Physical Activity Recommendations for Health and Beyond in Currently Inactive Populations
Abstract
:1. Introduction
2. Take It Easy
3. Step It up
4. Alternate
4.1. Interval Walking
4.2. Swimming
5. Be Eccentric
6. Pump It up No Iron Needed
7. Discussion
8. Conclusions
Author Contributions
Conflicts of Interest
References
- Kahlmeier, S.; Wijnhoven, T.M.A.; Alpiger, P.; Schweizer, C.; Breda, J.; Martin, B.W. National physical activity recommendations: Systematic overview and analysis of the situation in European countries. BMC Public Health 2015, 15, 133. [Google Scholar] [CrossRef] [PubMed]
- Brawley, L.R.; Latimer, A.E. Physical activity guides for Canadians: Messaging strategies, realistic expectations for change, and evaluation. Can. J. Public Health 2007, 98 (Suppl. 2), S170–S184. [Google Scholar] [PubMed]
- Wen, C.P.; Wai, J.P.M.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.D.; Lee, M.-C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet 2011, 378, 1244–1253. [Google Scholar] [CrossRef]
- Hupin, D.; Roche, F.; Gremeaux, V.; Chatard, J.-C.; Oriol, M.; Gaspoz, J.-M.; Barthélémy, J.-C.; Edouard, P. Even a low-dose of moderate-to-vigorous physical activity reduces mortality by 22% in adults aged ≥60 years: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Arem, H.; Moore, S.C.; Patel, A.; Hartge, P.; de Gonzalez, A.B.; Visvanathan, K.; Campbell, P.T.; Freedman, M.; Weiderpass, E.; Adami, H.O.; et al. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Int. Med. 2015, 175, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report. 2008. Available online: https://health.gov/paguidelines/report/pdf/CommitteeReport.pdf (accessed on 25 February 2018).
- De Souto Barreto, P. Global health agenda on non-communicable diseases: Has WHO set a smart goal for physical activity? BMJ 2015, 350, h23. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.R.; Bredin, S.S.D. Reflections on Physical Activity and Health: What Should We Recommend? Can. J. Cardiol. 2016, 32, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Weed, M. Evidence for physical activity guidelines as a public health intervention: Efficacy, effectiveness, and harm—A critical policy sciences approach. Health Psychol. Behav. Med. 2016, 4, 56–69. [Google Scholar] [CrossRef]
- Hupin, D.; Edouard, P.; Gremeaux, V.; Roche, F.; Barthélémy, J.-C. We need clear health messages about exercise. BMJ 2016, 355, i6252. [Google Scholar] [CrossRef] [PubMed]
- De Souto Barreto, P. Time to challenge public health guidelines on physical activity. Sports Med. 2015, 45, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, M.; Tripette, J.; Kawakami, R.; Murakami, H. “+10 min of Physical Activity per Day”: Japan Is Looking for Efficient but Feasible Recommendations for Its Population. J. Nutr. Sci. Vitaminol. 2015, 61, S7–S9. [Google Scholar] [CrossRef] [PubMed]
- Franco, M.R.; Tong, A.; Howard, K.; Sherrington, C.; Ferreira, P.H.; Pinto, R.Z.; Ferreira, M.L. Older people’s perspectives on participation in physical activity: A systematic review and thematic synthesis of qualitative literature. Br. J. Sports Med. 2015, 49, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Cerin, E.; Leslie, E.; Sugiyama, T.; Owen, N. Perceived barriers to leisure-time physical activity in adults: An ecological perspective. J. Phys. Act. Health 2010, 7, 451–459. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Global Recommendations on Physical Activity for Health; World Health Organisation: Geneva, Switzerland, 2010; Available online: http://apps.who.int/iris/bitstream/handle/10665/44399/9789241599979_eng.pdf;jsessionid=1892C5EA4A6C4B6EF81ECBD614B2C1FB?sequence=1 (accessed on 25 February 2018).
