Adapting Overwintering Honey Bee (Apis mellifera L.) Colony Management in Response to Warmer Fall Temperatures Associated with Climate Change
<p>The locations of colonies used in this study. Colonies headed by unselected (UNSEL) European queens spent the summer in Baldwin, North Dakota, and those headed by Russian (RUS) queens spent the summer in Hebron, North Dakota. In October, RUS and UNSEL colonies were moved to cold storage facilities in Filer, Idaho, for overwintering. Concurrently, a group of RUS colonies were moved from Hebron, North Dakota, to outdoor apiaries in Wiggins, Mississippi, for overwintering (RUSms). In January, UNSEL, RUS, and RUSms colonies were moved to almond orchards in Madera County, California, for pollination.</p> "> Figure 2
<p>Average (with standard error bars) combs with bees (<b>a</b>) and brood (<b>b</b>) in colonies headed by either Russian (RUS) or unselected (UNSEL) European queen lines. Combs with bees were significantly affected by queen line (F<sub>1,474</sub> = 9.57, <span class="html-italic">p</span> = 0.002), sample time (F<sub>2,474</sub> = 111.4, <span class="html-italic">p</span> < 0.0001), and interactions between the factors (F<sub>1,304</sub> = 7.19, <span class="html-italic">p</span> = 0.001). Combs of brood were affected by sample time (F<sub>1,304</sub> = 233.8, <span class="html-italic">p</span> < 0.0001) but not queen line (F<sub>1,304</sub> = 0.94, <span class="html-italic">p</span> = 0.33) or interactions between the factors (F<sub>1,304</sub> = 0.82, <span class="html-italic">p</span> = 0.36). The average number of combs of sealed brood after cold storage was significantly higher in UNSEL than RUS (t<sub>143</sub> =2.86, <span class="html-italic">p</span> = 0.005) but not after almond bloom (t<sub>133</sub> = 1.65, <span class="html-italic">p</span> = 0.10). There were no differences between the percentage of RUS and UNSEL colonies that survived cold storage overwintering (<span class="html-italic">p</span> = 0.12), could be rented for almond pollination (<span class="html-italic">p</span> = 0.51), and were alive after almond bloom (<span class="html-italic">p</span> = 0.77) (<b>c</b>). Standard error bars are shown with the percentages. An asterisk (*) over a bar indicates significant differences at the <span class="html-italic">p</span> = 0.05 level between RUS and UNSEL as determined by Student’s <span class="html-italic">t</span>-tests.</p> "> Figure 3
<p>Average dry weight (<b>a</b>) and lipid (<b>b</b>) and protein (<b>c</b>) concentrations (with standard error bars) in fat bodies of worker bees from colonies of Russian and unselected European queen lines prior to (pre-cold storage) and after (post-cold storage) overwintering in cold storage. All measurements were made from pooled samples of 10 bees per colony. Fat body metrics were estimated using 30 colonies per queen line. Fat body weights did not differ between queen lines (F<sub>1,113</sub> = 1.5; <span class="html-italic">p</span> = 0.22) but did differ between sample times (F<sub>1,113</sub> = 29.0, <span class="html-italic">p</span> < 0.0001). The interaction term (sample time × queen line) was significant (F<sub>1,113</sub> = 11.08, <span class="html-italic">p</span> = 0.001). Lipid concentrations differed by queen line (F<sub>1,113</sub> = 13.2, <span class="html-italic">p</span> < 0.0001) and sample time (F<sub>1,113</sub> = 36.05, <span class="html-italic">p</span> < 0.0001). Interactions terms were significant (F<sub>1,113</sub> = 