Diversity of Lacewings (Neuroptera) in an Altitudinal Gradient of the Tacaná Volcano, Southern Mexico
<p>Map of the distribution of sampling sites in the Tacaná Volcano Reserve, Chiapas, Mexico. (<b>A</b>) Geographical Location, (<b>B</b>) Sites of study.</p> "> Figure 2
<p>Different types of sampling methods implemented in this study. (<b>A</b>) Malaise trap; (<b>B</b>) Ground-level interception traps; (<b>C</b>) Yellow plate traps; (<b>D</b>) Black light trap; (<b>E</b>) Black and white light trap; (<b>F</b>) Entomological net (Reprinted with permission from Cancino et al. [<a href="#B39-insects-13-00652" class="html-bibr">39</a>]. Copyright 2021, by the authors).</p> "> Figure 3
<p>Rank-abundance curves of Neuroptera species for the different sampling sites and at the regional level of the Tacaná Volcano, Mexico. Species: A. <span class="html-italic">Semidalis soleri</span>, B. <span class="html-italic">Leucochrysa pretiosa</span>, C. <span class="html-italic">Leucochrysa askanes</span>, D. <span class="html-italic">Megalomus minor</span>, E. <span class="html-italic">Leucochrysa lateralis</span>, F. <span class="html-italic">Myrmeleon timidus</span>, G. <span class="html-italic">Leucochrysa tarini</span>, H. <span class="html-italic">Semidalis problematica</span>, I. <span class="html-italic">Chrysopodes crassinervis</span>, J. <span class="html-italic">Ceraeochrysa sarta</span>, K. <span class="html-italic">Hemerobius hernandezi</span>, L. <span class="html-italic">Semidalis hidalgoana</span>, M. <span class="html-italic">Leucochrysa maculosa</span>, N. <span class="html-italic">Ceraeochrysa arioles</span>, O. <span class="html-italic">Meleoma titschacki</span>, P. <span class="html-italic">Chrysopodes varicosus</span>, Q. <span class="html-italic">Ceraeochrysa tacanensis</span>, R. <span class="html-italic">Coniopteryx simplicior</span>, S. <span class="html-italic">Hemerobius jucundus</span>, T. <span class="html-italic">Hemerobius discretus</span>, U. <span class="html-italic">Semidalis manausensis</span>, V. <span class="html-italic">Coniopteryx latipalpis</span>, W. <span class="html-italic">Conwentzia barretti</span>, X. <span class="html-italic">Hemerobius alpestris</span>, Y. <span class="html-italic">Sympherobius axillaris</span>.</p> "> Figure 4
<p>Species richness and diversity of orders 1 and 2 and taxonomic distinctness indices for each of the sampled sites. (<b>A</b>) Species richness, (<b>B</b>) Order q = 1 diversity, (<b>C</b>) Order q = 2 diversity, (<b>D</b>) Taxonomic distinctness (DivT), average taxonomic distinctness (DistT), and taxonomic variation (VarT). For standardized diversity values, error bars are 95% confidence intervals (c.i.), and for q = 1 and q = 2 diversities, the units are the effective number of species (e.n.s.).</p> "> Figure 5
<p>Taxonomic and phylogenetic beta diversity (Dissimilarity [βsor]) of the Neuroptera community of the Tacaná Volcano with the criterion of pairs of sites, with each of its components, turnover (βsim), and nestedness (βnes). (<b>A</b>) Taxonomic beta diversity across the altitude gradient of the Tacaná Volcano obtained using species incidence. (<b>B</b>) Phylogenetic beta diversity through the altitudinal gradient of the Tacaná Volcano using taxa incidence.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Method
2.3. Data Analysis
2.3.1. Inventory Completeness Estimation
2.3.2. Alpha Diversity: Species and Taxa
2.3.3. Beta Diversity: Species and Taxa
3. Results
3.1. Inventory Completeness
3.2. Alpha Diversity: Species and Taxa
3.3. Beta Diversity: Species and Taxa
4. Discussion
4.1. Inventory Completeness
4.2. Alpha Diversity: Species and Taxa
4.3. Beta Diversity: Species and Taxa
