Feasibility Study of a PET Detector with a Wavelength-Shifting Fiber Readout
<p>Schematic of detector module composed of a 4 × 4 assembly of LYSO crystals. Red boxes represent SiPMS, blue cubes represent the individual LYSO scintillators, and green rectangles represent the WLS fibers.</p> "> Figure 2
<p>Photon emission spectrum of LYSO scintillator [<a href="#B34-instruments-09-00002" class="html-bibr">34</a>] (blue color), absorption (red color), and emission (green color) spectra of BCF-91A [<a href="#B35-instruments-09-00002" class="html-bibr">35</a>], SiPM PDE (dark blue color), and absorption (magenta color) and emission (dark green color) spectra of BCF-92 [<a href="#B35-instruments-09-00002" class="html-bibr">35</a>].</p> "> Figure 3
<p>Example of one event with the secondary scintillation photons simulated in GEANT4 for a LYSO assembly. The light green lines are the tracks of optical photons, and the red boxes are SiPMs.</p> "> Figure 4
<p>(<b>a</b>,<b>b</b>) The light distribution profiles along the <math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math> (<b>b</b>) directions in a typical event displaying photoelectron absorption-like behavior. The simulated data were fitted with a Gaussian function. The blue histogram is the simulated results, and the red histogram is the Gaussian fitting, while the green histogram is a high-resolution peak search function. (<b>c</b>) The <math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math>–<math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math> distribution image obtained by combining signals from the <math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math> and <math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math> WLS fibers. (<b>d</b>) The <math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math>–<math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math> distribution image in 3D.</p> "> Figure 5
<p>(<b>a</b>,<b>b</b>) The light distribution profiles along the <math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math> (<b>b</b>) directions in a typical event displaying the Compton scattering event event. The simulated data were fitted with a Gaussian function. The blue histogram is the simulated results, and the red histogram is the Gaussian fitting, while the green histogram is a high-resolution peak search function. (<b>c</b>) The <math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math>–<math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math> distribution image obtained by combining signals from the <math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math> and <math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math> WLS fibers. (<b>d</b>) The <math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math>–<math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math> distribution image in 3D.</p> "> Figure 6
<p>Histogram of reconstructed interaction positions (blue line) of a 511 keV <math display="inline"><semantics> <mi>γ</mi> </semantics></math> ray beam positioned at (<math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math>, <math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math>) = (20 mm, 15 mm) for a crystal thickness of 7 mm (<b>a</b>,<b>b</b>) and for a crystal thickness of 15 mm (<b>c</b>,<b>d</b>). A Lorentzian fit to the distribution is also shown (red line).</p> "> Figure 7
<p>XY histograms of interaction position reconstruction of the 511 keV <math display="inline"><semantics> <mi>γ</mi> </semantics></math> ray beams positioned at (<math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math>, <math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math>) = (15 mm, 15 mm) and (<math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math>, <math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math>) = (20 mm, 15 mm), shown in both 3D (<b>top</b>) and 2D (<b>bottom</b>) representations (blue dots) for a crystal thickness of 7 mm: (<b>a</b>,<b>c</b>) no rejection and (<b>b</b>,<b>d</b>) with Compton scattering events rejection applied.</p> "> Figure 8
<p>XY histograms of interaction position reconstruction of the 511 keV <math display="inline"><semantics> <mi>γ</mi> </semantics></math> ray beams positioned at (<math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math>, <math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math>) = (15 mm, 15 mm) and (<math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math>, <math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math>) = (20 mm, 15 mm), shown in both 3D (<b>top</b>) and 2D (<b>bottom</b>) representations (blue dots) for a crystal thickness of 15 mm: (<b>a</b>,<b>c</b>) no rejection and (<b>b</b>,<b>d</b>) with Compton scattering events rejection applied.</p> "> Figure 9