19.06, <span class="html-italic">p</span> < 0.0001). Protein concentrations differed by queen line (F<sub>1,113</sub> = 5.40, <span class="html-italic">p</span> = 0.022) and sample time (F<sub>1,113</sub> = 88.25, <span class="html-italic">p</span> < 0.0001). Interaction terms were significant (F<sub>1,113</sub> = 8.66, <span class="html-italic">p</span> = 0.004). An asterisk (*) over a bar indicates significant differences at the <span class="html-italic">p</span> = 0.05 level between RUS and UNSEL as determined by Student’s <span class="html-italic">t</span>-tests.</p> ">
1. Introduction
2. Materials and Methods
2.1. Overview of the Study
2.2. Estimating Colony Size
2.3. Estimating Mite Populations
2.4. Estimating Nosema Spores per Bee
2.5. Fat Body Analysis
2.6. Statistical Analysis
3. Results
3.1. Mites per 100 Bees and Nosema Spores per Colony
3.2. Colony Sizes of UNSEL and RUS Overwintered in Cold Storage
3.3. Fat Body Metrics
3.4. Effects of Overwintering Methods
3.5. Overwintering Costs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruckner, S.; Wilson, M.; Aurell, D.; Rennich, K.; vanEngelsdorp, D.; Steinhauer, N.; Williams, G.R. A national survey of managed honey bee colony losses in the USA: Results from the Bee Informed Partnership for 2017–18, 2018–19, and 2019–20. J. Apic. Res. 2023, 62, 429–443. [Google Scholar] [CrossRef]
- Chopra, S.S.; Bakshi, B.R.; Khanna, V. Economic Dependence of U.S. Industrial Sectors on Animal-Mediated Pollination Service. Environ. Sci. Technol. 2015, 49, 14441–14451. [Google Scholar] [CrossRef] [PubMed]
- Garibaldi, L.A.; Gomez Carella, D.S.; Nabaes Jodar, D.N.; Smith, M.R.; Timberlake, T.P.; Myers, S.S. Exploring connections between pollinator health and human health. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210158. [Google Scholar] [CrossRef] [PubMed]
- Highfield, A.C.; Al Nagar, A.; Mackinder, L.C.M.; Noel, L.M.-L.; Hall, M.; Martin, S.J.; Schroeder, D.C. Deformed Wing Virus Implicated in Overwintering Honeybee Colony Losses. Appl. Environ. Microbiol. 2009, 75, 7212–7220. [Google Scholar] [CrossRef]
- Guzman-Novoa, E.; Calvete, Y.; McGowan, J.; Kelly, P.G.; Correa-Benitez, A. Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 2010, 41, 443–450. [Google Scholar] [CrossRef]
- Overturf, K.A.; Steinhauer, N.; Molinari, R.; Wilson, M.E.; Watt, A.C.; Cross, R.M.; vanEngelsdorp, D.; Williams, G.R.; Rogers, S.R. Winter weather predicts honey bee colony loss at the national scale. Ecol. Indic. 2022, 145, 109709. [Google Scholar] [CrossRef]
- Rajagopalan, K.; DeGrandi-Hoffman, G.; Pruett, M.; Jones, V.J.; Corby-Harria, V.; Pireaud, J.; Ccurry, R.; Hopkins, B.; Northfield, T.D. Warmer autumns and winters could reduce honey bee overwintering survival with potential risks for pollination services. Sci. Rep. 2024, 14, 5410. [Google Scholar] [CrossRef]
- Sakofski, F.; Koeniger, N.; Fuchs, S. Seasonality of honey-bee colony invasion by Varroa jacobsoni Oud. Apidologie 1990, 21, 547–550. [Google Scholar] [CrossRef]
- Frey, E.; Schnell, H.; Rosenkranz, P. Invasion of Varroa destructor mites into mite-free honey bee colonies under the controlled conditions of a military training area. J. Apic. Res. 2011, 50, 138–144. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, 96–119. [Google Scholar] [CrossRef]
- Genersch, E.; von der Ohe, W.; Kaatz, H.; Schroeder, A.; Otten, C.; Buchler, R.; Berg, S.; Ritter, W.; Muhlen, W.; Gisder, S.; et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010, 41, 332–352. [Google Scholar] [CrossRef]
