Use of the Monocyte-to-Lymphocyte Ratio to Predict Diabetic Retinopathy
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Clinical Examination and Biochemical Analysis
2.3. PLR, NLR, MLR, DM, and DR Definitions
2.4. Statistical Analysis
3. Results
Variables | DM (n = 125) | DR (n = 121) | p |
---|---|---|---|
Age (years) | 56.00[63.00–48.00] | 55.00[61.00–47.00] | 0.23 |
Sex | |||
Male (%) | 73 (58.4) | 62 (51.2) | 0.31 |
Duration of DM (years) | 5.00[10.00–1.50] | 10.00[16.00–7.00] | <0.01 |
Family history of DM | |||
Yes (%) | 47 (37.6) | 49 (40.5) | 0.69 |
SBP (mmHg) | 125.00[140.00–110.00] | 140.00[150.00–130.00] | <0.01 |
DBP (mmHg) | 80.00[80.00–70.00] | 85[90–80] | <0.01 |
FBG (mmol/L) | 8.00[11.00–6.00] | 9.20[12.00–6.50] | 0.09 |
HbA1c (%) | 7.00[9.00–6.00] | 8.00[10.00–7.20] | <0.01 |
TG (mmol/L) | 2.00[2.50–1.00] | 1.43[2.17–1.00] | 0.93 |
TC (mmol/L) | 5.00[5.50–4.00] | 5.00[5.86–4.00] | 0.03 |
HDL-C (mmol/L) | 1.15[1.79–0.80] | 2.20[3.21–1.00] | <0.01 |
LDL-C (mmol/L) | 3.00[4.00–2.00] | 1.53[3.00–1.00] | <0.01 |
Scr (umol/L) | 59.00[70.00–51.00] | 58.00[74.00–46.00] | 0.69 |
BUN (mmol/L) | 6.00[7.00–5.00] | 6.09[7.90–5.00] | 0.18 |
WBC (×109/L) | 6.25[7.55–5.37] | 6.51[7.87–5.39] | 0.37 |
Lymphocytes (×109/L) | 2.10[2.65–1.61] | 2.00[1.53–2.41] | 0.13 |
Neutrophils (×109/L) | 3.52[4.57–2.90] | 3.88[4.85–3.0.2] | 0.13 |
Monocytes (×109/L) | 0.37[0.46–0.29] | 0.38[0.30–0.55] | 0.19 |
Platelets (×109/L) | 197.00[239.50–161.50] | 210.00[255.00–182.00] | 0.02 |
NLR | 1.74[2.29–1.31] | 1.99[2.62–1.47] | 0.02 |
PLR | 94.04[120.19–70.73] | 107.75[149.82–84.44] | <0.01 |
MLR | 0.18[0.24–0.13] | 0.20[0.29–0.14] | 0.04 |
Variables | DM (n = 125) | NPDR (n = 62) | PDR (n = 59) | p-Value |
---|---|---|---|---|
Age (years) | 56.00[63.00–48.00] | 53.50[60.25–46.00] | 56.00[62.00–50.00] | 0.17 |
Sex | ||||
Male (%) | 73 (58.4) | 34 (54.8) | 28 (47.5) | 0.38 |
Duration of DM (years) | 5.00[10.00–1.50] #,† | 10.00[15.00–6.75] *,† | 15.00[19.00–8.00] *,# | <0.01 |
Family history of DM | ||||
Yes (%) | 47 (37.6) | 28 (45.2) | 21 (35.6) | 0.50 |
SBP (mmHg) | 125.00[140.00–110.00] #,† | 135.00[145.00–122.00] *,† | 145.00[150.00–130.00] *,# | <0.01 |
DBP (mmHg) | 80.00[80.00–70.00] #,† | 84.00[90.00–80.00] † | 85.00[90.00–80.00] # | <0.01 |
FBG (mmol/L) | 8.00[11.00–6.00] | 9.10[12.34–6.91] | 9.35[14.00–6.46] | 0.25 |
HbA1c (%) | 7.00[9.00–6.00] # | 8.00[10.00–7.00] | 8.20[10.00–7.40] # | 0.02 |
TG (mmol/L) | 2.00[2.50–1.00] | 1.70[2.16–1.00] | 1.41[2.21–1.00] | 0.53 |
TC (mmol/L) | 5.00[5.50–4.00] | 5.00[6.00–4.00] | 4.99[5.46–4.00] | 0.12 |
HDL-C (mmol/L) | 1.00[1.00–1.00] #,† | 1.00[2.49–1.00] *,† | 2.86[3.46–2.00] *,# | <0.01 |
LDL-C (mmol/L) | 3.00[4.00–2.00] #,† | 2.50[4.00–1.09] *,† | 1.24[2.00–0.99] *,# | <0.01 |
Scr (umol/L) | 59.00[70.00–51.00] | 59.00[71.25–46.00] | 57.00[78.75–45.75] | 0.99 |
BUN (mmol/L) | 6.00[7.00–5.00] # | 6.00[7.00–4.85] * | 6.75[9.99–5.06] *,# | 0.01 |
WBC (×109/L) | 6.25[7.55–5.37] | 6.67[8.11–5.41] | 6.43[7.50–5.34] | 0.42 |
Lymphocytes (×109/L) | 2.10[2.65–1.61] | 2.03[2.36–1.49] | 1.97[2.43–1.52] | 0.29 |
Neutrophils (×109/L) | 3.52[4.57–2.90] | 3.88[4.93–3.07] | 3.75[4.60–2.85] | 0.16 |
Monocytes (×109/L) | 0.37[0.46–0.29] | 0.39[0.56–0.31] | 0.38[0.53–0.28] | 0.27 |
Platelet (×109/L) | 197.00[239.50–161.50] # | 202.00[236.25–177.00] | 225.00[264.00–182.00] # | 0.03 |
NLR | 1.74[2.29–1.31] #,† | 2.05[2.75–1.55] † | 1.91[2.51–1.39] # | 0.03 |
PLR | 94.04[120.19–70.73] #,† | 105.07[151.42–81.53] † | 115.73[145.97–87.98] # | <0.01 |
MLR | 0.18[0.24–0.13] † | 0.22[0.30–0.14] † | 0.20[0.28–0.15] | 0.07 |
