RNAi and CRISPR/Cas9 as Functional Genomics Tools in the Neotropical Stink Bug, Euschistus heros
<p>RNAi-mediated knockdown of 3 genes, <span class="html-italic">abnormal wing disc</span> (<span class="html-italic">awd</span>), <span class="html-italic">tyrosine hydroxylase</span> (<span class="html-italic">th</span>) and <span class="html-italic">yellow</span> (<span class="html-italic">yel</span>) in <span class="html-italic">E. heros.</span> (<b>a</b>) Percentage (%) of insects with normal phenotype and abnormal phenotype (4th- and 5th-instar nymphs and adults) following microinjection with either ds<span class="html-italic">awd</span>, ds<span class="html-italic">th</span> or ds<span class="html-italic">yel</span>. Bars represent the mean. (<b>b</b>) Phenotypes in 4th-instar nymphs and adults following the treatment of 3rd-instar nymphs with either ds<span class="html-italic">awd</span>, ds<span class="html-italic">th</span> or ds<span class="html-italic">yel</span>. Red arrows indicate the location of the wings. The assay was conducted twice with each repeat consisting of 20 nymphs (N = 40). (<b>c</b>–<b>e</b>) Transcript levels at 72 h after injection of 3rd-instar with ds<span class="html-italic">awd</span>, ds<span class="html-italic">th</span> and ds<span class="html-italic">yel</span>, respectively, compared to their respective transcript levels in the control (ds<span class="html-italic">GFP</span>). Three asterisks on the bar indicate a statistically significant difference (<span class="html-italic">p</span> < 0.001). Each sample contains 2 pooled insects. The <span class="html-italic">p</span>-values were calculated by unpaired <span class="html-italic">t</span>-test.</p> "> Figure 1 Cont.
<p>RNAi-mediated knockdown of 3 genes, <span class="html-italic">abnormal wing disc</span> (<span class="html-italic">awd</span>), <span class="html-italic">tyrosine hydroxylase</span> (<span class="html-italic">th</span>) and <span class="html-italic">yellow</span> (<span class="html-italic">yel</span>) in <span class="html-italic">E. heros.</span> (<b>a</b>) Percentage (%) of insects with normal phenotype and abnormal phenotype (4th- and 5th-instar nymphs and adults) following microinjection with either ds<span class="html-italic">awd</span>, ds<span class="html-italic">th</span> or ds<span class="html-italic">yel</span>. Bars represent the mean. (<b>b</b>) Phenotypes in 4th-instar nymphs and adults following the treatment of 3rd-instar nymphs with either ds<span class="html-italic">awd</span>, ds<span class="html-italic">th</span> or ds<span class="html-italic">yel</span>. Red arrows indicate the location of the wings. The assay was conducted twice with each repeat consisting of 20 nymphs (N = 40). (<b>c</b>–<b>e</b>) Transcript levels at 72 h after injection of 3rd-instar with ds<span class="html-italic">awd</span>, ds<span class="html-italic">th</span> and ds<span class="html-italic">yel</span>, respectively, compared to their respective transcript levels in the control (ds<span class="html-italic">GFP</span>). Three asterisks on the bar indicate a statistically significant difference (<span class="html-italic">p</span> < 0.001). Each sample contains 2 pooled insects. The <span class="html-italic">p</span>-values were calculated by unpaired <span class="html-italic">t</span>-test.</p> "> Figure 2
<p>Cumulative mortality of <span class="html-italic">E. heros</span> after microinjection of dsRNA targeting <span class="html-italic">awd</span>, <span class="html-italic">th</span> and <span class="html-italic">yel</span> in 3rd-instar nymphs. ds<span class="html-italic">GFP</span> was used as a control. The curves encompassed by the same vertical bar at the right side of the plot are not significantly different according to Holm-Sidak’s test (<span class="html-italic">p</span> > 0.001). The assay was conducted with two replications each consisting of 20 nymphs (<span class="html-italic">N</span> = 40).</p> "> Figure 3
