Co (mg/L) | 0.68 | 279.45 | 0.01 | 8.57 | 8.56 |
Cu (mg/L) | 11.41 | 426.25 | 0.03 | 234.37 | 234.35 |
Fe (mg/L) | 129.19 | 413.27 | 0.13 | 2559.85 | 2559.72 |
Mn (mg/L) | 5.75 | 194.64 | 0.11 | 41.63 | 41.52 |
Ni (mg/L) | 0.18 | 175.79 | 0.02 | 1.23 | 1.21 |
Pb (mg/L) | 0.34 | 29.49 | 0.24 | 0.61 | 0.37 |
Sb (mg/L) | 0.02 | 184.82 | 0.00 | 0.13 | 0.13 |
Zn (mg/L) | 11.59 | 275.30 | 0.09 | 117.78 | 117.69 |
SO42−(mg/L) | 474.03 | 177.17 | 21.06 | 3193.63 | 3172.57 |
pH | 4.79 | 29.79 | 2.21 | 6.68 | 4.47 |
T (°C) | 16.71 | 8.94 | 13.73 | 19.64 | 5.91 |
EC (µs/cm) | 1093.81 | 147.74 | 157.48 | 6494.38 | 6336.90 |
TDS (mg/L) | 8389.7 | 174.52 | 100.81 | 6196.57 | 6095.76 |
∑ % Pin | 19.93 | 161.68 | 0 | 96.66 | 96.66 |
∑ N° Sp. | 15.43 | 48.91 | 4 | 27 | 23 |
Basin | Sub-Basin | River/Stream | Dam/Code | Origin of Mine Contamination | Water Uses |
---|---|---|---|---|---|
Odiel | MECA | Água Agria | A_Acidas (Aac) | Tharsis Group | Industrial-mining |
Guadiamar | - | Agrio | Agrio (Agrio) | Castillo de las Guardas, Aznalcóllar | Industrial and water supply |
Chanza | Malagón | And_Cobica (And) | Herrerías and Lagunazo | Urban supply and agricultural | |
Chanza | Cobica | And_Chorrito (Andc) | Herrerías and Lagunazo | Urban supply and agricultural | |
Odiel | Odiel | Aguas Agrias | Campanario (Camp) | Mina Campanario | Recreation and Fishing |
Chanza | - | Chanza | Chanza (Chan) | Santo Domingo, Vuelta Falsa, el Cura, La Condesa, Sta Ana | Water supply, Fishing, Irrigation |
Tinto | - | Corumbel | Corumbel (Corum) | Corumbel Group | Water supply and irrigation |
Odiel | Meca | Meca | Del Pino (Dpin) | Tharsis Group | Industrial |
Chanza | - | Chorrito | Dique I (Diq I) | Herrerías | Industrial |
Chanza | - | Chorrito | Dique II (Diq II) | Herrerías | Industrial |
Odiel | Oraque | Garnacha (Gar) | San Telmo | Industrial-Water supply | |
Odiel | Odiel | Gossan (Gos) | Río Tinto Mining Group | Industrial and Mining | |
Odiel | Oraque | Água Agria | Grande (Gran) | Tharsis Group | Mining |
Chanza | - | Chorrito | Herrerías (Herr) | Herrerías | Industrial |
Chanza | - | Lagunazo (Lagu) | Lagunazo | Industrial | |
Odiel | Oraque | La Joya | La Joya (Joya) | La Joya | __ |
Tinto | - | Tinto | Marismillas (Maris) | Río Tinto Mining Group | Industrial |
Odiel | Meca | Meca | Sancho (San) | Tharsis Group | Industrial-Water supply |
Tinto | - | Buitrón | Silillos I (Sil I) | Silillos | Water supply |
Tinto | - | Buitrón | Silillos II (Sil II) | Silillos | Water supply |
Odiel | Olivargas | Olivargas | Cueva de la Mora (Cmora) | Cueva de la Mora | Industrial, agricultural and water supply |
Odiel | Olivargas | Olivargas | Olivargas (Oliv) | Cueva de la Mora, Valdelamusa, Sorpresa | Industrial, agricultural and water supply |
Odiel | Olivargas | Naranjo | Puerto León (Pleon) | Zarza-El Perrunal Group | Industrial-Water supply |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera, M.J.; Luís, A.T.; Grande, J.A.; Sarmiento, A.M.; Dávila, J.M.; Fortes, J.C.; Córdoba, F.; Diaz-Curiel, J.; Santisteban, M. Physico-Chemical Influence of Surface Water Contaminated by Acid Mine Drainage on the Populations of Diatoms in Dams (Iberian Pyrite Belt, SW Spain). Int. J. Environ. Res. Public Health 2019, 16, 4516. https://doi.org/10.3390/ijerph16224516
Rivera MJ, Luís AT, Grande JA, Sarmiento AM, Dávila JM, Fortes JC, Córdoba F, Diaz-Curiel J, Santisteban M. Physico-Chemical Influence of Surface Water Contaminated by Acid Mine Drainage on the Populations of Diatoms in Dams (Iberian Pyrite Belt, SW Spain). International Journal of Environmental Research and Public Health. 2019; 16(22):4516. https://doi.org/10.3390/ijerph16224516
Chicago/Turabian StyleRivera, Maria José, Ana Teresa Luís, José Antonio Grande, Aguasanta Miguel Sarmiento, José Miguel Dávila, Juan Carlos Fortes, Francisco Córdoba, Jesus Diaz-Curiel, and María Santisteban. 2019. "Physico-Chemical Influence of Surface Water Contaminated by Acid Mine Drainage on the Populations of Diatoms in Dams (Iberian Pyrite Belt, SW Spain)" International Journal of Environmental Research and Public Health 16, no. 22: 4516. https://doi.org/10.3390/ijerph16224516
APA StyleRivera, M. J., Luís, A. T., Grande, J. A., Sarmiento, A. M., Dávila, J. M., Fortes, J. C., Córdoba, F., Diaz-Curiel, J., & Santisteban, M. (2019). Physico-Chemical Influence of Surface Water Contaminated by Acid Mine Drainage on the Populations of Diatoms in Dams (Iberian Pyrite Belt, SW Spain). International Journal of Environmental Research and Public Health, 16(22), 4516. https://doi.org/10.3390/ijerph16224516