- Lee, I.-M.; Shiroma, E.J. Using accelerometers to measure physical activity in large-scale epidemiological studies: Issues and challenges. Br. J. Sports Med. 2014, 48, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J. Limits to the measurement of habitual physical activity by questionnaires. Br. J. Sports Med. 2003, 37, 197–206; discussion 206. [Google Scholar] [CrossRef] [PubMed]
- Füzéki, E.; Engeroff, T.; Banzer, W. Health Benefits of Light-Intensity Physical Activity: A Systematic Review of Accelerometer Data of the National Health and Nutrition Examination Survey (NHANES). Sports Med. 2017, 47, 1769–1793. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wang, R.; Chen, P.; Huang, S.C.; Donnelly, J.E.; Mehlferber, J.P. Dose-response relationship of cardiorespiratory fitness adaptation to controlled endurance training in sedentary older adults. Eur. J. Prev. Cardiol. 2016, 23, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, H.; Tomten, S.E.; Høstmark, A.T. Slow postmeal walking reduces postprandial glycemia in middle-aged women. Appl. Physiol. Nutr. Metab. 2009, 34, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Lunde, M.S.H.; Hjellset, V.T.; Høstmark, A.T. Slow post meal walking reduces the blood glucose response: An exploratory study in female Pakistani immigrants. J. Immigr. Minor. Health 2012, 14, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.J.; Gordon, N.F.; Scott, C.B. Women walking for health and fitness. How much is enough? JAMA 1991, 266, 3295–3299. [Google Scholar] [CrossRef] [PubMed]
- Herzig, K.-H.; Ahola, R.; Leppäluoto, J.; Jokelainen, J.; Jämsä, T.; Keinänen-Kiukaanniemi, S. Light physical activity determined by a motion sensor decreases insulin resistance, improves lipid homeostasis and reduces visceral fat in high-risk subjects: PreDiabEx study RCT. Int. J. Obes. 2014, 38, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Csapo, R.; Alegre, L.M. Effects of resistance training with moderate vs. heavy loads on muscle mass and strength in the elderly: A meta-analysis. Scand J. Med. Sci. Sports 2016, 26, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Madarame, H.; Ogasawara, R.; Nakazato, K.; Ishii, N. Effect of very low-intensity resistance training with slow movement on muscle size and strength in healthy older adults. Clin. Physiol. Funct. Imaging 2014, 34, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Tanimoto, M.; Ishii, N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J. Appl. Physiol. 2006, 100, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Gearhart, R.F.; Goss, F.L.; Lagally, K.M.; Jakicic, J.M.; Gallagher, J.; Gallagher, K.I.; Robertson, R.J. Ratings of perceived exertion in active muscle during high-intensity and low-intensity resistance exercise. J. Strength Cond. Res. 2002, 16, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Perri, M.G.; Anton, S.D.; Durning, P.E.; Ketterson, T.U.; Sydeman, S.J.; Berlant, N.E.; Kanasky, W.F.; Newton, R.L.; Limacher, M.C.; Martin, A.D. Adherence to exercise prescriptions: Effects of prescribing moderate versus higher levels of intensity and frequency. Health Psychol. Off. J. Div. Health Psychol. Am. Psychol. Assoc. 2002, 21, 452–458. [Google Scholar] [CrossRef]
- Sparling, P.B.; Howard, B.J.; Dunstan, D.W.; Owen, N. Recommendations for physical activity in older adults. BMJ 2015, 350, h100. [Google Scholar] [CrossRef] [PubMed]
- Teh, K.C.; Aziz, A.R. Heart rate, oxygen uptake, and energy cost of ascending and descending the stairs. Med. Sci. Sports Exerc. 2002, 34, 695–699. [Google Scholar] [PubMed]
- Boreham, C.A.; Wallace, W.F.; Nevill, A. Training effects of accumulated daily stair-climbing exercise in previously sedentary young women. Prev. Med. 2000, 30, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.L.; Sundstrup, E.; Boysen, M.; Jakobsen, M.D.; Mortensen, O.S.; Persson, R. Cardiovascular health effects of internet-based encouragements to do daily workplace stair-walks: Randomized controlled trial. J. Med. Int. Res. 2013, 15, e127. [Google Scholar] [CrossRef] [PubMed]