<p>CRISPR/Cas9 workflow for gene editing in <span class="html-italic">E. heros</span>. (i) egg collection (within 60 min after laid), (ii) careful alignment of the eggs over a sticky tape at the junction of two overlapping glass slides, (iii) soaking of eggs with nuclease-free (NF) water (1.5 mL), (iv) wrapping of the glass slides containing the eggs with plastic film to keep the eggs in place and soaked, (v) microinjection of the eggs with CRISPR/Cas9 components (within 45 min), (vi) careful transfer of the injected eggs onto a filter paper slightly soaked with 1% Nipagin solution in a Petri dish. (vii) transfer Petri dishes to normal rearing conditions and check for egg hatching (between 7–8 days). (viii) careful transfer of 1st-nymphs to a new Petri dish, (ix) screen for mutants (genotype and phenotype). Step viii and ix can be flexible depending on the objective of the experiment.</p> "> Figure 4
<p>Targeted mutagenesis in the <span class="html-italic">yellow</span> gene (<span class="html-italic">yel</span>) of the Brown stink bug, <span class="html-italic">Euschistus heros</span>. (<b>a</b>) DNA sequence of the control (<span class="html-italic">Yel</span>-Control) and test (<span class="html-italic">Yel</span>-nymph0, <span class="html-italic">Yel</span>-nymph1 and <span class="html-italic">Yel</span>-nymph3) insects. The boxed region highlights the guide RNA (gRNA) sequence (in red for the control) with the bolded triplet “CCT” being the reverse complement of the PAM (protospacer adjacent motif) sequence (NGG). The DNA sequence of <span class="html-italic">Yel</span>-nymph3 presented a mutation with an indel of 6 nucleotides located near the PAM sequence (NGG). This is typical for the Cas9 endonuclease which cleaves the DNA strands at three nucleotides upstream of the PAM sequence, while five nucleotides upstream of the PAM are defined as the seed region for target recognition. For the DNA sequences of nymph0 and nymph1, no mutation was observed. Details of the chromatogram further confirm mutation at the target region in <span class="html-italic">yel</span>. The occurrence of double or multiple peaks in the chromatogram of <span class="html-italic">Yel</span>-nymph3 (in the 3′direction from the gRNA target region) in contrast to the control, indicates mosaicism arising from different levels of somatic mutations for <span class="html-italic">yel</span>. (<b>b</b>) <span class="html-italic">Euschistus heros</span> nymphs (control and nymph3) with no distinct differences in phenotype.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Target Gene Identification and Expression Profile
2.3. RNAi-Mediated Gene Silencing Assay
2.4. CRISPR/Cas9 Gene Editing Assay
2.5. Data Analysis
3. Results
3.1. RNAi-Mediated Knockdown for Functional Genomics in E. heros
3.2. CRISPR/Cas9 Gene Editing for Functional Genomics in E. heros
4. Discussion
5. Conclusions and Recommendations
- Freshly laid eggs: Cell division is a continuous process during embryonic development, hence injecting early enough (<1 h post oviposition) can reduce mosaicism.
- Needle size: Keep the needle opening small enough to not damage the egg while still being able to inject without requiring a high injection pressure.
- Nuclease-free water to cover the eggs:E. heros eggs have a very hard chorion, which protects them from environmental conditions. Adding water will temporarily render it soft, allowing the needle to penetrate without breaking and damaging the egg.
- Water + Nipagin (1%) on underlying filter paper in the Petri dishes: This will significantly reduce potential fungal growth on the eggs at the injection point.
- Target-gene choice: This will be dependent on the objective of the experiment. Essential genes for survival versus genes linked to non-lethal phenotypes.
- Multiple sgRNAs: If properly designed can significantly improve gene knockout and ease detection of mutants, based on amplicon size of the mutated gene versus the wild type.
- Ratio of Cas9 sgRNA: Ratios other than the 1:1 ratio used in this study could improve efficiency.
- Type of Cas enzyme: Depending on the objective of the experiment, other Cas enzymes could be used to target specific sites in the genome (e.g., Cas12a).