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Mendoza, G.; Traunspurger, W.; Palomo, A.; Catalan, J. Nematode distributions as spatial null models for macroinvertebrate species richness across environmental gradients: A case from mountain lakes. Ecol. Evol. 2017, 7, 3016–3028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noriega, J.A.; Realpe, E. Altitudinal turnover of species in a Neotropical peripheral mountain system: A case study with dung beetles (Coleoptera: Aphodiinae and Scarabaeinae). Environ. Entomol. 2018, 47, 1376–1387. [Google Scholar] [CrossRef] [PubMed]
- Escobar, F.; Lobo, J.M.; Halffter, G. Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes. Glob. Ecol. Biogeogr. 2005, 14, 327–337. [Google Scholar] [CrossRef]
- Girardin, C.A.J.; Farfan-Rios, W.; Garcia, K.; Feeley, K.J.; Jørgensen, P.M.; Araujo Murakami, A.; Cayola Pérez, L.; Seidel, R.; Paniagua, N.; Fuentes Claros, A.F.; et al. Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant. Ecol. Divers. 2014, 7, 161–171. [Google Scholar] [CrossRef]
- Castro, D.M.P.; Callisto, M.; Solar, R.R.C.; Macedo, D.R.; Fernandes, G.W. Beta diversity of aquatic invertebrates increases along an altitudinal gradient in a Neotropical mountain. Biotropica 2019, 5, 399–411. [Google Scholar] [CrossRef]
- Willig, M.R.; Presley, S.J. The spatial configuration of taxonomic biodiversity along a tropical elevational gradient: α-, β-, and γ-partitions. Biotropica 2019, 51, 104–116. [Google Scholar] [CrossRef]
- Guerrero, R.J.; Sarmiento, C.E. Distribución altitudinal de hormigas (Hymenoptera, Formicidae) en la vertiente Noroccidental de la sierra nevada de santa Marta (Colombia). Acta Zool. Mex. 2010, 26, 279–302. [Google Scholar] [CrossRef] [Green Version]
- Perillo, L.N.; Neves, F.d.S.; Antonini, Y.; Martins, R.P. Compositional changes in bee and wasp communities along Neotropical mountain altitudinal gradient. PLoS ONE 2017, 12, e0182054. [Google Scholar] [CrossRef] [Green Version]
- Stevens, G.C. The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. Amer. Nat. 1992, 140, 893–911. [Google Scholar] [CrossRef]
- Colwell, R.K.; Rahbek, C.; Gotelli, N.J. The mid-domain effect and species richness patterns: What have we learned so far? Am. Nat. 2004, 163, E1–E23. [Google Scholar] [CrossRef] [Green Version]
- Fontana, V.; Guariento, E.; Hilpold, A.; Niedrist, G.; Steinwandter, M.; Spitale, D.; Nascimbene, J.; Tappeiner, U.; Seeber, J. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 2020, 10, 12516. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Soininen, J.; Zhang, Y.; Wang, B.; Yang, X.; Shen, J. Patterns of elevational beta diversity in micro and macroorganisms. Glob. Ecol. Biogeogr. 2012, 21, 743–750. [Google Scholar] [CrossRef]
- Tello, J.S.; Myers, J.A.; Macía, M.J.; Fuentes, A.F.; Cayola, L.; Arellano, G.; Loza, M.I.; Torrez, V.; Cornejo, M.; Miranda, T.B.; et al. Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales. PLoS ONE 2015, 10, e0121458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Pérez-Toledo, G.R.; Valenzuela-González, J.E.; Moreno, C.E.; Villalobos, F.; Silva, R.R. Patterns and drivers of leaf-litter ant diversity along a tropical elevational gradient in Mexico. J. Biogeogr. 2021, 48, 2512–2523. [Google Scholar] [CrossRef]
- Stelzl, M.; Devetak, D. Neuroptera in agricultural ecosystems. Agric. Ecosyst. Environ. 1999, 74, 305–321. [Google Scholar] [CrossRef]
- Bozdogan, H. Species richness and composition of Neuroptera in the forests fragments of the Taurus Mountains Range, Turkey. Saudi J. Biol. Sci. 2020, 27, 1201–1207. [Google Scholar] [CrossRef]
- Oswald, J.D.; Machado, R.J.P. Biodiversity of the Neuropterida (Insecta: Neuroptera: Megaloptera, and Raphidioptera). In Insect Biodiversity: Science and Society, 1st ed.; Foottit, R.G., Adler, P.H., Eds.; John Wiley and Sons: New York, NY, USA, 2018; Volume 2, pp. 627–671. [Google Scholar]
- Winterton, S.L.; Hardy, N.B.; Wiegmann, B.M. On wings of lace: Phylogeny and bayesian divergence time stimates of Neuropterida (Insecta) based on morphological and molecular data. Syst. Entomol. 2010, 35, 349–378. [Google Scholar] [CrossRef]