- Grozinger, C.M.; Flenniken, M. Bee viruses: Ecology, pathogenicity, and impacts. Ann. Rev. Entomol. 2019, 64, 205–226. [Google Scholar] [CrossRef]
- DeGrandi-Hoffman, G.; Ahumada, F.; Zazueta, V.; Chambers, M.; Hidalgo, G.; Watkins deJong, E. Population growth of Varroa destructor (Acari: Varroidae) in honey bee colonies is affected by the number of foragers with mites. Exp. Appl. Acarol. 2016, 69, 21–34. [Google Scholar] [CrossRef]
- Betti, M.I.; Wahl, L.M.; Zamir, M. Age structure is critical to the population dynamics and survival of honeybee colonies. Roy. Soc. Open Sci. 2016, 3, 160444. [Google Scholar] [CrossRef] [PubMed]
- Döke, M.A.; Frazier, M.; Grozinger, C.M. Overwintering honey bees: Biology and management. Curr. Opin. Insect Sci. 2015, 10, 185–193. [Google Scholar] [CrossRef]
- Neukirch, A. Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. J. Comp. Physiol. B 1982, 136, 35–40. [Google Scholar] [CrossRef]
- Visscher, P.K.; Dukas, R. Survivorship of foraging honey bees. Insectes Sociaux 1997, 44, 1–5. [Google Scholar] [CrossRef]
- Page, R.E., Jr.; Peng, C.Y.-S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exper. Gerontol. 2001, 36, 695–711. [Google Scholar] [CrossRef]
- Williams, J.B.; Roberts, S.P.; Elekonich, M.M. Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exper. Gerontol. 2008, 43, 538–549. [Google Scholar] [CrossRef]
- Switanek, M.; Crailsheim, K.; Truhetz, H.; Brodschneider, R. Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Sci. Total Environ. 2017, 579, 1581–1587. [Google Scholar] [CrossRef]
- Insolia, L.; Molinari, R.; Rogers, S.R.; Williams, G.R.; Chiaromonte, F.; Calove, M. Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Sci. Rep. 2022, 12, 20787. [Google Scholar] [CrossRef] [PubMed]
- Rinderer, T.E.; de Guzman, L.I.; Delatte, G.T.; Stelzer, J.A.; Lancaster, V.A.; Kuznetsov, V.; Beaman, L.; Watts, R.; Harris, J.W. Resistance to the parasitic mite Varroa destructor in honey bees from far-eastern Russia. Apidologie 2001, 32, 381–394. [Google Scholar] [CrossRef]
- Rinderer, T.E.; Harris, J.W.; Hunt, G.J.; de Guzman, L.I. Breeding for resistance to Varroa destructor in North America. Apidologie 2010, 41, 409–424. [Google Scholar] [CrossRef]
- de Guzman, L.I.; Rinderer, T.E.; Frake, A.M. Comparative reproduction of Varroa destructor in different types of Russian and Italian honey bee combs. Exp. Appl. Acarol. 2008, 44, 227–238. [Google Scholar] [CrossRef]
- Harbo, J.R.; Harris, J.W. Suppressed mite reproduction explained by the behaviour of adult bees. J. Apic. Res. 2005, 44, 21–23. [Google Scholar] [CrossRef]
- DeGrandi-Hoffman, G.; Ahumada, F.; Danka, R.; Chambers, M.; Watkins deJong, E.; Hidalgo, G. Population growth of Varroa destructor (Acari: Varroidae) in colonies of Russian and unselected honey bee (Hymenoptera: Apidae) stocks as related to numbers of foragers with mites. J. Econ. Entomol. 2017, 110, 809–815. [Google Scholar] [CrossRef]
- DeGrandi-Hoffman, G.; Graham, H.; Ahumada, F.; Smart, M.; Ziolkowski, N. The Economics of Honey Bee (Hymenoptera: Apidae) Management and Overwintering Strategies for Colonies Used to Pollinate Almonds. J. Econ. Entomol. 2019, 112, 2524–2533. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B. (Ed.) A Guide to Indoor Storage of Honey Bee Colonies in the United States; Project Apis m.: Salt Lake City, UT, USA, 2020; Available online: https://wpcdn.web.wsu.edu/cahnrs/uploads/sites/40/2024/07/BeeIndoorStorageGuide.pdf (accessed on 11 December 2024).