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Panizzi, A.R.; Bueno, A.F.; Silva, F.A.C. Insetos Que Atacam Vagens e Grãos. In Soja: Manejo Integrado de Insetos e Outros Artrópodes-Praga; Embrapa: Brasília, Brazil, 2012; pp. 335–420. ISBN 978-85-7035-139-5. [Google Scholar]
- Panizzi, A.R. Stink Bugs Growing Problems with (Hemiptera: Heteroptera: Pentatomidae): Species Invasive to the U.S. and Potential. Am. Entomol. 2015, 61, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Smaniotto, L.F.; Panizzi, A.R. Interactions of Selected Species of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) from Leguminous Crops with Plants in the Neotropics. Fla. Entomol. 2015, 98, 7–17. [Google Scholar] [CrossRef]
- Cagliari, D.; Dias, N.P.; dos Santos, E.Á.; Rickes, L.N.; Kremer, F.S.; Farias, J.R.; Lenz, G.; Galdeano, D.M.; Garcia, F.R.M.; Smagghe, G.; et al. First transcriptome of the Neotropical pest Euschistus heros (Hemiptera: Pentatomidae) with dissection of its siRNA machinery. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.L.; Kaufman, T.C. RNAi analysis of deformed, proboscipedia and sex combs reduced in the milkweed bug Oncopeltus fasciatus: Novel roles for Hox genes in the Hemipteran head. Development 2000, 127, 3683–3694. [Google Scholar] [PubMed]
- Liu, P.Z.; Kaufman, T.C. Hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development 2004, 131, 1515–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riga, M.; Denecke, S.; Livadaras, I.; Geibel, S.; Nauen, R.; Vontas, J. Development of efficient RNAi in Nezara viridula for use in insecticide target discovery. Arch. Insect Biochem. Physiol. 2020, 103, 1–9. [Google Scholar] [CrossRef] [Green Version]
- El-Shesheny, I.; Hajeri, S.; El-Hawary, I.; Gowda, S.; Killiny, N. Silencing Abnormal Wing Disc Gene of the Asian Citrus Psyllid, Diaphorina citri Disrupts Adult Wing Development and Increases Nymph Mortality. PLoS ONE 2013, 8, e65392. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Chen, M.; Reding, K.; Pick, L. Establishment of molecular genetic approaches to study gene expression and function in an invasive hemipteran, Halyomorpha halys. Evodevo 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Baum, J.A.; Roberts, J.K. Progress Towards RNAi-Mediated Insect Pest Management, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 47, ISBN 9780128001974. [Google Scholar]
- Terenius, O.; Papanicolaou, A.; Garbutt, J.S.; Eleftherianos, I.; Huvenne, H.; Kanginakudru, S.; Albrechtsen, M.; An, C.; Aymeric, J.L.; Barthel, A.; et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 2011, 57, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA—Guided. Science 2012, 337, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346. [Google Scholar] [CrossRef] [PubMed]
- Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Guo, Z.; Liu, Y.; Zhang, Y. Progress and prospects of CRISPR/Cas systems in insects and other arthropods. Front. Physiol. 2017, 8, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Taning, C.N.T.; Van Eynde, B.; Yu, N.; Ma, S.; Smagghe, G. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. J. Insect Physiol. 2017, 98, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Thurtle-Schmidt, D.M.; Lo, T.W. Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates. Biochem. Mol. Biol. Educ. 2018, 46, 195–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmons, L.; Shearn, A. Role of AWD/nucleoside diphosphate kinase in Drosophila development. J. Bioenerg. Biomembr. 2000, 32, 293–300. [Google Scholar] [CrossRef]
- Jiang, D.F.; Liu, Y.Q.; Li, X.S.; Shi, S.L. Characterization of the antheraea pernyi abnormal wing disc gene that may contribute to its temperature tolerance. Afr. J. Biotechnol. 2010, 9, 7372–7378. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Du, J.; Zhang, J.; Shen, J.; Cai, W. Three melanin pathway genes, TH, yellow, and aaNAT, regulate pigmentation in the twin-spotted assassin bug, Platymeris biguttatus (Linnaeus). Int. J. Mol. Sci. 2019, 20, 2728. [Google Scholar] [CrossRef] [Green Version]