- Bean, J.; Herman, S.; Kiely, D.K.; Callahan, D.; Mizer, K.; Frontera, W.R.; Fielding, R.A. Weighted stair climbing in mobility-limited older people: A pilot study. J. Am. Geriatr. Soc. 2002, 50, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Hannan, A.L.; Hing, W.; Simas, V.; Climstein, M.; Coombes, J.S.; Jayasinghe, R.; Byrnes, J.; Furness, J. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: A systematic review and meta-analysis. Open Access J. Sports Med. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Batacan, R.B.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, P.A.B.; Boidin, M.; Juneau, M.; Nigam, A.; Gayda, M. High-intensity interval training in patients with coronary heart disease: Prescription models and perspectives. Ann. Phys. Rehabil. Med. 2017, 60, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Wormgoor, S.G.; Dalleck, L.C.; Zinn, C.; Harris, N.K. Effects of High-Intensity Interval Training on People Living with Type 2 Diabetes: A Narrative Review. Can. J. Diabetes 2017, 41, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, K.-I.; Gen-no, H.; Masuki, S.; Okazaki, K.; Nose, H. Effects of high-intensity interval walking training on physical fitness and blood pressure in middle-aged and older people. Mayo Clin. Proc. 2007, 82, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Masuki, S.; Mori, M.; Tabara, Y.; Sakurai, A.; Hashimoto, S.; Morikawa, M.; Miyagawa, K.; Sumiyoshi, E.; Miki, T.; Higuchi, K.; et al. The factors affecting adherence to a long-term interval walking training program in middle-aged and older people. J. Appl. Physiol. 2015, 118, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Nose, H.; Morikawa, M.; Yamazaki, T.; Nemoto, K.-I.; Okazaki, K.; Masuki, S.; Kamijo, Y.-I.; Gen-no, H. Beyond epidemiology: Field studies and the physiology laboratory as the whole world. J. Physiol. 2009, 587, 5569–5575. [Google Scholar] [CrossRef] [PubMed]
- Lalande, S.; Okazaki, K.; Yamazaki, T.; Nose, H.; Joyner, M.J.; Johnson, B.D. Effects of interval walking on physical fitness in middle-aged individuals. J. Prim. Care Community Health 2010, 1, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Karstoft, K.; Winding, K.; Knudsen, S.H.; Nielsen, J.S.; Thomsen, C.; Pedersen, B.K.; Solomon, T.P.J. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: A randomized, controlled trial. Diabetes Care 2013, 36, 228–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinkløv, C.F.; Thorsen, I.K.; Karstoft, K.; Brøns, C.; Valentiner, L.; Langberg, H.; Vaag, A.A.; Nielsen, J.S.; Pedersen, B.K.; Ried-Larsen, M. Criterion validity and reliability of a smartphone delivered sub-maximal fitness test for people with type 2 diabetes. BMC Sports Sci. Med. Rehabilit. 2016, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Ried-Larsen, M.; Thomsen, R.W.; Berencsi, K.; Brinkløv, C.F.; Brøns, C.; Valentiner, L.S.; Karstoft, K.; Langberg, H.; Vaag, A.A.; Pedersen, B.K.; et al. Implementation of interval walking training in patients with type 2 diabetes in Denmark: Rationale, design, and baseline characteristics. Clin. Epidemiol. 2016, 8, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Nordsborg, N.B.; Lindenskov, A.; Steinholm, H.; Nielsen, H.P.; Mortensen, J.; Weihe, P.; Krustrup, P. High-intensity intermittent swimming improves cardiovascular health status for women with mild hypertension. BioMed Res. Int. 2014, 2014, 728289. [Google Scholar] [CrossRef] [PubMed]
- Connolly, L.J.; Nordsborg, N.B.; Nyberg, M.; Weihe, P.; Krustrup, P.; Mohr, M. Low-volume high-intensity swim training is superior to high-volume low-intensity training in relation to insulin sensitivity and glucose control in inactive middle-aged women. Eur. J. Appl. Physiol. 2016, 116, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Hoppeler, H. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality. Front. Physiol. 2016, 7, 483. [Google Scholar] [CrossRef] [PubMed]
- LaStayo, P.; Marcus, R.; Dibble, L.; Frajacomo, F.; Lindstedt, S. Eccentric exercise in rehabilitation: Safety, feasibility, and application. J. Appl. Physiol. 2014, 116, 1426–1434. [Google Scholar] [CrossRef] [PubMed]
- Vandervoort, A.A. Aging of the human neuromuscular system. Muscle Nerve 2002, 25, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Proske, U.; Morgan, D.L. Muscle damage from eccentric exercise: Mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 2001, 537, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Gluchowski, A.; Harris, N.; Dulson, D.; Cronin, J. Chronic Eccentric Exercise and the Older Adult. Sports Med. 2015, 45, 1413–1430. [Google Scholar] [CrossRef] [PubMed]