<p>Response time spectrum of detected photons in a single event for 511 keV energy deposition in a LYSO crystal array readout using BCF-91A fibers (<b>a</b>) and BCF-92 fibers (<b>b</b>). (<b>c</b>) The average (n = 2000) response time spectrum of detected photons for 511 keV energy deposition in a LYSO crystal array, shown for the readout with BCF-91A fibers (blue histogram fitted with an exponential function in red) and the readout with BCF-92 fibers (green histogram fitted with an exponential function in black).</p> "> Figure 10
<p>(<b>a</b>) A 2D histogram of the positioning estimations using a ROOT-based algorithm, demonstrating interaction uniformly distributed across a grid of 20 × 20 points spaced 10 mm apart. (<b>b</b>) The <math display="inline"><semantics> <mi mathvariant="italic">z</mi> </semantics></math>-coordinate of the interaction position, simulated at six depths, regarded as the depth-of-interaction (DOI) resolution.</p> "> Figure 11
<p>Three dimensional plot of reconstructed (<math display="inline"><semantics> <mrow> <mi mathvariant="italic">x</mi> <mo>,</mo> <mi mathvariant="italic">y</mi> <mo>,</mo> <mi mathvariant="italic">z</mi> </mrow> </semantics></math>) coordinates for the 511 keV <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-ray beam positioned at (<math display="inline"><semantics> <mi mathvariant="italic">x</mi> </semantics></math>, <math display="inline"><semantics> <mi mathvariant="italic">y</mi> </semantics></math>) = (30 mm, 30 mm) shown in with no rejection (<b>a</b>) and with Compton scattering event rejection applied (<b>b</b>). An energy spectrum of 511 keV <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-rays for the modeled WLS-PET detector is shown together with the corresponding Gaussian fit through the corresponding full energy peak (red line) (<b>c</b>).</p> "> Figure 12
<p>The 3D (<b>a</b>) and 2D (<b>b</b>) histograms of the average number of detected photons, demonstrating uniformity of energy resolution across the detector’s sensitive area. In the histogram, darker yellow bins indicate fewer detected photons, while brighter yellow bins represent a higher number of detected photons.</p> "> Figure 13
<p>Schematic of a brain PET scanner (<b>a</b>) and a total-body PET scanner (<b>b</b>), both composed of modules from a 4 × 4 assembly of optically coupled LYSO crystals (gray). The interaction of annihilation <math display="inline"><semantics> <mi>γ</mi> </semantics></math>-rays with the opposite detection modules produces scintillation photons (green), which are shared within the LYSO assembly due to optical coupling. WLS fibers are not shown.</p> ">
Abstract
:1. Introduction
2. Detector Design
3. Monte Carlo Simulation of the Detector
4. Results
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gonzalez-Montoro, A.; Ullah, M.N.; Levin, C.S. Advances in detector instrumentation for PET. J. Nucl. Med. 2022, 63, 1138–1144. [Google Scholar] [CrossRef]
- Gonzalez-Montoro, A.; Gonzalez, A.J.; Pourashraf, S.; Miyaoka, R.S.; Bruyndonckx, P.; Chinn, G.; Pierce, L.A.; Levin, C.S. Evolution of PET detectors and event positioning algorithms using monolithic scintillation crystals. IEEE Trans. Radiat. Plasma Med. Sci. 2021, 5, 282–305. [Google Scholar] [CrossRef]
- Moliner, L.; Gonzalez, A.; Soriano, A.; Sanchez, F.; Correcher, C.; Orero, A.; Carles, M.; Vidal, L.; Barbera, J.; Caballero, L.; et al. Design and evaluation of the MAMMI dedicated breast PET. Med. Phys. 2012, 39, 5393–5404. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.; Rabiner, E.A. The development, past achievements, and future directions of brain PET. J. Cereb. Blood Flow Metab. 2012, 32, 1426–1454. [Google Scholar] [CrossRef] [PubMed]
- Catana, C. Development of dedicated brain PET imaging devices: Recent advances and future perspectives. J. Nucl. Med. 2019, 60, 1044–1052. [Google Scholar] [CrossRef]
- Xie, L.; Zhao, J.; Li, Y.; Bai, J. PET brain imaging in neurological disorders. Phys. Life Rev. 2024, 49, 100–111. [Google Scholar] [CrossRef]
- Taha, A.; Alassi, A.; Gjedde, A.; Wong, D.F. Transforming Neurology and Psychiatry: Organ-specific PET Instrumentation and Clinical Applications. PET Clin. 2024, 19, 95–103. [Google Scholar] [CrossRef]
- Stiles, J.; Baldassi, B.; Bubon, O.; Poladyan, H.; Freitas, V.; Scaranelo, A.; Mulligan, A.M.; Waterston, M.; Reznik, A. Evaluation of a high-sensitivity organ-targeted PET camera. Sensors 2022, 22, 4678. [Google Scholar] [CrossRef]
- Katal, S.; Eibschutz, L.S.; Saboury, B.; Gholamrezanezhad, A.; Alavi, A. Advantages and Applications of Total-Body PET Scanning. Diagnostics 2022, 12, 426. [Google Scholar] [CrossRef]