- Tubbs, H.; Harper, M.; Bigalk, M.; Bernard, S.; Delatte, G.; Sylvester, H.; Rinderer, T. Commercial Management of ARS Russian Honey Bees. Am. Bee J. 2003, 143, 819–820. [Google Scholar]
- DeGrandi-Hoffman, G.; Corby-Harris, V.; Graham, H.; Watkins deJong, E.; Chambers, M.; Snyder, L. The survival and growth of honey bee (Hymenoptera: Apidae) colonies overwintered in cold storage: The effects of time and colony location. J. Econ. Entomol. 2023, 116, 1078–1090. [Google Scholar] [CrossRef]
- Danka, R.G.; Sylvester, H.A.; Boykin, D. Environmental influences on flight activity of USDA–ARS Russian and Italian stocks of honey bees (Hymenoptera: Apidae) during almond pollination. J. Econ. Entomol. 2006, 99, 1565–1570. [Google Scholar] [CrossRef]
- Shehata, S.M.; Townsend, G.F.; Shuel, R.W. Seasonal physiological changes in queen and worker honeybees. J. Apic. Res. 1981, 20, 69–78. [Google Scholar] [CrossRef]
- Brejcha, M.; Townsend, G.F.; Shuel, R.W. Seasonal changes in ultrastructure and gene expression in the fat body of worker honey bees. J. Insect Physiol. 2023, 146, 104504. [Google Scholar] [CrossRef]
- Delaplane, K.S.; Van Der Steen, J.; Guzman-Novoa, E. Standard methods for estimating strength parameters of Apis mellifera colonies. J. Apic. Res. 2013, 52, 1–12. [Google Scholar] [CrossRef]
- Goodrich, B.K.; Goodhue, R.E. Are all colonies created equal? The role of honey bee colony strength in almond pollination contracts. Ecol. Econ. 2020, 177, 106744. [Google Scholar] [CrossRef]
- Dietemann, V.; Nazzi, F.; Martin, S.J.; Anderson, D.L.; Locke, B.; Delaplane, K.S.; Wauquiez, Q.; Tannahill, C.; Frey, E.; Ziegelmann, B.; et al. Standard methods for varroa research. J. Apic. Res. 2013, 52, 1–54. [Google Scholar] [CrossRef]
- Fries, I.; Chauzat, M.P.; Chen, Y.P.; Doublet, V.; Genersch, E.; Gisder, S.; Higes, M.; McMahon, D.P.; Martin-Hernandez, R.; Natsopoulou, M.; et al. Standard methods for Nosema research. J. Apic. Res. 2013, 52, 1–28. [Google Scholar] [CrossRef]
- Emsen, B.; De La Mora, A.; Lacey, B.; Eccles, L.; Kelly, P.G.; Medina-Flores, C.A.; Petukhova, T.; Morfin, N.; Guzman-Novoa, E. Seasonality of Nosema ceranae infections and their relationship with honey bee populations, food stores, and survivorship in a North American region. Vet. Sci. 2020, 7, 131. [Google Scholar] [CrossRef]
- Meikle, W.G.; Weiss, M.; Adiaye, D.; Ricigliano, V.A. Comparative assessment of food consumption, longevity, thermoregulation, and molecular health markers in mite-resistant and Italian honey bee stocks. Apidologie 2024, 55, 28. [Google Scholar] [CrossRef]
- Brouwers, E.V.M. Activation of the hypopharyngeal glands of honeybees in winter. J. Apic. Res. 1983, 22, 137–141. [Google Scholar] [CrossRef]
Queen Line | Sample Time | Mites per 100 Bees ± SE | Factor | F | d.f | p |
---|---|---|---|---|---|---|
Russian | September | 0.01± 0.01 | Sample time | 1.01 | 1 | 0.31 |
Pre-cold storage (October) | 0.01± 0.01 | Queen line | 0.52 | 1 | 0.47 | |
Unselected | September | 0.1 ± 0.1 | Sample time × queen line | 0.94 | 1 | 0.33 |
Pre-cold storage (October) | 0.00 | Error | 316 |
Queen Line | Response | Predictors | Coefficient | Standard Error | d.f. | p | R2 |
---|---|---|---|---|---|---|---|
Russian | Post-cold storage combs of brood | Pre-cold storage combs with adult bees | 0.084 | 0.004 | 1, 79 | <0.0001 | 83.0 |
Post-cold storage combs of sealed brood | 0.019 | 0.001 | 1, 79 | <0.0001 | 63.8 | ||