- Thierry, D.; Deutsch, B.; Paulian, M.; Villenave, J.; Canard, M. Typifying ecosystems by using green lacewing assemblages. Agron. Sustain. Dev. 2005, 25, 473–479. [Google Scholar] [CrossRef]
- Thierry, D.; Canard, M. The biodiversity of green lacewings (Neuroptera Chrysopidae) in a mosaic ecosystem in southern France. In Proceedings of the Ninth International Symposium on Neuropterology, Ferrara, Italy, 20–23 June 2005; Volume 8, pp. 131–138. [Google Scholar]
- Monserrat, V.J. Los berótidos de la Península Ibérica (Insecta: Neuropterida: Neuroptera: Berothidae). Heteropterus Rev. Entomol. 2014, 14, 31–54. [Google Scholar]
- Chen, Z.Z.; Liu, L.Y.; Liu, S.Y.; Cheng, L.Y.; Wang, X.H.; Xu, Y.Y. Response of Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae) under long and short photoperiods. J. Insect Sci. 2017, 17, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruppe, A.; Sobek, S. Effect of tree species diversity on the neuropterid community in a deciduous forest. Acta Entomol. Slov. 2011, 19, 17–28. [Google Scholar]
- Badano, D.; Makris, C.; John, E.; Hadjiconstantis, M.; Sparrow, D.; Sparrow, R.; Thomas, B.; Devetak, D. The antlions of Cyprus: Review and new reports (Neuroptera: Myrmeleontidae). Frag. Entomol. 2018, 50, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Duelli, P.; Obrist, M.K.; Fluckiger, P.F. Forest edges are biodiversity hotspots–also for Neuroptera. Acta Zool. Acad. Sci. Hung. 2002, 48, 75–87. [Google Scholar]
- Monserrat, V.J. Los hemeróbidos de la Península Ibérica y Baleares (Insecta, Neuropterida, Neuroptera: Hemerobiidae). Graellsia 2015, 71, 1–71. [Google Scholar] [CrossRef]
- Agustinur, S.; Lizmah, F.; Sarong, M. Diversity of Insect Pest in Monoculture and Polyculture Nutmeg (Myristica fragrans Houtt.) Plantation in South Aceh District. Environ. Earth Sci. 2020, 515, 012006. [Google Scholar] [CrossRef]
- Bozdogan, H.; Toroglu, E. Lacewing (Insecta: Neuroptera) fauna of Başkonuş Mountain National Park (Kahramanmaraş Province-Turkey). BAUN Fen. Bil. Enst. Dergisi. 2016, 18, 89–103. [Google Scholar]
- New, T.R. Neuroptera of Australia: Faunal elements, diversity and relationships. Dtsch. Entomol. Z. 1997, 44, 259–265. [Google Scholar] [CrossRef]
- Lai, Y.; Liu, Y.; Liu, X. Elevational diversity patterns of green lacewings (Neuroptera: Chrysopidae) uncovered with DNA barcoding in a biodiversity hotspot of Southwest China. Front. Ecol. Evol. 2021, 9, 778686. [Google Scholar] [CrossRef]
- Bhattacharya, D.K.; Dey, S.R. Biodiversity of Neuroptera associated with aphids of Western Himalaya. Entomon 2001, 26, 320–325. [Google Scholar]
- CONANP. Programa de Manejo Reserva de la Biosfera Volcán Tacaná, 1st ed.; SEMARNAT: Mexico City, Mexico, 2013; p. 204. [Google Scholar]
- Lugo Hubp, J.; Córdova, C. Regionalización geomorfológica de la república mexicana. Investig. Geogr. 1992, 25, 25–63. [Google Scholar] [CrossRef]
- Morrone, J.J. Biogeographical regionalization of the Neotropical region. Zootaxa 2014, 3782, 1–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen; Instituto de Geografía Unam: Mexico City, Mexico, 2008; pp. 1–71. [Google Scholar]
- Vas, J.; Ábrahám, L.; Markó, V. Methodological investigations on a Neuropteroidea community. Acta Phytopathol. Entomol. Hung. 2001, 36, 101–113. [Google Scholar] [CrossRef]
- Ábrahám, L.; Markó, V.; Vas, J. Investigations on a neuropteroid community by using different methods. Acta Phytopathol. Entomol. Hung. 2003, 38, 199–207. [Google Scholar] [CrossRef]
- Cancino-López, R.J.; Martins, C.C.; Contreras-Ramos, A. Neuroptera Diversity from Tacaná Volcano, Mexico: Species Composition, Altitudinal and Biogeographic Pattern of the Fauna. Diversity 2021, 13, 537. [Google Scholar] [CrossRef]
- Chao, A.; Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 2012, 93, 2533–2547. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT Online: Interpolationand Extrapolation (Version 1.2.0). 2013. Available online: http://chao.stat.nthu.edu.tw/inext/ (accessed on 28 April 2021).
