Impact of Environmental Factors and Management Practices on Bee Health
- Stressors on Bee Populations: factors such as pathogens, pests (e.g., V. destructor), pesticides, habitat loss, and climate change contribute to the decline of bee colonies, including honeybees, bumblebees, and solitary bees.
- Innovative Control Measures: studies highlight effective methods like queen caging combined with oxalic acid treatments for Varroosis control, essential oils as alternatives to synthetic acaricides, and advancements in diagnostic tools like qPCR assays for diseases such as American foulbrood.
- Impact of Environmental and Agricultural Practices: urbanization, pesticide exposure, and agricultural intensification affect bees differently. For instance, urban areas showed higher pathogen prevalence, while rural areas had more pesticide-related impacts.
- Chemical and Biological Research: research identified effective natural remedies like Agaricus bisporus extract for bee health and studied pesticide residues’ effects on honey and beeswax.
- Behavioral and Genetic Studies: studies on disease transmission behaviors, genetic responses to stressors, and the influence of food diversity reveal how bees adapt to environmental challenges and human activities.
- Global and Local Initiatives: efforts like citizen science for monitoring wild bees, the development of biosecurity measures, and comparative studies on bee species in diverse habitats aim to mitigate risks and improve resilience.
Acknowledgments
Conflicts of Interest
References
- Tlak Gajger, I.; Meana Mañes, A.; Formato, G.; Mortarino, M.; Toporcak, J. Veterinarians and beekeeping: What roles, expectations and future perspectives?—A review paper. Vet. Arh. 2021, 91, 437–443. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Šimenc, L.; Toplak, I. The First Detection and Genetic Characterization of Four Different Honeybee Viruses in Wild Bumblebees from Croatia. Pathogens 2021, 10, 808. [Google Scholar] [CrossRef] [PubMed]
- Tlak Gajger, I.; Laklija, I.; Jurković, M.; Košćević, A.; Dar, S.A.; Ševar, M. The Impact of Different Biotopes and Management Practices on the Burden of Parasites in Artificial Nests of Osmia spp. (Megachilidae) Bees. Diversity 2022, 14, 226. [Google Scholar] [CrossRef]
- Betti, M.; Shaw, K. A Multi-Scale Model of Disease Transfer in Honey Bee Colonies. Insects 2021, 12, 700. [Google Scholar] [CrossRef]
- Qadir, Z.A.; Idrees, A.; Mahmood, R.; Sarwar, G.; Bakar, M.A.; Ahmad, S.; Raza, M.M.; Li, J. Effectiveness of Different Soft Acaricides against Honey Bee Ectoparasitic Mite Varroa destructor (Acari: Varroidae). Insects 2021, 12, 1032. [Google Scholar] [CrossRef]
- Hýbl, M.; Bohatá, A.; Rádsetoulalová, I.; Kopecký, M.; Hoštičková, I.; Vaníčková, A.; Mráz, P. Evaluating the Efficacy of 30 Different Essential Oils against Varroa destructor and Honey Bee Workers (Apis mellifera). Insects 2021, 12, 1045. [Google Scholar] [CrossRef]
- Bila Dubaić, J.; Simonović, S.; Plećaš, M.; Stanisavljević, L.; Davidović, S.; Tanasković, M.; Ćetković, A. Unprecedented Density and Persistence of Feral Honey Bees in Urban Environments of a Large SE-European City (Belgrade, Serbia). Insects 2021, 12, 1127. [Google Scholar] [CrossRef]
- Kovačić, M.; Uzunov, A.; Tlak Gajger, I.; Pietropaoli, M.; Soroker, V.; Adjlane, N.; Benko, V.; Charistos, L.; Dall’Olio, R.; Formato, G.; et al. Honey vs. Mite—A Trade-Off Strategy by Applying Summer Brood Interruption for Varroa destructor Control in the Mediterranean Region. Insects 2023, 14, 751. [Google Scholar] [CrossRef] [PubMed]
- Kolics, É.; Sajtos, Z.; Mátyás, K.; Szepesi, K.; Solti, I.; Németh, G.; Taller, J.; Baranyai, E.; Specziár, A.; Kolics, B. Changes in Lithium Levels in Bees and Their Products Following Anti-Varroa Treatment. Insects 2021, 12, 579. [Google Scholar] [CrossRef] [PubMed]
- Kušar, D.; Papić, B.; Zajc, U.; Zdovc, I.; Golob, M.; Žvokelj, L.; Knific, T.; Avberšek, J.; Ocepek, M.; Pislak Ocepek, M. Novel TaqMan PCR Assay for the Quantification of Paenibacillus larvae Spores in Bee-Related Samples. Insects 2021, 12, 1034. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Tomljanović, Z.; Mutinelli, F.; Granato, A.; Vlainić, J. Effects of Disinfectants on Bacterium Paenibacillus larvae in Laboratory Conditions. Insects 2024, 15, 268. [Google Scholar] [CrossRef] [PubMed]
