Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security
<p>(<b>a</b>) GEANT4 visualization of a detector composed of a plastic scintillator readout provided by 2 × 2 mm<sup>2</sup> WLS fibers. (<b>b</b>) Simulated light photons transmitted through a plastic scintillator slab and WLS fibres with GEANT4. Generated scintillation photons, shown as light green lines. The SiPMs are depicted in red.</p> "> Figure 2
<p>Photon emission spectrum of BC-404 scintillator [<a href="#B29-instruments-09-00001" class="html-bibr">29</a>] (blue colour); absorption (red colour) and emission (green colour) spectra of BCF-91A [<a href="#B27-instruments-09-00001" class="html-bibr">27</a>] and SiPM PDE (dark blue colour).</p> "> Figure 3
<p>Illustration of uniformity of XY-plane positioning estimation (<b>a</b>). Histogram of distribution of detected photons (<b>b</b>).</p> "> Figure 4
<p>Comparison of position resolution in a central position (muon hit coordinates are <span class="html-italic">x</span><sub>1</sub> = 4 mm, <span class="html-italic">y</span><sub>1</sub> = 4 mm and <span class="html-italic">x</span><sub>2</sub> = 5, <span class="html-italic">y</span><sub>2</sub> = 5 mm) (<b>a</b>) and near the detector edge (muon hit coordinates are <span class="html-italic">x</span><sub>1</sub> = 493 mm, <span class="html-italic">y</span><sub>1</sub> = 3 mm and <span class="html-italic">x</span><sub>2</sub> = 494, <span class="html-italic">y</span><sub>2</sub> = 4 mm) (<b>b</b>).</p> "> Figure 5
<p>Reconstructed muon interaction position for the central detector area in 2D (<b>a</b>) and 3D (<b>d</b>) and profiles along the <span class="html-italic">x</span>-axis and <span class="html-italic">y</span>-axis for two beam positions: <span class="html-italic">x</span><sub>1</sub> = 4 mm (<b>b</b>), <span class="html-italic">y</span><sub>1</sub> = 4 mm (<b>c</b>) and <span class="html-italic">x</span><sub>2</sub> = 5 (<b>e</b>), <span class="html-italic">y</span><sub>2</sub> = 5 mm (<b>f</b>). The red line shows a Gaussian fit performed on each profile.</p> "> Figure 6
<p>Reconstructed muon interaction position for the central detector area in 2D (<b>a</b>) and 3D (<b>d</b>) and profiles along the <span class="html-italic">x</span>-axis and <span class="html-italic">y</span>-axis for two beam positions: <span class="html-italic">x</span><sub>1</sub> = 493 mm (<b>b</b>), <span class="html-italic">y</span><sub>1</sub> = 3 mm (<b>c</b>) and <span class="html-italic">x</span><sub>2</sub> = 494 (<b>e</b>), <span class="html-italic">y</span><sub>2</sub> = 4 mm (<b>f</b>). The red line shows a Gaussian fit performed on each profile.</p> "> Figure 7
<p>A GEANT4 model of the muon tomography station is illustrated, showing the front view (<b>a</b>) and the side view (<b>b</b>). The station consists of 9 muon trackers positioned above and 9 positioned below, each constructed from plastic scintillators measuring 1 m × 1 m × 1 cm with the WLS fiber readout. A space is allocated between the plastic scintillator detectors to accommodate the front-end electronics. The muon trajectories are shown as red (<math display="inline"><semantics> <msup> <mi>μ</mi> <mo>−</mo> </msup> </semantics></math>) and blue (<math display="inline"><semantics> <msup> <mi>μ</mi> <mo>+</mo> </msup> </semantics></math>) lines.</p> "> Figure 8
<p>(<b>a</b>) Simulated 200k muons (20 s) sampled on a 10 m × 10 m surface using a CRY generator. Three-dimensional image of the PoCA reconstruction of a cigarette smuggling scenario. Two- (<b>b</b>) and one-dimensional (<b>c</b>) profiles of the PoCA image of tobacco in the compact MTS (3 × 3 × 3 m<sup>3</sup>).</p> "> Figure 9
<p>(<b>a</b>) Scatter plot showing the distributions of scattering and scattering-to-stopping ratio for paper towel rolls and tobacco. Data points for paper towel rolls are marked in blue, and data points for tobacco are marked in red. (<b>b</b>) Scatter plot showing the distributions of scattering density versus stopped muons ratio for paper towel rolls and tobacco in small MTS for 20 s scanning time.</p> ">