Variables | OR | 95%CI | p-Value |
---|---|---|---|
Duration of DM | 1.162 | 1.085–1.246 | <0.001 |
SBP | 1.033 | 1.013–1.054 | 0.001 |
MLR | 54.574 | 2.708–1099.907 | 0.009 |
TG | 1.671 | 1.026–2.722 | 0.039 |
HDL-C | 7.357 | 3.004–18.017 | <0.001 |
LDL-C | 0.625 | 0.359–1.091 | 0.098 |
Platelet | 1.007 | 1.000–1.013 | 0.043 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chan, J.C.; Malik, V.; Jia, W.; Kadowaki, T.; Yajnik, C.S.; Yoon, K.H.; Hu, F.B. Diabetes in Asia: Epidemiology, risk factors, and pathophysiology. JAMA 2009, 301, 2129–2140. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Hiratsuka, Y.; Roberts, C.B.; Pezzullo, M.L.; Yates, K.; Takano, S.; Miyake, K.; Taylor, H.R. Prevalence of visual impairment in the adult Japanese population by cause and severity and future projections. Ophthalmic Epidemiol. 2010, 17, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Joussen, A.M.; Poulaki, V.; Le, M.L.; Koizumi, K.; Esser, C.; Janicki, H.; Schraermeyer, U.; Kociok, N.; Fauser, S.; Kirchhof, B.; et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004, 18, 1450–1452. [Google Scholar] [PubMed]
- Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 2011, 30, 343–358. [Google Scholar] [CrossRef] [PubMed]
- El-Asrar, A.M. Role of inflammation in the pathogenesis of diabetic retinopathy. Middle East Afr. J. Ophthalmol. 2012, 19, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Tomić, M.; Ljubić, S.; Kaštelan, S.; Gverović Antunica, A.; Jazbec, A.; Poljičanin, T. Inflammation, haemostatic disturbance, and obesity: Possible link to pathogenesis of diabetic retinopathy in type 2 diabetes. Mediat. Inflamm. 2013, 2013, 818671. [Google Scholar] [CrossRef] [PubMed]
- Horne, B.D.; Anderson, J.L.; John, J.M. Which white blood cell subtypes predict increased cardiovascular risk? J. Am. Coll. Cardiol. 2005, 45, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, S.; Mutlu, H.; Tural, D.; Yıldız, Ö.; Uysal, M.; Coskun, H.S.; Bozcuk, H. Platelet to lymphocyte ratio as a new prognostic for patients with metastatic renal cell cancer. Asia Pac. J. Clin. Oncol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Ozaksit, G.; Tokmak, A.; Kalkan, H.; Yesilyurt, H. Value of the platelet to lymphocyte ratio in the diagnosis of ovarian neoplasms in adolescents. Asian Pac. J. Cancer Prev. 2015, 16, 2037–2041. [Google Scholar] [PubMed]
- Liu, J.; Du, J.; Fan, J.; Liu, K.; Zhang, B.; Wang, S.; Wang, W.; Wang, Z.; Cai, Y.; Li, C.; et al. The Neutrophil-to-Lymphocyte Ratio Correlates with Age in Patients with Papillary Thyroid Carcinoma. ORL J. Otorhinolaryngol. Relat. Spec. 2015, 77, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Akyel, A.; Yayla, Ç.; Erat, M.; Çimen, T.; Doğan, M.; Açıkel, S.; Aydoğdu, S.; Yeter, E. Neutrophil-to-lymphocyte ratio predicts hemodynamic significance of coronary artery stenosis. Anatol. J. Cardiol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Oylumlu, M.; Yıldız, A.; Oylumlu, M.; Yuksel, M.; Polat, N.; Bilik, M.Z.; Akyuz, A.; Aydin, M.; Acet, H.; Soydinc, S. Platelet-to-lymphocyte ratio is a predictor of in-hospital mortality patients with acute coronary syndrome. Anatol. J. Cardiol. 2015, 15, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Warimwe, G.M.; Fletcher, H.A.; Olotu, A.; Agnandji, S.T.; Hill, A.V.; Marsh, K.; Bejon, P. Peripheral blood monocyte-to-lymphocyte ratio at study enrollment predicts efficacy of the RTS, S malaria vaccine: Analysis of pooled phase II clinical trial data. BMC Med. 2013, 21, 184. [Google Scholar] [CrossRef] [PubMed]
