Evaluation of the Timed Up and Go Test in Patients with Knee Osteoarthritis Using Inertial Sensors
<p>The G-walk inertial sensor device was placed in a pocket of a semi-elastic belt positioned above the iliac wings, at the level of the L4 lumbar vertebra.</p> "> Figure 2
<p>The report of the TUG test, as is provided by the dedicated G-Studio software.</p> "> Figure 3
<p>The G-Studio software provides a graphic representation of the various phases of the TUG test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Acquisition Protocol
2.4. Data Analysis
- Phase Duration, s: Indicated the average time interval for each movement in the respective phase.
- Antero-Posterior Acceleration, m/s2: Represented the average range of the antero-posterior acceleration achieved during each assessed phase.
- Lateral Acceleration, m/s2: Denoted the average range of medial–lateral acceleration observed during each assessed phase.
- Vertical Acceleration, m/s2: Captured the range of vertical acceleration experienced during each assessed phase.
- Parameters were generated for the Mid Turning and End Turning sections:
- Phase Duration, sec: Represented the average temporal duration of each turn in the test.
- Maximum Rotation Speed, °/s: Indicated the maximum speed reached during each turn.
- Average Rotation Speed, °/s: Represented the average speed maintained throughout each turn.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kowal, P. An Aging World: 2015; U.S. Census Bureau: Suitland, WA, USA, 2016. [CrossRef]
- James, S.L.; Lucchesi, L.R.; Bisignano, C.; Castle, C.D.; Dingels, Z.V.; Fox, J.T.; Hamilton, E.B.; Henry, N.J.; Krohn, K.J.; Liu, Z.; et al. The Global Burden of Falls: Global, Regional and National Estimates of Morbidity and Mortality from the Global Burden of Disease Study 2017. Inj. Prev. 2020, 26 (Suppl. S2), i3–i11. [Google Scholar] [CrossRef] [PubMed]
- Haddad, Y.K.; Miller, G.F.; Kakara, R.; Florence, C.; Bergen, G.; Burns, E.R.; Atherly, A. Healthcare Spending for Non-Fatal Falls among Older Adults, USA. Inj. Prev. 2024, 30, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, J.L.; Truong, L.K.; Dhiman, K.; Beck, C. Osteoarthritis Year in Review 2020: Rehabilitation and Outcomes. Osteoarthr. Cartil. 2021, 29, 190–207. [Google Scholar] [CrossRef]
- Guccione, A.A.; Felson, D.T.; Anderson, J.J.; Anthony, J.M.; Zhang, Y.; Wilson, P.W.F.; Kelly-Hayes, M.; Wolf, P.A.; Kreger, B.E.; Kannel, W.B. The Effects of Specific Medical Conditions on the Functional Limitations of Elders in the Framingham Study. Am. J. Public Health 1994, 84, 351–358. [Google Scholar] [CrossRef]
- Glyn-Jones, S.; Palmer, A.J.R.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. Lancet 2015, 386, 376–387. [Google Scholar] [CrossRef]
- Cao, F.; Xu, Z.; Li, X.X.; Fu, Z.Y.; Han, R.Y.; Zhang, J.L.; Wang, P.; Hou, S.; Pan, H.F. Trends and Cross-Country Inequalities in the Global Burden of Osteoarthritis, 1990–2019: A Population-Based Study. Ageing Res. Rev. 2024, 99, 102382. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Arthritis Prevalence and Activity Limitations—United States, 1990. JAMA 1994, 272, 346–347. [Google Scholar] [CrossRef]
- Wallace, I.J.; Worthington, S.; Felson, D.T.; Jurmain, R.D.; Wren, K.T.; Maijanen, H.; Woods, R.J.; Lieberman, D.E. Knee Osteoarthritis Has Doubled in Prevalence since the Mid-20th Century. Proc. Natl. Acad. Sci. USA 2017, 114, 9332–9336. [Google Scholar] [CrossRef]
- Ng, C.T.; Tan, M.P. Osteoarthritis and Falls in the Older Person. Age Ageing 2013, 42, 561–566. [Google Scholar] [CrossRef]