- Borges, M.; Laumann, R.A.; Da Silva, C.C.A.; Moraes, M.C.B.; Dos Santos, H.M.; Ribeiro, D.T. Metodologias de criação e manejo de colônias de percevejos da soja (Hemíptera-Pentatomidae) para estudos de comportamento e ecologia química. Embrapa Recur. Genét. Biotecnol. 2006, 182, 18. [Google Scholar]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. Trimal: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, N.L.; Smagghe, G.; Sharma, R.; Oliveira, E.E.; Christiaens, O. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Pest Manag. Sci. 2019, 75, 537–548. [Google Scholar] [CrossRef]
- Hwang, W.Y.; Fu, Y.; Reyon, D.; Maeder, M.L.; Shengdar, Q.; Sander, J.D.; Peterson, R.T.; Yeh, J.J.; Keith, J. Efficient In Vivo Genome Editing Using RNA-Guided Nucleases Woong. Nat. Biotechnol. 2013, 31, 227–229. [Google Scholar] [CrossRef]
- Kotwica-Rolinska, J.; Chodakova, L.; Chvalova, D.; Kristofova, L.; Fenclova, I.; Provaznik, J.; Bertolutti, M.; Wu, B.C.H.; Dolezel, D. CRISPR/Cas9 genome editing introduction and optimization in the non-model insect Pyrrhocoris apterus. Front. Physiol. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ling, L.; Ge, X.; Li, Z.; Zeng, B.; Xu, J.; Chen, X.; Shang, P.; James, A.A.; Huang, Y.; Tan, A. MiR-2 family targets awd and fng to regulate wing morphogenesis in Bombyx mori. RNA Biol. 2015, 12, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Martin, A.; Perry, M.W.; van der Burg, K.R.L.; Matsuoka, Y.; Monteiro, A.; Reed, R.D. Genetic basis of melanin pigmentation in butterfly wings. Genetics 2017, 205, 1537–1550. [Google Scholar] [CrossRef] [Green Version]
- Heinze, S.D.; Kohlbrenner, T.; Ippolito, D.; Meccariello, A.; Burger, A.; Mosimann, C.; Saccone, G.; Bopp, D. CRISPR-Cas9 targeted disruption of the yellow ortholog in the housefly identifies the brown body locus. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Katsuma, S.; Yamamoto, K.; Kadono-Okuda, K.; Mita, K.; Shimada, T. Yellow-e determines the color pattern of larval head and tail spots of the silkworm Bombyx mori. J. Biol. Chem. 2010, 285, 5624–5629. [Google Scholar] [CrossRef] [Green Version]
- Noh, M.Y.; Kramer, K.J.; Muthukrishnan, S.; Beeman, R.W.; Kanost, M.R.; Arakane, Y. Loss of function of the yellow-e gene causes dehydration-induced mortality of adult Tribolium castaneum. Dev. Biol. 2015, 399, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, S.; Taning, C.N.T.; Wei, D.; Smagghe, G. First report on CRISPR/Cas9-targeted mutagenesis in the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 2020, 121, 104013. [Google Scholar] [CrossRef] [PubMed]
- Reding, K.; Pick, L. High-Efficiency CRISPR/Cas9 Mutagenesis of the white Gene in the Milkweed Bug Oncopeltus fasciatus. Genetics 2020, 215, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, S.M.; Brooker, M.R.; Gill, T.R.; Cox, G.B.; Howells, A.J.; Ewart, G.D. Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration. Biochim. Biophys. Acta Biomembr. 1999, 1419, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Mehravar, M.; Shirazi, A.; Nazari, M.; Banan, M. Mosaicism in CRISPR/Cas9-mediated genome editing. Dev. Biol. 2019, 445, 156–162. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cagliari, D.; Smagghe, G.; Zotti, M.; Taning, C.N.T. RNAi and CRISPR/Cas9 as Functional Genomics Tools in the Neotropical Stink Bug, Euschistus heros. Insects 2020, 11, 838. https://doi.org/10.3390/insects11120838
Cagliari D, Smagghe G, Zotti M, Taning CNT. RNAi and CRISPR/Cas9 as Functional Genomics Tools in the Neotropical Stink Bug, Euschistus heros. Insects. 2020; 11(12):838. https://doi.org/10.3390/insects11120838
Chicago/Turabian StyleCagliari, Deise, Guy Smagghe, Moises Zotti, and Clauvis Nji Tizi Taning. 2020. "RNAi and CRISPR/Cas9 as Functional Genomics Tools in the Neotropical Stink Bug, Euschistus heros" Insects 11, no. 12: 838. https://doi.org/10.3390/insects11120838
APA StyleCagliari, D., Smagghe, G., Zotti, M., & Taning, C. N. T. (2020). RNAi and CRISPR/Cas9 as Functional Genomics Tools in the Neotropical Stink Bug, Euschistus heros. Insects, 11(12), 838. https://doi.org/10.3390/insects11120838