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Cultid-Medina, C.; Escobar, F. Pautas para la estimación y comparación estadística de la diversidad biológica (qD). In La Biodiversidad en un Mundo Cambiante: Fundamentos Teóricos y Metodológicos Para su Estudio; Moreno, C.E., Ed.; Universidad Autónoma del Estado de Hidalgo/Libermex: Mexico City, Mexico, 2019; pp. 175–202. [Google Scholar]
- Clarke, K.R.; Warwick, R.M. A further biodiversity index applicable to species lists: Variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 2001, 216, 265–278. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research); Version 6; PRIMER-E Ltd.: Plymouth, UK, 2006. [Google Scholar]
- Bacaro, G.; Ricotta, C.; Mazzoleni, S. Measuring beta-diversity from taxonomic similarity. J. Veg. Sci. 2007, 18, 793–798. [Google Scholar] [CrossRef]
- Baselga, A.; Orme, L.A. Betapart: An R package for the study beta diversity. Methods Ecol. Evol. 2012, 3, 808–812. [Google Scholar] [CrossRef]
- Sarmiento-Cordero, M.A.; Rodríguez-Vélez, B.; Huerta-Martínez, F.M.; Uribe-Mú, C.A.; Contreras-Ramos, A. Community structure of Neuroptera (Insecta) in a Mexican lime orchard in Colima, Mexico. Rev. Mex. Biodivers. 2021, 92, e923399. [Google Scholar] [CrossRef]
- Marquez-López, Y.; Herrera Fuentes, M.D.C.; Contreras-Ramos, A. Alpha and beta diversity of dustwings and brown lacewings (Neuroptera: Coniopterygidae, Hemerobiidae) in a temperate forest of Tlaxcala, Mexico. Proc. Entomol. Soc. Wash. 2020, 122, 869–889. [Google Scholar] [CrossRef]
- Bozdogan, H. Diversity of lacewing assemblages (Neuropterida: Neuroptera) in different forest habitats and agricultural areas in the East Mediterranean area of Turkey. Entomol. Res. 2020, 50, 163–173. [Google Scholar] [CrossRef]
- Monserrat, V.J. Los coniopterígidos de la Península Ibérica e Islas Baleares (Insecta, Neuropterida, Neuroptera: Coniopterigydae). Graellsia 2016, 72, 1–115. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.C.; Santos, R.S.; Sutil, W.P.; de Oliveira, J.F.A. Diversity and abundance of green lacewings (Neuroptera: Chrysopidae) in a Conilon coffee plantation in Acre, Brazil. Acta Amaz. 2019, 49, 173–178. [Google Scholar] [CrossRef] [Green Version]
- De Melo, M.A.; Araujo, M.L.N.M.; Martins, C.C. Entomofauna de Hemerobiidae (Neuroptera) em sistema de cultivo orgânico e convencional de frutíferas no município de Avaré, SP, Brasil. Rev. Biol. Neotrop. 2020, 17, 121–129. [Google Scholar] [CrossRef]
- Kovanci, B.; Canbulat, S.; Kovanci, B. The brown lacewings (Neuroptera, Hemerobiidae) of northwestern Turkey with new records, their spatio-temporal distribution and harbouring plants. Rev. Bras. Entomol. 2014, 58, 147–156. [Google Scholar] [CrossRef] [Green Version]
- da Luz, G.R.; da Mota, G.S.; Spadeto, C.; Tolentino, G.S.; Fernandes, G.W.; Nunes, Y.R.F. Regenerative potential of the soil seed bank along an elevation gradient of rupestrian grassland in southeastern Brazil. Botany 2018, 96, 281–298. [Google Scholar] [CrossRef]