- Ackerman, I.N.; Barker, A.; Soh, S.E. Falls Prevention and Osteoarthritis: Time for Awareness and Action. Disabil. Rehabil. 2023, 45, 733–738. [Google Scholar] [CrossRef]
- Ni Scanaill, C.; Garattini, C.; Greene, B.R.; McGrath, M.J. Technology Innovation Enabling Falls Risk Assessment in a Community Setting. Ageing Int. 2011, 36, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Buisseret, F.; Catinus, L.; Grenard, R.; Jojczyk, L.; Fievez, D.; Barvaux, V.; Dierick, F. Timed up and Go and Six-Minute Walking Tests with Wearable Inertial Sensor: One Step Further for the Prediction of the Risk of Fall in Elderly Nursing Home People. Sensors 2020, 20, 3207. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Podsiadlo, D. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Herman, T.; Giladi, N.; Hausdorff, J.M. Properties of the “Timed Up and Go” Test: More than Meets the Eye. Gerontology 2011, 57, 203–210. [Google Scholar] [CrossRef]
- Weiss, A.; Herman, T.; Plotnik, M.; Brozgol, M.; Giladi, N.; Hausdorff, J.M. An Instrumented Timed up and Go: The Added Value of an Accelerometer for Identifying Fall Risk in Idiopathic Fallers. Physiol. Meas. 2011, 32, 2003. [Google Scholar] [CrossRef]
- Galán-Mercant, A.; Cuesta-Vargas, A.I. Clinical Frailty Syndrome Assessment Using Inertial Sensors Embedded in Smartphones. Physiol. Meas. 2015, 36, 1929. [Google Scholar] [CrossRef]
- Galán-Mercant, A.; Cuesta-Vargas, A.I. Differences in Trunk Accelerometry between Frail and Non-Frail Elderly Persons in Functional Tasks. BMC Res. Notes 2014, 7, 100. [Google Scholar] [CrossRef]
- Weiss, A.; Mirelman, A.; Giladi, N.; Barnes, L.L.; Bennett, D.A.; Buchman, A.S.; Hausdorff, J.M. Transition Between the Timed up and Go Turn to Sit Subtasks: Is Timing Everything? J. Am. Med. Dir. Assoc. 2016, 17, 864-e9. [Google Scholar] [CrossRef]
- Diao, Y.; Lou, N.; Liang, S.; Zhang, Y.; Ning, Y.; Li, G.; Zhao, G. A Novel Environment-Adaptive Timed up and Go Test System for Fall Risk Assessment with Wearable Inertial Sensors. IEEE Sens. J. 2021, 21, 18287–18297. [Google Scholar] [CrossRef]
- Negrini, S.; Serpelloni, M.; Amici, C.; Gobbo, M.; Silvestro, C.; Buraschi, R.; Borboni, A.; Crovato, D.; Lopomo, N.F. Use of Wearable Inertial Sensor in the Assessment of Timed-Up-and-Go Test: Influence of Device Placement on Temporal Variable Estimation. In Wireless Mobile Communication and Healthcare; Perego, P., Andreoni, G., Rizzo, G., Eds.; Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (LNICST); Springer: Cham, Switzerland, 2017; Volume 192. [Google Scholar]
- Wüest, S.; Massé, F.; Aminian, K.; Gonzenbach, R.; de Bruin, E.D. Reliability and Validity of the Inertial Sensor-Based Timed “Up and Go” Test in Individuals Affected by Stroke. J. Rehabil. Res. Dev. 2016, 53, 599–610. [Google Scholar] [CrossRef]
- Zampieri, C.; Salarian, A.; Carlson-Kuhta, P.; Nutt, J.G.; Horak, F.B. Assessing Mobility at Home in People with Early Parkinson’s Disease Using an Instrumented Timed Up and Go Test. Park. Relat. Disord. 2011, 17, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Mangano, G.R.A.; Valle, M.S.; Casabona, A.; Vagnini, A.; Cioni, M. Age-Related Changes in Mobility Evaluated by the Timed up and Go Test Instrumented through a Single Sensor. Sensors 2020, 20, 719. [Google Scholar] [CrossRef] [PubMed]