- Stickel, J.R.; Cherry, S.R. High-resolution PET detector design: Modelling components of intrinsic spatial resolution. Phys. Med. Biol. 2004, 50, 179. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Y.; Qi, J.; James, S.S.; Du, H.; Dokhale, P.A.; Shah, K.S.; Farrell, R.; Cherry, S.R. A prototype PET scanner with DOI-encoding detectors. J. Nucl. Med. 2008, 49, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Schaart, D.R.; van Dam, H.T.; Seifert, S.; Vinke, R.; Dendooven, P.; Löhner, H.; Beekman, F.J. A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys. Med. Biol. 2009, 54, 3501. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, E.; Inadama, N.; Osada, H.; Kawai, H.; Nishikido, F.; Murayama, H.; Tsuda, T.; Yamaya, T. Basic performance of a large area PET detector with a monolithic scintillator. Radiol. Phys. Technol. 2011, 4, 134–139. [Google Scholar] [CrossRef] [PubMed]
- González, A.J.; Aguilar, A.; Conde, P.; Hernández, L.; Moliner, L.; Vidal, L.F.; Sánchez, F.; Sánchez, S.; Correcher, C.; Molinos, C.; et al. A PET design based on SiPM and monolithic LYSO crystals: Performance evaluation. IEEE Trans. Nucl. Sci. 2016, 63, 2471–2477. [Google Scholar] [CrossRef]
- Sánchez, F.; Orero, A.; Soriano, A.; Correcher, C.; Conde, P.; González, A.; Hernández, L.; Moliner, L.; Rodríguez-Alvarez, M.J.; Vidal, L.; et al. ALBIRA: A small animal PET/SPECT/CT imaging system. Med. Phys. 2013, 40, 051906. [Google Scholar] [CrossRef]
- Mollet, P.; Deprez, K.; Vandeghinste, B.; Neyt, S.; Marcinkowski, R.; Vandenberghe, S.; Van Holen, R. The β-CUBE, a high-end compact preclinical benchtop PET for total body imaging. J. Nucl. Med. 2017, 58, 393. [Google Scholar]
- Morrocchi, M.; Ambrosi, G.; Bisogni, M.G.; Bosi, F.; Boretto, M.; Cerello, P.; Ionica, M.; Liu, B.; Pennazio, F.; Piliero, M.A.; et al. Depth of interaction determination in monolithic scintillator with double side SiPM readout. EJNMMI Phys. 2017, 4, 11. [Google Scholar] [CrossRef]
- Díaz-Martínez, V.D.; Ambrosio-Macías, N.I.; Murrieta-Rodríguez, T.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Alva-Sánchez, H. Depth of interaction in monolithic scintillators for positron emission tomography. Proc. AIP Conf. Proc. 2021, 2348, 050004. [Google Scholar]
- Cabello, J.; Barrillon, P.; Barrio, J.; Bisogni, M.G.; Del Guerra, A.; Lacasta, C.; Rafecas, M.; Saikouk, H.; Solaz, C.; Solevi, P.; et al. High resolution detectors based on continuous crystals and SiPMs for small animal PET. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 718, 148–150. [Google Scholar] [CrossRef]
- España, S.; Marcinkowski, R.; Keereman, V.; Vandenberghe, S.; Van Holen, R. DigiPET: Sub-millimeter spatial resolution small-animal PET imaging using thin monolithic scintillators. Phys. Med. Biol. 2014, 59, 3405. [Google Scholar] [CrossRef]
- Freire, M.; Echegoyen, S.; Gonzalez-Montoro, A.; Sanchez, F.; Gonzalez, A.J. Performance evaluation of side-by-side optically coupled monolithic LYSO crystals. Med. Phys. 2022, 49, 5616–5626. [Google Scholar] [CrossRef] [PubMed]
- Vinke, R.; Levin, C.S. A method to achieve spatial linearity and uniform resolution at the edges of monolithic scintillation crystal detectors. Phys. Med. Biol. 2014, 59, 2975. [Google Scholar] [CrossRef] [PubMed]
- Morrocchi, M.; Hunter, W.; Del Guerra, A.; Lewellen, T.; Kinahan, P.; MacDonald, L.; Bisogni, M.G.; Miyaoka, R. Evaluation of event position reconstruction in monolithic crystals that are optically coupled. Phys. Med. Biol. 2016, 61, 8298. [Google Scholar] [CrossRef] [PubMed]
- Worstell, W.; Doulas, S.; Johnson, O.; Lin, C.J. Scintillator crystal readout with wavelength-shifting optical fibers. In Proceedings of the 1994 IEEE Nuclear Science Symposium-NSS’94, Norfolk, VA, USA, 30 October–5 November 1994; Volume 4, pp. 1869–1873. [Google Scholar]
- Worstell, W.; Johnson, O.; Zawarzin, V. Development of a high-resolution PET detector using LSO and wavelength-shifting fibers. In Proceedings of the 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, San Francisco, CA, USA, 21–28 October 1995; Volume 3, pp. 1756–1760. [Google Scholar]
- Du, H.; Yang, Y.; Cherry, S.R. Comparison of four depth-encoding PET detector modules with wavelength shifting (WLS) and optical fiber read-out. Phys. Med. Biol. 2008, 53, 1829. [Google Scholar] [CrossRef]
- An, S.J.; Kim, H.i.; Lee, C.Y.; Song, H.K.; Park, C.W.; Chung, Y.H. Design and simulation of depth-encoding PET detector using wavelength-shifting (WLS) fiber readout. IEIE Trans. Smart Process. Comput. 2015, 4, 305–310. [Google Scholar] [CrossRef]
- Cargille. Optical Mounting Media—Meltmount, DATASHEET from. Available online: https://www.cargille.com/mounting-media/ (accessed on 9 December 2024).