Abstract
:1. Introduction
2. Simulation of the Muon Detector
3. Simulation Results
4. Cargo Discrimination Capability Study
4.1. Muon Scattering Tomography
4.2. Muon Absorption Method
4.3. Simulation in a Real Scenario
5. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bonechi, L.; D’Alessandro, R.; Giammanco, A. Atmospheric muons as an imaging tool. Rev. Phys. 2020, 5, 100038. [Google Scholar] [CrossRef]
- Barnes, S.; Georgadze, A.; Giammanco, A.; Kiisk, M.; Kudryavtsev, V.A.; Lagrange, M.; Pinto, O.L. Cosmic-Ray Tomography for Border Security. Instruments 2023, 7, 13. [Google Scholar] [CrossRef]
- Borozdin, K.N.; Hogan, G.E.; Morris, C.; Priedhorsky, W.C.; Saunders, A.; Schultz, L.J.; Teasdale, M.E. Radiographic imaging with cosmic-ray muons. Nature 2003, 422, 277. [Google Scholar] [CrossRef] [PubMed]
- Cuéllar, L.; Borozdin, K.N.; Green, J.A.; Hengartner, N.W.; Morris, C.; Schultz, L.J. Soft cosmic ray tomography for detection of explosives. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 24 October–1 November 2009; pp. 968–970. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhi, Z.; Ming, Z.; Wang, X.; Zhao, Z. Discrimination of drugs and explosives in cargo inspections by applying machine learning in muon tomography. High Power Laser Part. Beams 2018, 30, 086002. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Li, Y.; Liu, P. Towards a muon scattering tomography system for both low-Z and high-Z materials. J. Instrum. 2023, 18, P08008. [Google Scholar] [CrossRef]
- Schultz, L.J. Cosmic Ray Muon Radiography; Portland State University: Portland, OR, USA, 2003. [Google Scholar]
- Åström, E.; Bonomi, G.; Calliari, I.; Calvini, P.; Checchia, P.; Donzella, A.; Faraci, E.; Forsberg, F.; Gonella, F.; Hu, X.; et al. Precision measurements of linear scattering density using muon tomography. J. Instrum. 2016, 11, P07010. [Google Scholar] [CrossRef]
- Checchia, P. Review of possible applications of cosmic muon tomography. J. Instrum. 2016, 11, C12072. [Google Scholar] [CrossRef]
- Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Bonanno, D.; Bonanno, G.; Bongiovanni, D.; Fallica, P.; Garozzo, S.; Grillo, A.; La Rocca, P.; et al. The Muon Portal Project: Design and construction of a scanning portal based on muon tomography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2017, 845, 322–325. [Google Scholar] [CrossRef]
- Pugliatti, C.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluomo, F.; Belluso, M.; Billotta, S.; Blancato, A.A.; Bonanno, D.L.; Bonanno, G.; et al. Design of a muonic tomographic detector to scan travelling containers. J. Instrum. 2014, 9, C05029. [Google Scholar] [CrossRef]
- Morris, C.; Bacon, J.; Borozdin, K.; Miyadera, H.; Perry, J.; Rose, E.; Watson, S.; White, T.; Aberle, D.; Green, J.A.; et al. A new method for imaging nuclear threats using cosmic ray muons. AIP Adv. 2013, 3, 082128. [Google Scholar] [CrossRef]
- Preziosi, E.; Arcieri, F.; Caltabiano, A.; Camarri, P.; Casagrande, S.; Cavicchioni, D.; Danza, F.A.; Fabrizi, E.; Fabrizi, M.; Festa, G.; et al. TECNOMUSE: A novel, RPC-based, muon tomography scanner for the control of container terminals. J. Phys. Conf. Ser. 2020, 1548, 012021. [Google Scholar] [CrossRef]
- Georgadze, A.S.; Kudryavtsev, V.A. Geant4 simulation study of low-Z material detection using muon tomography. J. Instrum. 2023, 18, C12014. [Google Scholar] [CrossRef]
- Georgadze, A.; Giammanco, A.; Kudryavtsev, V.; Lagrange, M.; Turkoglu, C. A Simulation of a Cosmic Ray Tomography Scanner for Trucks and Shipping Containers. J. Adv. Instrum. Sci. 2024, 2024, JAIS-482. [Google Scholar] [CrossRef]
- Georgadze, A.S. Simulation study into the detection of low- and high-Z materials in cargo containers using cosmic ray muons. Acta Phys. Pol. B Proc. Suppl. 2024, 17, 1-A2.1–1-A2.8. [Google Scholar] [CrossRef]
- Georgadze, A.S. Automated object detection for muon tomography data analysis. J. Instrum. 2024, 19, C07004. [Google Scholar] [CrossRef]