- Zeppetzauer, M.; Drexel, H.; Vonbank, A.; Rein, P.; Aczel, S.; Saely, C.H. Eccentric endurance exercise economically improves metabolic and inflammatory risk factors. Eur. J. Prev. Cardiol. 2013, 20, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Drexel, H.; Saely, C.H.; Langer, P.; Loruenser, G.; Marte, T.; Risch, L.; Hoefle, G.; Aczel, S. Metabolic and anti-inflammatory benefits of eccentric endurance exercise—A pilot study. Eur. J. Clin. Investig. 2008, 38, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Hsieh, C.-C.; Tseng, K.-W.; Ho, C.-C.; Nosaka, K. Effects of Descending Stair Walking on Health and Fitness of Elderly Obese Women. Med. Sci. Sports Exerc. 2017, 49, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Winett, R.A. Uncomplicated resistance training and health-related outcomes: Evidence for a public health mandate. Curr. Sports Med. Rep. 2010, 9, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Katzmarzyk, P.T.; Lee, I.-M.; Martin, C.K.; Blair, S.N. Epidemiology of Physical Activity and Exercise Training in the United States. Prog. Cardiovasc. Dis. 2017, 60, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-M.; Buchner, D.M. The importance of walking to public health. Med. Sci. Sports Exerc. 2008, 40, S512–S518. [Google Scholar] [CrossRef] [PubMed]
- Martins, W.R.; de Oliveira, R.J.; Carvalho, R.S.; de Oliveira Damasceno, V.; da Silva, V.Z.M.; Silva, M.S. Elastic resistance training to increase muscle strength in elderly: A systematic review with meta-analysis. Arch. Gerontol. Geriatr. 2013, 57, 8–15. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, P.A.; Blasczyk, J.C.; Souza Junior, G.; Lagoa, K.F.; Soares, M.; de Oliveira, R.J.; Filho, P.J.B.G.; Carregaro, R.L.; Martins, W.R. Effects of Elastic Resistance Exercise on Muscle Strength and Functional Performance in Healthy Adults: A Systematic Review and Meta-Analysis. J. Phys. Act. Health 2017, 14, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Fritz, N.B.; Juesas, Á.; Gargallo, P.; Calatayud, J.; Fernández-Garrido, J.; Rogers, M.E.; Colado, J.C. Positive Effects of a Short-Term Intense Elastic Resistance Training Program on Body Composition and Physical Functioning in Overweight Older Women. Biol. Res. Nurs. 2018, 20, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Colado, J.C.; Garcia-Masso, X.; Rogers, M.E.; Tella, V.; Benavent, J.; Dantas, E.H. Effects of aquatic and dry land resistance training devices on body composition and physical capacity in postmenopausal women. J. Hum. Kinet. 2012, 32, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Flandez, J.; Belando, N.; Gargallo, P.; Fernández-Garrido, J.; Vargas-Foitzick, R.A.; Devis-Devis, J.; Colado, J.C. Metabolic and Functional Profile of Premenopausal Women with Metabolic Syndrome after Training with Elastics as Compared to Free Weights. Biol. Res. Nurs. 2017, 19, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.L.; Saervoll, C.A.; Mortensen, O.S.; Poulsen, O.M.; Hannerz, H.; Zebis, M.K. Effectiveness of small daily amounts of progressive resistance training for frequent neck/shoulder pain: Randomised controlled trial. Pain 2011, 152, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Abe, K.; Usami, K.; Imaizumi, H.; Hayashi, M.; Okai, K.; Kanno, Y.; Tanji, N.; Watanabe, H.; Ohira, H. Simple Resistance Exercise helps Patients with Non-alcoholic Fatty Liver Disease. Int. J. Sports Med. 2015, 36, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Myers, T.R.; Schneider, M.G.; Schmale, M.S.; Hazell, T.J. Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females. J. Strength Cond. Res. 2015, 29, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Martínez, F.A.; Rubio-Arias, J.Á.; Ramos-Campo, D.J.; Alcaraz, P.E. Effectiveness of Resistance Circuit-Based Training for Maximum Oxygen Uptake and Upper-Body One-Repetition Maximum Improvements: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 2553–2568. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Füzéki, E.; Banzer, W. Physical Activity Recommendations for Health and Beyond in Currently Inactive Populations. Int. J. Environ. Res. Public Health 2018, 15, 1042. https://doi.org/10.3390/ijerph15051042
Füzéki E, Banzer W. Physical Activity Recommendations for Health and Beyond in Currently Inactive Populations. International Journal of Environmental Research and Public Health. 2018; 15(5):1042. https://doi.org/10.3390/ijerph15051042
Chicago/Turabian StyleFüzéki, Eszter, and Winfried Banzer. 2018. "Physical Activity Recommendations for Health and Beyond in Currently Inactive Populations" International Journal of Environmental Research and Public Health 15, no. 5: 1042. https://doi.org/10.3390/ijerph15051042
APA StyleFüzéki, E., & Banzer, W. (2018). Physical Activity Recommendations for Health and Beyond in Currently Inactive Populations. International Journal of Environmental Research and Public Health, 15(5), 1042. https://doi.org/10.3390/ijerph15051042