- Akbas, E.M.; Demirtas, L.; Ozcicek, A.; Timuroglu, A.; Bakirci, E.M.; Hamur, H.; Ozcicek, F.; Turkmen, K. Association of epicardial adipose tissue, neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with diabetic nephropathy. Int. J. Clin. Exp. Med. 2014, 7, 1794–1801. [Google Scholar] [PubMed]
- Ciray, H.; Aksoy, A.H.; Ulu, N.; Cizmecioglu, A.; Gaipov, A.; Solak, Y. Nephropathy, but not Angiographically Proven Retinopathy, is Associated with Neutrophil to Lymphocyte Ratio in Patients with Type 2 Diabetes. Exp. Clin. Endocrinol. Diabetes 2015, 123, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Ulu, S.M.; Dogan, M.; Ahsen, A.; Altug, A.; Demir, K.; Acartürk, G.; Inan, S. Neutrophil-to-lymphocyte ratio as a quick and reliable predictive marker to diagnose the severity of diabetic retinopathy. Diabetes Technol. Ther. 2013, 15, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.T.; Zhang, J.R.; Li, Y.; Liu, T.; Yu, K.J. Neutrophil-Lymphocyte ratio is associated with arterial stiffness in diabetic retinopathy in type 2 diabetes. J. Diabetes Complicat. 2015, 29, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Shiny, A.; Bibin, Y.S.; Shanthirani, C.S.; Regin, B.S.; Anjana, R.M.; Balasubramanyam, M.; Jebarani, S.; Mohan, V. Association of neutrophil-lymphocyte ratio with glucose intolerance: An indicator of systemic inflammation in patients with type 2 diabetes. Diabetes Technol. Ther. 2014, 16, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Geng, J.; Wu, J.; Yuan, Z.; Lian, J.; Desheng, H.; Chen, L. Prevalence of ocular fundus pathology with type 2 diabetes in a Chinese urban community as assessed by telescreening. BMJ Open 2013. [Google Scholar] [CrossRef] [PubMed]
- Romero, P.; Sagarra, R.; Ferrer, J.; Fernández-Ballart, J.; Baget, M. The incorporation of family physicians in the assessment of diabetic retinopathy by non-mydriatic fundus camera. Diabetes Res. Clin. Pract. 2010, 88, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Szabó, D.; Fiedler, O.; Somogyi, A.; Somfai, G.M.; Bíró, Z.; Ölvedy, V.; Hargitai, Z.; Németh, J. Telemedical diabetic retinopathy screening in Hungary: A pilot programme. J. Telemed. Telecare 2015, 21, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Massin, P.; Erginay, A.; Ben Mehidi, A.; Vicaut, E.; Quentel, G.; Victor, Z.; Marre, M.; Guillausseau, P.J.; Gaudric, A. Evaluation of a new non-mydriatic digital camera for detection of diabetic retinopathy. Diabet. Med. 2003, 20, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, C.P.; Ferris, F.L.; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T. Global Diabetic Retinopathy Project Group: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef]
- Puavilai, G.; Chanprasertyotin, S.; Sriphrapradaeng, A. Diagnostic criteria for diabetes mellitus and other categories of glucose intolerance: 1997 Criteria by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (ADA), 1998 WHO consultation criteria, and 1985 WHO criteria. World Health Organization. Diabetes Res. Clin. Pract. 1999, 44, 21–26. [Google Scholar] [PubMed]
- Varma, R.; Macias, G.L.; Torres, M.; Klein, R.; Pena, F.Y.; Azen, S.P. Biologic risk factors associated with diabetic retinopathy: The Los Angeles Latino Eye Study. Ophthalmology 2007, 114, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.D.; Field, R.A. Diabetic retinopathy and rheumatoid arthritis. Lancet. 1964, 734, 17–18. [Google Scholar] [CrossRef]
- Lutty, G.A.; Cao, J.T.; McLeod, D.S. Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid. Am. J. Pathol. 1997, 151, 707–714. [Google Scholar] [PubMed]