- Roncali, E.; Stockhoff, M.; Cherry, S.R. An integrated model of scintillator-reflector properties for advanced simulations of optical transport. Phys. Med. Biol. 2017, 62, 4811. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4 — A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Geant4 Collaboration. Book For Application Developers, Release 10.7; CERN: Geneva, Switzerland, 2020. [Google Scholar]
- Gumplinger, P. Optical Photon Processes in GEANT4. Users’ Workshop at CERN, November 2002. Available online: https://geant4-internal.web.cern.ch/sites/default/files/geant4/support/training/users_workshop_2002/lectures/OpticalPhoton.pdf (accessed on 9 December 2024).
- Hilger-Crystals. Guide to Selecting Inorganic Scintillator Crystals. Available online: https://www.hilger-crystals.co.uk/guide-to-selecting-inorganic-scintillator-crystals/ (accessed on 9 December 2024).
- van der Laan, D.J.; Schaart, D.R.; Maas, M.C.; Beekman, F.J.; Bruyndonckx, P.; van Eijk, C.W. Optical simulation of monolithic scintillator detectors using GATE/GEANT4. Phys. Med. Biol. 2010, 55, 1659–1675. [Google Scholar] [CrossRef]
- Luxium Solutions. 2024. Available online: https://luxiumsolutions.com/radiation-detection-scintillators/fibers (accessed on 9 December 2024).
- Wanarak, C.; Chewpraditkul, W.; Phunpueok, A.; Kaewkhao, J. Luminescence and scintillation properties of Ce-doped LYSO and YSO crystals. Adv. Mater. Res. 2011, 199, 1796–1803. [Google Scholar] [CrossRef]
- Wanarak, C.; Chewpraditkul, W.; Phunpueok, A. Light yield non-proportionality and energy resolution of Lu1. 8Y0. 2SiO5: Ce and LaCl3: Ce scintillation crystals. Adv. Mater. Res. 2011, 284, 2002–2007. [Google Scholar] [CrossRef]
- Pidol, L.; Kahn-Harari, A.; Viana, B.; Virey, E.; Ferrand, B.; Dorenbos, P.; de Haas, J.T.; van Eijk, C.W. High efficiency of lutetium silicate scintillators, Ce-doped LPS, and LYSO crystals. IEEE Trans. Nucl. Sci. 2004, 51, 1084–1087. [Google Scholar] [CrossRef]
- Mao, R.; Wu, C.; Lu, S. Crystal growth and scintillation properties of LSO and LYSO crystals. J. Cryst. Growth 2013, 368, 97–100. [Google Scholar] [CrossRef]
- Vilardi, I.; Braem, A.; Chesi, E.; Ciocia, F.; Colonna, N.; Corsi, F.; Cusanno, F.; De Leo, R.; Dragone, A.; Garibaldi, F.; et al. Optimization of the effective light attenuation length of YAP: Ce and LYSO: Ce crystals for a novel geometrical PET concept. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 564, 506–514. [Google Scholar] [CrossRef]
- Georgadze, A.; Shivani, S.; Tayefi, K.A.; Moskal, P. Optimization of the WLS design for positron emission mammography and Total-Body J-PET systems. Bio-Algorithms Med-Syst. 2023, 19, 114–123. [Google Scholar] [CrossRef]
- Brun, R.; Rademakers, F. ROOT—An object oriented data analysis framework. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 389, 81–86. [Google Scholar] [CrossRef]
- Anger, H.O. Scintillation camera. Rev. Sci. Instrum. 1958, 29, 27–33. [Google Scholar] [CrossRef]