- Castro-Delgado, S.; Vergara-Cobian, C.; Arellano-Ugarte, C. Distribucíon de la riqueza, composición taxonómica y grupo funcionales de hormigas del suelo a lo largo de un gradiente altitudinal en el refugio de vida silvestre Laquipampa, Lambayeque-Perú. Ecol. Apl. 2008, 7, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Hernández, C.X. Distintividad taxonómica: Evaluación de la diversidad en la estructura taxonómica en los ensambles. In La Biodiversidad en un Mundo Cambiante: Fundamentos Teóricos y Metodológicos para su Estudio; Moreno, C.E., Ed.; Universidad Autónoma del Estado de Hidalgo/Libermex: Mexico City, Mexico, 2019; pp. 285–306. [Google Scholar]
- Leingärtner, A.; Krauss, J.; Steffan-Dewenter, I. Species richness and trait composition of butterfly assemblages change along an altitudinal gradient. Oecologia 2014, 175, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.H.; Lee, C.B. Diversity patterns and phylogenetic structure of vascular plants along elevational gradients in a mountain ecosystem, South Korea. J. Mt. Sci. 2018, 15, 280–295. [Google Scholar] [CrossRef]
- Worthy, S.J.; Jiménez Paz, R.A.; Pérez, A.J.; Reynolds, A.; Cruse-Sanders, J.; Valencia, R.; Barone, J.A.; Burgess, K.S. Distribution and community assembly of trees along an andean elevational gradient. Plants 2019, 8, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, P.K.; New, T.R.; Whittington, A.E. Lacewings in the Crop Environment; Cambridge University Press: Cambridge, MA, USA, 2001; 564p. [Google Scholar]
- Podlesnik, J.; Jakšić, P.; Nahirnić, A.; Janžekovič, F.; Klenovšek, T.; Klokočovnik, V.; Devetak, D. Fauna of the brown lacewings of Serbia (Insecta: Neuroptera: Hemerobiidae). Acta Entomol. Slov. 2019, 27, 17–29. [Google Scholar]
- Baselga, A.; Gómez-Rodríguez, C.; Lobo, J.M. Historical legacies in world amphibian diversity revealed by the turnover and nestedness components of beta diversity. PLoS ONE 2012, 7, e32341. [Google Scholar] [CrossRef] [Green Version]
- Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 2012, 21, 1223–1232. [Google Scholar] [CrossRef]
- Bakoidi, A.; Dobo, F.; Djibo, I.; Maoge, J.; Bozdogan, H.; Tinkeu Ngamo, L.S. Diversity and distribution of antlions (Neuroptera: Myrmeleontidae) in the Northern region of Cameroon (Afrotropical region). J. Biodivers. Environ. Sci. 2020, 16, 61–71. [Google Scholar]
- Czechowska, W. Raphidioptera and Neuroptera (Neuropterida) of the canopy in montane, upland and lowland fir forests of Abies alba Mill. in Poland. Fragm. Faun. 2002, 45, 31–56. [Google Scholar] [CrossRef] [Green Version]
Scientific Name | ||||||||
---|---|---|---|---|---|---|---|---|
Family | Number of Sites Occupied | S1 | S2 | S3 | S4 | S5 | TOTAL | |
Genus Ceraeochrysa | 661–774 m | 1050–1393 m | 1406–1767 m | 2057–2460 m | 2884–3246 m | |||
Chrysopidae | C. achillea de Freitas & Penny, 2009 | 2 | 7 | 1 | 0 | 0 | 0 | 8 |
C. arioles (Banks, 1944) | 4 | 1 | 11 | 1 | 2 | 0 | 15 | |
C. cincta (Schneider, 1851) | 3 | 1 | 3 | 0 | 1 | 0 | 5 | |
C. cubana (Hagen, 1861) | 2 | 2 | 0 | 0 | 1 | 0 | 3 | |
C. defreitasi Penny, 2002 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | |
C. derospogon de Freitas & Penny, 2009 | 2 | 0 | 2 | 1 | 0 | 0 | 3 | |
C. effusa (Navás, 1911) | 3 | 2 | 3 | 14 | 0 | 0 | 19 | |