- Zasadzka, E.; Borowicz, A.M.; Roszak, M.; Pawlaczyk, M. Assessment of the Risk of Falling with the Use of Timed up and Go Test in the Elderly with Lower Extremity Osteoarthritis. Clin. Interv. Aging 2015, 10, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s Chair-Stand Test as a Measure of Lower Body Strength in Community-Residing Older Adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Khalaj, N.; Osman, N.A.A.; Mokhtar, A.H.; Mehdikhani, M.; Abas, W.A.B.W. Balance and Risk of Fall in Individuals with Bilateral Mild and Moderate Knee Osteoarthritis. PLoS ONE 2014, 9, e92270. [Google Scholar] [CrossRef]
- Hafez, A.R.; Mohammed, A. Knee Osteoarthritis: A Review of Literature Physical Medicine and Rehabilitation—Knee Osteoarthritis: A Review of Literature. Phys. Med. Rehabil. Int. 2018, 1, 8. [Google Scholar]
- Luc-Harkey, B.A.; Safran-Norton, C.E.; Mandl, L.A.; Katz, J.N.; Losina, E. Associations among Knee Muscle Strength, Structural Damage, and Pain and Mobility in Individuals with Osteoarthritis and Symptomatic Meniscal Tear. BMC Musculoskelet. Disord. 2018, 19, 258. [Google Scholar] [CrossRef]
- Batushansky, A.; Zhu, S.; Komaravolu, R.K.; South, S.; Mehta-D’souza, P.; Griffin, T.M. Fundamentals of OA. An Initiative of Osteoarthritis and Cartilage. Obesity and Metabolic Factors in OA. Osteoarthr. Cartil. 2022, 30, 501–515. [Google Scholar] [CrossRef]
- Metcalfe, A.; Stewart, C.; Postans, N.; Barlow, D.; Dodds, A.; Holt, C.; Whatling, G.; Roberts, A. Abnormal Loading of the Major Joints in Knee Osteoarthritis and the Response to Knee Replacement. Gait Posture 2013, 37, 32–36. [Google Scholar] [CrossRef]
- Na, E.; Hwang, H.; Woo, Y. Study of Acceleration of Center of Mass during Sit-to-Stand and Stand-to-Sit in Patients with Stroke. J. Phys. Ther. Sci. 2016, 28, 2457–2460. [Google Scholar] [CrossRef]
- Manckoundia, P.; Mourey, F.; Pfitzenmeyer, P.; Papaxanthis, C. Comparison of Motor Strategies in Sit-to-Stand and Back-to-Sit Motions between Healthy and Alzheimer’s Disease Elderly Subjects. Neuroscience 2006, 137, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Borges, S.D.M.; Radanovic, M.; Forlenza, O.V. Fear of Falling and Falls in Older Adults with Mild Cognitive Impairment and Alzheimers Disease. Aging Neuropsychol. Cogn. 2015, 22, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Canning, C.G.; Hausdorff, J.M.; Lord, S.; Rochester, L. Falls in Parkinson’s Disease: A Complex and Evolving Picture. Mov. Disord. 2017, 32, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- Carter, N.D.; Khan, K.M.; McKay, H.A.; Petit, M.A.; Waterman, C.; Heinonen, A.; Janssen, P.A.; Donaldson, M.G.; Mallinson, A.; Riddell, L.; et al. Community-Based Exercise Program Reduces Risk Factors for Falls in 65- to 75-Year-Old Women with Osteoporosis: Randomized Controlled Trial. CMAJ Can. Med. Assoc. J. 2002, 167, 997–1004. [Google Scholar]
- Sibley, K.M.; Straus, S.E.; Inness, E.L.; Salbach, N.M.; Jaglal, S.B. Balance Assessment Practices and Use of Standardized Balance Measures among Ontario Physical Therapists. Phys. Ther. 2011, 91, 1583–1591. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the Probability for Falls in Community-Dwelling Older Adults Using the Timed up and Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar] [CrossRef]
- Wu, C.C.; Xiong, H.Y.; Zheng, J.J.; Wang, X.Q. Dance Movement Therapy for Neurodegenerative Diseases: A Systematic Review. Front. Aging Neurosci. 2022, 14, 975711. [Google Scholar] [CrossRef]
- Silverwood, V.; Blagojevic-Bucknall, M.; Jinks, C.; Jordan, J.L.; Protheroe, J.; Jordan, K.P. Current Evidence on Risk Factors for Knee Osteoarthritis in Older Adults: A Systematic Review and Meta-Analysis. Osteoarthr. Cartil. 2015, 23, 507–515. [Google Scholar] [CrossRef]