- Pitsavos, C.; Tampourlou, M.; Panagiotakos, D.B.; Skoumas, Y.; Chrysohoou, C.; Nomikos, T.; Stefanadis, C. Association between low-grade systemic inflammation and type 2 diabetes mellitus among men and women from the ATTICA Study. Rev. Diabet. Stud. 2007, 4, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Hemmi, S.; Kajiwara, M.; Yabuki, M.; Fuke, Y.; Satomura, A.; Soma, M. Complement-mediated chronic inflammation is associated with diabetic microvascular complication. Diabetes Metab. Res. Rev. 2013, 29, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, V.; Schmitt, V.H.; Zeller, T.; Panova-Noeva, M.; Schulz, A.; Laubert-Reh, D.; Juenger, C.; Schnabel, R.B.; Abt, T.G.; Laskowski, R.; et al. Profile of the Immune and Inflammatory Response in Individuals with Prediabetes and Type 2 Diabetes. Diabetes Care 2015, 38, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Afzal, N.; Zaman, S.; Shahzad, F.; Javaid, K.; Zafar, A.; Nagi, A.H. Immune mechanisms in type-2 diabetic retinopathy. J. Pak. Med. Assoc. 2015, 65, 159–163. [Google Scholar] [PubMed]
- Frostegard, J. Immune mechanisms in atherosclerosis, especially in diabetes type 2. Front. Endocrinol. (Lausanne) 2013, 29, 162. [Google Scholar] [CrossRef] [PubMed]
- Kaul, K.; Hodgkinson, A.; Tarr, J.M.; Kohner, E.M.; Chibber, R. Is inflammation a common retinal-renal-nerve pathogenic link in diabetes? Curr. Diabetes Rev. 2010, 6, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Sasongko, M.B.; Wong, T.Y.; Jenkins, A.J.; Nguyen, T.T.; Shaw, J.E.; Wang, J.J. Circulating markers of inflammation and endothelial function, and their relationship to diabetic retinopathy. Diabet. Med. 2015, 32, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Hudzik, B.; Szkodzinski, J.; Gorol, J.; Niedziela, J.; Lekston, A.; Gasior, M.; Polonski, L. Platelet-to-lymphocyte ratio is a marker of poor prognosis in patients with diabetes mellitus and ST-elevation myocardial infarction. Biomark. Med. 2015, 9, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.K.; Chen, D.; Li, S.Q.; Fu, S.J.; Peng, B.G.; Liang, L.J. Prognostic significance of neutrophil-lymphocyte ratio in hepatocellular carcinoma: A meta-analysis. BMC Cancer 2014, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Bambace, N.M.; Levis, J.E.; Holmes, C.E. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets 2010, 21, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Jaipersad, A.S.; Lip, G.Y.; Silverman, S.; Shantsila, E. The role of monocytes in angiogenesis and atherosclerosis. J. Am. Coll. Cardiol. 2014, 63, 1–11. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, S.; Zhang, J.; Wu, J.; Teng, W.; Liu, L.; Chen, L. Use of the Monocyte-to-Lymphocyte Ratio to Predict Diabetic Retinopathy. Int. J. Environ. Res. Public Health 2015, 12, 10009-10019. https://doi.org/10.3390/ijerph120810009
Yue S, Zhang J, Wu J, Teng W, Liu L, Chen L. Use of the Monocyte-to-Lymphocyte Ratio to Predict Diabetic Retinopathy. International Journal of Environmental Research and Public Health. 2015; 12(8):10009-10019. https://doi.org/10.3390/ijerph120810009
Chicago/Turabian StyleYue, Song, Jiahua Zhang, Jingyang Wu, Weiping Teng, Lei Liu, and Lei Chen. 2015. "Use of the Monocyte-to-Lymphocyte Ratio to Predict Diabetic Retinopathy" International Journal of Environmental Research and Public Health 12, no. 8: 10009-10019. https://doi.org/10.3390/ijerph120810009
APA StyleYue, S., Zhang, J., Wu, J., Teng, W., Liu, L., & Chen, L. (2015). Use of the Monocyte-to-Lymphocyte Ratio to Predict Diabetic Retinopathy. International Journal of Environmental Research and Public Health, 12(8), 10009-10019. https://doi.org/10.3390/ijerph120810009