C. infausta (Banks, 1945) | 2 | 2 | 0 | 0 | 1 | 0 | 3 | |
C. lineaticornis (Fitch, 1855) | 2 | 0 | 6 | 1 | 0 | 0 | 7 | |
C. sanchezi (Navás, 1924) | 2 | 1 | 2 | 0 | 0 | 0 | 3 | |
C. sarta (Banks, 1914) | 4 | 5 | 37 | 48 | 11 | 0 | 101 | |
C. squama de Freitas & Penny, 2001 | 2 | 1 | 1 | 0 | 0 | 0 | 2 | |
C. tacanensis Cancino & Contreras, 2019 | 3 | 0 | 2 | 35 | 26 | 0 | 63 | |
Ceraeochrysa sp. 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | |
Genus Chrysoperla | ||||||||
C. asoralis (Banks, 1915) | 2 | 0 | 2 | 0 | 1 | 0 | 3 | |
C. externa (Hagen, 1861) | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
Genus Chrysopodes Subgenus Chrysopodes | ||||||||
C. crassinervis Penny, 1998 | 2 | 0 | 41 | 3 | 0 | 0 | 44 | |
C. varicosus (Navás, 1914) | 4 | 1 | 8 | 42 | 2 | 0 | 53 | |
Chrysopodes sp. 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
Chrysopodes sp. 2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | |
Genus Leucochrysa Subgenus Leucochrysa | ||||||||
L. clara (McLachlan, 1867) | 2 | 0 | 6 | 2 | 0 | 0 | 8 | |
L. colombia (Banks, 1910) | 2 | 0 | 0 | 1 | 1 | 0 | 2 | |
L. pretiosa (Banks, 1910) | 1 | 36 | 0 | 0 | 0 | 0 | 36 | |
L. varia (Schneider, 1851) | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
L. variata (Navás, 1913 | 3 | 1 | 2 | 1 | 0 | 0 | 4 | |
Subgenus Nodita | ||||||||
L. amistadensis Penny, 2001 | 2 | 0 | 0 | 1 | 2 | 0 | 3 | |
L. askanes (Banks, 1945) | 2 | 23 | 1 | 0 | 0 | 0 | 24 | |
L. azevedoi Navás, 1913 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
L. camposi (Navás, 1933) | 2 | 0 | 1 | 2 | 0 | 0 | 3 | |
L. caucella Banks, 1910 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | |
L. lateralis Navás, 1913 | 1 | 17 | 0 | 0 | 0 | 0 | 17 | |
L. maculosa de Freitas & Penny, 2001 | 3 | 1 | 13 | 7 | 0 | 0 | 21 | |
L. nigrovaria (Walker, 1853) | 2 | 1 | 10 | 0 | 0 | 0 | 11 | |
L. squamisetosa de Freitas & Penny, 2001 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
L. tarini (Navás, 1924) | 2 | 13 | 1 | 0 | 0 | 0 | 14 | |
Leucochrysa sp. 1 | 3 | 4 | 1 | 1 | 0 | 0 | 6 | |
Leucochrysa sp. 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | |
Leucochrysa sp. 3 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
Leucochrysa sp. 4 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
Leucochrysa sp. 5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
Leucochrysa sp. 6 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | |
Genus Meleoma | ||||||||
M. macleodi Tauber, 1969 | 2 | 0 | 0 | 1 | 3 | 0 | 4 | |
M. titschacki Navás, 1928 | 3 | 0 | 2 | 76 | 17 | 0 | 95 | |
Meleoma sp. 1 | 2 | 0 | 0 | 0 | 2 | 1 | 3 | |
Genus Plesiochrysa | ||||||||
P. brasiliensis (Schneider, 1851) | 4 | 1 | 7 | 4 | 4 | 0 | 16 | |
Plesiochrysa sp. 1 | 1 | 0 | 0 | 0 | 5 | 0 | 5 | |
Plesiochrysa sp. 2 | 2 | 1 | 3 | 0 | 0 | 0 | 4 | |
Genus Titanochrysa | ||||||||
T. annotaria (Banks, 1945) | 2 | 0 | 2 | 10 | 0 | 0 | 12 | |
T. simpliciala Tauber et al., 2012 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | |
Genus Ungla | ||||||||
Ungla sp. 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | |
Ungla sp. 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | |
Coniopterygidae | Genus Coniopteryx Species group Scotoconioptery | |||||||
C. fumata Enderlein, 1907 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
C. josephus Sarmiento & Contreras, 2019 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
C. latipalpis Meinander, 1972 | 2 | 0 | 0 | 0 | 2 | 18 | 20 | |
C. quadricornis Meinander, 1982 | 2 | 3 | 8 | 0 | 0 | 0 | 11 | |
Species group Coniopteryx | ||||||||
C. simplicior Meinander, 1972 | 4 | 0 | 6 | 18 | 124 | 5 | 153 | |
C. westwoodii (Fitch, 1855) | 2 | 0 | 3 | 0 | 2 | 0 | 5 | |
Genus Conwentzia | ||||||||
C. barretti (Banks, 1899) | 3 | 0 | 0 | 1 | 2 | 17 | 20 | |
Genus Neoconis | ||||||||
N. dentata Meinander, 1972 | 5 | 3 | 3 | 18 | 10 | 1 | 35 | |
Genus Semidalis | ||||||||
S. boliviensis (Enderlein, 1905) | 1 | 9 | 0 | 0 | 0 | 0 | 9 | |
S. hidalgoana Meinander, 1975 | 3 | 10 | 19 | 2 | 0 | 0 | 31 | |
S. manausensis Meinander, 1980 | 1 | 0 | 0 | 0 | 18 | 0 | 18 | |
S. problematica Monserrat, 1984 | 4 | 2 | 107 | 174 | 21 | 0 | 304 | |
S. soleri Monserrat, 1984 | 1 | 101 | 0 | 0 | 0 | 0 | 101 | |
Hemerobiidae | Genus Biramus | |||||||
B. aggregatus Oswald, 2004 | 1 | 0 | 0 | 18 | 0 | 0 | 18 | |
Genus Hemerobiella | ||||||||
H. sinuata Kimmins, 1940 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | |
Genus Hemerobius | ||||||||
H. alpestris Banks, 1908 | 1 | 0 | 0 | 0 | 0 | 15 | 15 | |
H. bolivari Banks, 1910 | 4 | 0 | 4 | 14 | 8 | 2 | 28 | |
H. discretus Navás, 1917 | 3 | 0 | 0 | 1 | 31 | 286 | 318 | |
H. domingensis Banks, 1941 | 3 | 0 | 1 | 7 | 7 | 0 | 15 | |
H. gaitoi Monserrat, 1996 | 3 | 0 | 10 | 15 | 9 | 0 | 34 | |
H. hernandezi Monserrat, 1996 | 4 | 3 | 20 | 135 | 15 | 0 | 173 | |
H. hirsuticornis Monserrat & Deretsky, 1999 | 2 | 5 | 1 | 0 | 0 | 0 | 6 | |
H. jucundus Navás, 1928 | 5 | 2 | 3 | 16 | 69 | 268 | 358 | |
H. martinezae Monserrat, 1996 | 3 | 0 | 0 | 12 | 14 | 3 | 29 | |
H. nigridorsus Monserrat, 1996 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | |
H. withycombei (Kimmins, 1928) | 1 | 4 | 0 | 0 | 0 | 0 | 4 | |
Genus Megalomus | ||||||||
M. minor Banks, 1905 | 2 | 21 | 9 | 0 | 0 | 0 | 30 | |
M. pictus Hagen, 1861 | 2 | 0 | 0 | 0 | 2 | 1 | 3 | |
Megalomus sp. 1 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | |
Genus Micromus | ||||||||
M. subanticus (Walker, 1853) | 1 | 0 | 0 | 1 | 0 | 0 | 1 | |
Genus Notiobiella | ||||||||
N. cixiiformis Gerstaecker, 1888 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | |
N. mexicana Banks, 1913 | 1 | 2 | 0 | 0 | 0 | 0 | 2 | |
Genus Nusalala | ||||||||
N. championi Kimmins, 1936 | 4 | 1 | 6 | 10 | 2 | 0 | 19 | |
N. irrebita (Navás, 1929d) | 3 | 0 | 1 | 1 | 5 | 0 | 7 | |
N. tessellata (Gerstaecker, 1888) | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
N. unguicaudata Monserrat, 2000 | 1 | 5 | 0 | 0 | 0 | 0 | 5 | |
Genus Sympherobius | ||||||||
S. axillaris Navás, 1928 | 2 | 0 | 0 | 0 | 2 | 8 | 10 | |
S. distinctus Carpenter, 1940 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | |
S. marginatus (Kimmins, 1928) | 3 | 0 | 0 | 4 | 1 | 1 | 6 | |
S. similis Carpenter, 1940 | 2 | 0 | 1 | 0 | 1 | 0 | 2 | |