- Viteckova, S.; Horakova, H.; Polakova, K.; Krupicka, R.; Ruzicka, E.; Brozova, H. Agreement between the GAITRite® System and the Wearable Sensor BTS G-Walk® for Measurement of Gait Parameters in Healthy Adults and Parkinson’s Disease Patients. PeerJ 2020, 8, e8835. [Google Scholar] [CrossRef]
- Volkan-Yazici, M.; Çobanoğlu, G.; Yazici, G. Test-Retest Reliability and Minimal Detectable Change for Measures of Wearable Gait Analysis System (G-Walk) in Children with Cerebral Palsy. Turk. J. Med. Sci. 2022, 52, 658–666. [Google Scholar] [CrossRef]
All Participants (n = 39) | |||
---|---|---|---|
Knee Osteoarthritis Patients (n = 20) | Healthy Controls (n = 60) | p-Value | |
Age (years) | 74.84 (6.694) | 72.25 (5.220) | 0.184 |
Weight (kg) | 83.79 (16.788) | 78.60 (9.816) | 0.243 |
Height (cm) | 165.74 (7.117) | 165.00 (8.784) | 0.776 |
BMI | 30.46 (5.61) | 29.00 (3.83) | 0.335 |
Shoe Size (EU) | 39.68 (2.358) | 39.55 (2.502) | 0.864 |
Gender, Male/Female, N (%) | 5 (15.8)/15 (84.2) | 15 (25.0)/45 (75.0) | 0.695 |
Knee Osteoarthritis Patients | Healthy Controls | p-Value | |
---|---|---|---|
Analysis Duration, s | 22.32 ± 5.49 | 12.94 ± 1.88 | <0.001 |
Sit-to-Stand Phase Duration, s | 2.35 ± 0.64 | 1.62 ± 0.33 | <0.001 |
Forward Gait Phase Duration, s | 5.65 ± 2.45 | 2.96 ± 0.83 | <0.001 |
Return Gait Phase Duration, s | 5.58 ± 2.46 | 3.03 ± 0.72 | <0.001 |
Stand-to-Sit Antero-Posterior Acceleration, m/s2 | 3.07 ± 1.64 | 4.06 ± 1.53 | 0.060 |
Sit-to-Stand Vertical Acceleration, m/s2 | 2.83 ± 1.01 | 4.02 ± 1.07 | <0.001 |
Stand-to-Sit Vertical Acceleration, m/s2 | 4.95 ± 2.70 | 6.17 ± 2.57 | 0.156 |
End Turning Phase Duration, sec | 3.35 ± 0.92 | 1.84 ± 0.56 | <0.001 |
Mid Turning Maximum Rotation Speed, °/s | 116.70 ± 33.78 | 149.60 ± 27.83 | 0.002 |
End Turning Maximum Rotation Speed, °/s | 106.14 ± 29.27 | 168.02 ± 35.48 | <0.001 |
Mid Turning Average Rotation Speed, °/s | 56.94 ± 20.12 | 88.29 ± 20.48 | <0.001 |
End Turning Average Rotation Speed, °/s | 50.59 ± 14.95 | 91.29 ± 22.76 | <0.001 |
Median (IQR) | Median (IQR) | ||
Stand-to-Sit Phase Duration, s | 2.30 ± 0.90 | 1.90 ± 0.75 | 0.017 |
Sit-to-Stand Antero-Posterior Acceleration, m/s2 | 2.00 ± 1.20 | 3.10 ± 0.92 | 0.002 |
Sit-to-Stand Lateral Acceleration, m/s2 | 1.40 ± 0.60 | 1.70 ± 0.38 | 0.002 |
Stand-to-Sit Lateral Acceleration, m/s2 | 3.10 ± 1.50 | 3.65 ± 0.92 | 0.086 |
Mid Turning Phase Duration, s | 3.03 ± 1.20 | 1.88 ± 0.80 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gianzina, E.; Yiannakopoulos, C.K.; Kalinterakis, G.; Delis, S.; Chronopoulos, E. Evaluation of the Timed Up and Go Test in Patients with Knee Osteoarthritis Using Inertial Sensors. Int. J. Transl. Med. 2025, 5, 2. https://doi.org/10.3390/ijtm5010002
Gianzina E, Yiannakopoulos CK, Kalinterakis G, Delis S, Chronopoulos E. Evaluation of the Timed Up and Go Test in Patients with Knee Osteoarthritis Using Inertial Sensors. International Journal of Translational Medicine. 2025; 5(1):2. https://doi.org/10.3390/ijtm5010002
Chicago/Turabian StyleGianzina, Elina, Christos K. Yiannakopoulos, Georgios Kalinterakis, Spilios Delis, and Efstathios Chronopoulos. 2025. "Evaluation of the Timed Up and Go Test in Patients with Knee Osteoarthritis Using Inertial Sensors" International Journal of Translational Medicine 5, no. 1: 2. https://doi.org/10.3390/ijtm5010002
APA StyleGianzina, E., Yiannakopoulos, C. K., Kalinterakis, G., Delis, S., & Chronopoulos, E. (2025). Evaluation of the Timed Up and Go Test in Patients with Knee Osteoarthritis Using Inertial Sensors. International Journal of Translational Medicine, 5(1), 2. https://doi.org/10.3390/ijtm5010002