- Zatcepin, A.; Pizzichemi, M.; Polesel, A.; Paganoni, M.; Auffray, E.; Ziegler, S.I.; Omidvari, N. Improving depth-of-interaction resolution in pixellated PET detectors using neural networks. Phys. Med. Biol. 2020, 65, 175017. [Google Scholar] [CrossRef]
- Gong, K.; Berg, E.; Cherry, S.R.; Qi, J. Machine Learning in PET: From Photon Detection to Quantitative Image Reconstruction. Proc. IEEE 2020, 108, 51–68. [Google Scholar] [CrossRef]
- Georgadze, A. Figures for the Feasibility Study of a PET Detector with Wavelength-Shifting Fiber Readout. Mendeley Data 2025. [Google Scholar] [CrossRef]
- Deng, Z.; Deng, Y.; Chen, G. Design and evaluation of LYSO/SiPM LIGHTENING PET detector with DTI sampling method. Sensors 2020, 20, 5820. [Google Scholar] [CrossRef]
- Jones, T.; Townsend, D. History and future technical innovation in positron emission tomography. J. Med. Imaging 2017, 4, 011013. [Google Scholar] [CrossRef] [PubMed]
- Xi, D.; Xie, Q.; Zhu, J.; Lin, L.; Niu, M.; Xiao, P.; Chen, C.T.; Kao, C.M. Optimization of the SiPM pixel size for a monolithic PET detector. Phys. Procedia 2012, 37, 1497–1503. [Google Scholar] [CrossRef]
- Stockhoff, M.; Van Holen, R.; Vandenberghe, S. Optical simulation study on the spatial resolution of a thick monolithic PET detector. Phys. Med. Biol. 2019, 64, 195003. [Google Scholar] [CrossRef] [PubMed]
- Cates, J.W.; Levin, C.S. Advances in coincidence time resolution for PET. Phys. Med. Biol. 2016, 61, 2255. [Google Scholar] [CrossRef]
- Deng, Z.; Xie, Q.; Duan, Z.; Xiao, P. Scintillation event energy measurement via a pulse model based iterative deconvolution method. Phys. Med. Biol. 2013, 58, 7815. [Google Scholar] [CrossRef]
Material | Density (g/cm3) | Emission Maximum (nm) | Decay Constant (ns) | Refractive Index | Light Yield (ph/keV) | Radiation Length (cm) |
---|---|---|---|---|---|---|
Na(Tl) | 3.67 | 415 | 250 | 1.83 | 41 | 2.59 |
CaF2 | 3.18 | 435 | 950 | 1.47 | 20 | 3.5 |
YAG(Ce) | 4.6 | 500–700 | 70 | 1.82 | 8 | 3.5 |
CsI(Tl) | 4.51 | 550 | 1000 | 1.79 | 52 | 1.86 |
GSO(Ce) | 6.71 | 440 | 30–60 | 1.85 | 8–10 | 1.38 |
GLuGAG | 6.8 | 450–650 | 75 | 1.81 | 50 | 1.26 |
LYSO(Ce) | 7.4 | 420 | 40 | 1.82 | 32 | 1.15 |
BGO | 7.13 | 480 | 300 | 2.15 | 8.5 | 1.13 |
CdWO4 | 7.9 | 470/540 | 14,000 | 2.3 | 13 | 1.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgadze, A.S. Feasibility Study of a PET Detector with a Wavelength-Shifting Fiber Readout. Instruments 2025, 9, 2. https://doi.org/10.3390/instruments9010002
Georgadze AS. Feasibility Study of a PET Detector with a Wavelength-Shifting Fiber Readout. Instruments. 2025; 9(1):2. https://doi.org/10.3390/instruments9010002
Chicago/Turabian StyleGeorgadze, Anzori Sh. 2025. "Feasibility Study of a PET Detector with a Wavelength-Shifting Fiber Readout" Instruments 9, no. 1: 2. https://doi.org/10.3390/instruments9010002
APA StyleGeorgadze, A. S. (2025). Feasibility Study of a PET Detector with a Wavelength-Shifting Fiber Readout. Instruments, 9(1), 2. https://doi.org/10.3390/instruments9010002