S. subcostalis Monserrat, 1990 | 1 | 2 | 0 | 0 | 0 | 0 | 2 | |
Sympherobius sp. 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | |
Mantispidae | Genus Dicromantispa | |||||||
D. sayi (Banks, 1897) | 1 | 6 | 0 | 0 | 0 | 0 | 6 | |
Genus Leptomantispa | ||||||||
L. pulchella (Banks, 1912) | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
Genus Nolima | ||||||||
N. infensa Navás, 1924 | 2 | 0 | 1 | 2 | 0 | 0 | 3 | |
N. victor Navás, 1914 | 1 | 0 | 0 | 3 | 0 | 0 | 3 | |
Genus Zeugomantispa | ||||||||
Z. compellens (Walker, 1860) | 2 | 4 | 0 | 1 | 0 | 0 | 5 | |
Z. minuta (Fabricius, 1775) | 3 | 0 | 2 | 2 | 4 | 0 | 8 | |
Myrmeleontidae | Genus Myrmeleon | |||||||
M. immaculatus De Geer, 1773 | 3 | 0 | 9 | 16 | 2 | 0 | 27 | |
M. timidus Gerstaecker, 1888 | 1 | 14 | 0 | 0 | 0 | 0 | 14 | |
M. uniformis Navás, 1920 | 2 | 0 | 0 | 2 | 4 | 0 | 6 | |
Genus Ululodes | ||||||||
U. bicolor (Banks, 1895) | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
Genus Ameropterus | ||||||||
A. trivialis (Gerstaecker, 1888) * | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
Rhachiberothidae | Genus Trichoscelia | |||||||
T. santareni (Navás, 1914) | 3 | 2 | 5 | 1 | 0 | 0 | 8 | |
Total | 329 | 393 | 737 | 438 | 630 | 2527 | ||
Number of observed species | - | 48 | 51 | 51 | 42 | 16 | 105 | |
Number of genera | - | 20 | 18 | 20 | 18 | 8 | 28 | |
Sample completeness (%) | - | 66% | 74% | 75% | 88% | 62% | 73% |
Taxonomic Beta Diversity | Phylogenetic Beta Diversity | |||||
---|---|---|---|---|---|---|
Pair Sites | βsim | +βnes= | βsor | βsim | +βnes | =βsor |
1 vs. 2 | 0.468 | 0.0217 | 0.489 | 0.333 | 0.007 | 0.34 |
1 vs. 3 | 0.659 | 0.0138 | 0.673 | 0.476 | 0.009 | 0.485 |
1 vs. 4 | 0.714 | 0.016 | 0.73 | 0.434 | 0.028 | 0.462 |
1 vs. 5 | 0.875 | 0.0615 | 0.936 | 0.5 | 0.211 | 0.711 |
2 vs. 3 | 0.372 | 0 | 0.372 | 0.255 | 0.004 | 0.259 |
2 vs. 4 | 0.476 | 0.0506 | 0.526 | 0.315 | 0.042 | 0.357 |
2 vs. 5 | 0.75 | 0.13 | 0.88 | 0.411 | 0.259 | 0.67 |
3 vs. 4 | 0.38 | 0.0599 | 0.44 | 0.289 | 0.047 | 0.336 |
3 vs. 5 | 0.5 | 0.261 | 0.761 | 0.323 | 0.296 | 0.619 |
4 vs. 5 | 0.25 | 0.336 | 0.582 | 0.117 | 0.336 | 0.453 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cancino-López, R.J.; Moreno, C.E.; Contreras-Ramos, A. Diversity of Lacewings (Neuroptera) in an Altitudinal Gradient of the Tacaná Volcano, Southern Mexico. Insects 2022, 13, 652. https://doi.org/10.3390/insects13070652
Cancino-López RJ, Moreno CE, Contreras-Ramos A. Diversity of Lacewings (Neuroptera) in an Altitudinal Gradient of the Tacaná Volcano, Southern Mexico. Insects. 2022; 13(7):652. https://doi.org/10.3390/insects13070652
Chicago/Turabian StyleCancino-López, Rodolfo J., Claudia E. Moreno, and Atilano Contreras-Ramos. 2022. "Diversity of Lacewings (Neuroptera) in an Altitudinal Gradient of the Tacaná Volcano, Southern Mexico" Insects 13, no. 7: 652. https://doi.org/10.3390/insects13070652
APA StyleCancino-López, R. J., Moreno, C. E., & Contreras-Ramos, A. (2022). Diversity of Lacewings (Neuroptera) in an Altitudinal Gradient of the Tacaná Volcano, Southern Mexico. Insects, 13(7), 652. https://doi.org/10.3390/insects13070652