Unselected | Post-cold storage combs of brood | Pre-cold storage combs with adult bees | 0.065 | 0.004 | 1, 77 | <0.0001 | 73.5 |
Post-cold storage combs of sealed brood | 0.021 | 0.002 | 1, 77 | <0.0001 | 65.5 |
Queen Line | Fat Body Metric | Coefficient | SE of Coefficient | p | d.f. | R2 |
---|---|---|---|---|---|---|
Russian | weight | 0.36 | 0.99 | 0.72 | 1 | |
protein | 0.05 | 0.13 | 0.69 | 1 | ||
lipid | −3.27 | 0.003 | 0.003 | 1 | ||
regression | <0.0001 | <0.0001 | 3 | |||
error | 21 | 55.4 | ||||
Unselected | weight | 0.56 | 0.50 | 0.28 | 1 | |
protein | 0.19 | 0.10 | 0.07 | 1 | ||
lipid | 2.09 | 0.91 | 0.03 | 1 | ||
regression | 3 | |||||
error | 26 | 47.9 |
Parameter | Sample Time | Overwintering Site | Factor | F | d.f. | p | |
---|---|---|---|---|---|---|---|
Cold Storage | Apiary | ||||||
combs of bees | pre-overwintering | 11.2 ± 0.3 | 10.8 ± 0.2 | overwintering site | 1.00 | 1 | 0.32 |
post-overwintering | 7.7 ± 0.4 | 7.5 ± 0.4 | sample time | 55.1 | 2 | <0.0001 | |
post-almond bloom | 8.1 ± 0.4 | 9.6 ± 0.4 | overwintering site × sample time | 4.08 | 1 | 0.02 | |
error | 447 | ||||||
combs of brood | post-overwintering | 1.0 ± 0.06 | 1.8 ± 0.08 | overwintering site | 77.5 | 1 | <0.0001 |
post-almond bloom | 3.7 ± 0.2 | 5.4 ± 0.2 | sample time | 515.5 | 1 | <0.0001 | |
overwintering site × sample time | 10.7 | 1 | <0.0001 | ||||
error | 280 |
Service | Costs for 80 Colonies (USD) by Overwintering Method | |
---|---|---|
Cold Storage (Cost per Colony) | Apiaries (Cost per Colony) | |
Shipping to overwintering site | 776.80 (9.71) | 1529 (19.00) |
Cold storage rental | 1200 (15.00) | na |
Varroacide treatment in apiary | na | 400 (5.00) |
3 sugar syrup feedings for apiary colonies | na | 640 (8.00) |
1 feeding of pollen substitute for apiary colonies | na | 160 (2.00) |
Shipping hives: Idaho to California or Mississippi to California | 768.80 (9.61) | 1862.40 (23.28) |
Post-cold storage sugar syrup and pollen substitute feeding | 476.80 (5.96) | na |
Total cost | 3222.40 (40.28) | 4591.40 (57.39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeGrandi-Hoffman, G.; Graham, H.; Corby-Harris, V.; Chambers, M.; Watkins-deJong, E.; Ihle, K.; Bilodeau, L. Adapting Overwintering Honey Bee (Apis mellifera L.) Colony Management in Response to Warmer Fall Temperatures Associated with Climate Change. Insects 2025, 16, 266. https://doi.org/10.3390/insects16030266
DeGrandi-Hoffman G, Graham H, Corby-Harris V, Chambers M, Watkins-deJong E, Ihle K, Bilodeau L. Adapting Overwintering Honey Bee (Apis mellifera L.) Colony Management in Response to Warmer Fall Temperatures Associated with Climate Change. Insects. 2025; 16(3):266. https://doi.org/10.3390/insects16030266
Chicago/Turabian StyleDeGrandi-Hoffman, Gloria, Henry Graham, Vanessa Corby-Harris, Mona Chambers, Emily Watkins-deJong, Kate Ihle, and Lanie Bilodeau. 2025. "Adapting Overwintering Honey Bee (Apis mellifera L.) Colony Management in Response to Warmer Fall Temperatures Associated with Climate Change" Insects 16, no. 3: 266. https://doi.org/10.3390/insects16030266
APA StyleDeGrandi-Hoffman, G., Graham, H., Corby-Harris, V., Chambers, M., Watkins-deJong, E., Ihle, K., & Bilodeau, L. (2025). Adapting Overwintering Honey Bee (Apis mellifera L.) Colony Management in Response to Warmer Fall Temperatures Associated with Climate Change. Insects, 16(3), 266. https://doi.org/10.3390/insects16030266