- Europian Commission. Cosmic Ray Tomograph for Identification of Hazardous and Illegal Goods Hidden in Trucks and Sea Containers; European Commission: Brussels, Belgium, 2021. [Google Scholar] [CrossRef]
- Morris, C.; Borozdin, K.; Bacon, J.; Chen, E.; Lukić, Z.; Milner, E.; Miyadera, H.; Perry, J.; Schwellenbach, D.; Aberle, D.; et al. Obtaining material identification with cosmic ray radiography. AIP Adv. 2012, 2, 042128. [Google Scholar] [CrossRef]
- Blanpied, G.; Kumar, S.; Dorroh, D.; Morgan, C.; Blanpied, I.; Sossong, M.; McKenney, S.; Nelson, B. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 784, 352–358. [Google Scholar] [CrossRef]
- Vanini, S.; Calvini, P.; Checchia, P.; Rigoni Garola, A.; Klinger, J.; Zumerle, G.; Bonomi, G.; Donzella, A.; Zenoni, A. Muography of different structures using muon scattering and absorption algorithms. Philos. Trans. R. Soc. A 2019, 377, 20180051. [Google Scholar] [CrossRef]
- Georgadze, A.S. Rapid cargo verification with cosmic ray muon scattering and absorption tomography. J. Instrum. 2024, 19, P10033. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 506–514. [Google Scholar] [CrossRef]
- Geant4 Collaboration. 2025. Available online: https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/index.html (accessed on 1 January 2025).
- Gumplinger, P. Optical photon processes in Geant4. In Proceedings of the Users’ Workshop at CERN, Stanford, CA, USA, 18–22 February 2002. [Google Scholar]
- Vilardi, I.; Braem, A.; Chesi, E.; Ciocia, F.; Colonna, N.; Corsi, F.; Cusanno, F.; De Leo, R.; Dragone, A.; Garibaldi, F.; et al. Optimization of the effective light attenuation length of YAP: Ce and LYSO: Ce crystals for a novel geometrical PET concept. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2006, 564, 506–514. [Google Scholar] [CrossRef]
- Solutions, L. Luxium Solutions. 2024. Available online: https://luxiumsolutions.com/radiation-detection-scintillators/fibers (accessed on 26 December 2024).
- Georgadze, A.; Shivani, S.; Tayefi, K.A.; Moskal, P. Optimization of the WLS design for positron emission mammography and Total-Body J-PET systems. Bio-Algorithms Med-Syst. 2023, 19, 114–123. [Google Scholar] [CrossRef]
- Solutions, L. Premium Plastic Scintillators, BC-408 Datasheet. 2014. Available online: https://luxiumsolutions.com/radiation-detection-scintillators/plastic-scintillators (accessed on 26 December 2024).
- Brun, R.; Rademakers, F. ROOT—An object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1997, 389, 81–86. [Google Scholar] [CrossRef]
- Lynch, G.R.; Dahl, O.I. Approximations to multiple Coulomb scattering. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1991, 58, 6–10. [Google Scholar] [CrossRef]
- Highland, V.L. Some practical remarks on multiple scattering. Nucl. Instrum. Methods 1975, 129, 497–499. [Google Scholar] [CrossRef]
- Hagmann, C.; Lange, D.; Wright, D. Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; Volume 2, pp. 1143–1146. [Google Scholar] [CrossRef]
- Carlisle, T.; Cobb, J.; Neuffer, D. Multiple scattering measurements in the MICE experiment. In Proceedings of the IPAC2012, New Orleans, LA, USA, 20–25 May 2012; Volume 1205201, pp. 1419–1421. [Google Scholar]
- Riggi, S.; Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; et al. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2013, 728, 59–68. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgadze, A.S. Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security. Instruments 2025, 9, 1. https://doi.org/10.3390/instruments9010001
Georgadze AS. Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security. Instruments. 2025; 9(1):1. https://doi.org/10.3390/instruments9010001
Chicago/Turabian StyleGeorgadze, Anzori Sh. 2025. "Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security" Instruments 9, no. 1: 1. https://doi.org/10.3390/instruments9010001
APA StyleGeorgadze, A. S. (2025). Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security. Instruments, 9(1), 1. https://doi.org/10.3390/instruments9010001