- Glavinic, U.; Rajkovic, M.; Vunduk, J.; Vejnovic, B.; Stevanovic, J.; Milenkovic, I.; Stanimirovic, Z. Effects of Agaricus bisporus Mushroom Extract on Honey Bees Infected with Nosema ceranae. Insects 2021, 12, 915. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Prados, E.; González-Porto, A.V.; García-Villarubia, C.; López-Pérez, J.A.; Valverde, S.; Bernal, J.; Martín-Hernández, R.; Higes, M. Effects of Thiamethoxam-Dressed Oilseed Rape Seeds and Nosema ceranae on Colonies of Apis mellifera iberiensis, L. under Field Conditions of Central Spain. Is Hormesis Playing a Role? Insects 2022, 13, 371. [Google Scholar] [CrossRef]
- Mráz, P.; Hýbl, M.; Kopecký, M.; Bohatá, A.; Hoštičková, I.; Šipoš, J.; Vočadlová, K.; Čurn, V. Screening of Honey Bee Pathogens in the Czech Republic and Their Prevalence in Various Habitats. Insects 2021, 12, 1051. [Google Scholar] [CrossRef] [PubMed]
- Franco, S.; Cougoule, N.; Tison, A.; Del Cont, A.; Gastaldi, C.; Consortium, I.; Duquesne, V. Reliability of Morphological and PCR Methods for the Official Diagnosis of Aethina tumida (Coleoptera: Nitidulidae): A European Inter-Laboratory Comparison. Insects 2022, 13, 33. [Google Scholar] [CrossRef]
- Pavlović, R.; Brodschneider, R.; Goessler, W.; Stanisavljević, L.; Vujčić, Z.; Zarić, N.M. Micronutrient Deficiency May Be Associated with the Onset of Chalkbrood Disease in Honey Bees. Insects 2024, 15, 269. [Google Scholar] [CrossRef] [PubMed]
- Phokasem, P.; Mookhploy, W.; Krongdang, S.; Sinpoo, C.; Chantawannakul, P. Interaction between Thiamethoxam and Deformed Wing Virus Type A on Wing Characteristics and Expression of Immune and Apoptosis Genes in Apis mellifera. Insects 2022, 13, 515. [Google Scholar] [CrossRef] [PubMed]
- Mejías, E.; Gómez, C.; Garrido, T. Suitable Areas for Apiculture Expansion Determined by Antioxidant Power, Chemical Profiles, and Pesticide Residues in Caldcluvia paniculata Honey and Beeswax Samples. Insects 2022, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Hýbl, M.; Mráz, P.; Šipoš, J.; Hoštičková, I.; Bohatá, A.; Čurn, V.; Kopec, T. Polyphenols as Food Supplement Improved Food Consumption and Longevity of Honey Bees (Apis mellifera) Intoxicated by Pesticide Thiacloprid. Insects 2021, 12, 572. [Google Scholar] [CrossRef]
- Raimets, R.; Naudi, S.; Mänd, M.; Bartkevičs, V.; Smagghe, G.; Karise, R. Translocation of Tebuconazole between Bee Matrices and Its Potential Threat on Honey Bee (Apis mellifera Linnaeus) Queens. Insects 2022, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, G.; Farinós, G.P. Sensitivity of Buff-Tailed Bumblebee (Bombus terrestris L.) to Insecticides with Different Mode of Action. Insects 2022, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Vilić, M.; Žura Žaja, I.; Tkalec, M.; Tucak, P.; Malarić, K.; Popara, N.; Žura, N.; Pašić, S.; Tlak Gajger, I. Oxidative Stress Response of Honey Bee Colonies (Apis mellifera L.) during Long-Term Exposure at a Frequency of 900 MHz under Field Conditions. Insects 2024, 15, 372. [Google Scholar] [CrossRef]
- Hailu, T.G.; Atsbeha, A.T.; Wakjira, K.; Gray, A. High Rates of Honey Bee Colony Losses and Regional Variability in Ethiopia Based on the Standardised COLOSS 2023 Survey. Insects 2024, 15, 376. [Google Scholar] [CrossRef] [PubMed]
- Ocaña-Cabrera, J.S.; Martin-Solano, S.; Saegerman, C. Development of Tools to Understand the Relationship between Good Management Practices and Nest Losses in Meliponiculture: A Pilot Study in Latin American Countries. Insects 2024, 15, 715. [Google Scholar] [CrossRef]
- Donkersley, P.; Covell, L.; Ota, T. Japanese Honeybees (Apis cerana japonica Radoszkowski, 1877) May Be Resilient to Land Use Change. Insects 2021, 12, 685. [Google Scholar] [CrossRef] [PubMed]
- Bontšutšnaja, A.; Karise, R.; Mänd, M.; Smagghe, G. Bumble Bee Foraged Pollen Analyses in Spring Time in Southern Estonia Shows Abundant Food Sources. Insects 2021, 12, 922. [Google Scholar] [CrossRef] [PubMed]
- Elfar, S.A.; Bahgat, I.M.; Shebl, M.A.; Lihoreau, M.; Tawfik, M.M. Intraspecific Variability in Proteomic Profiles and Biological Activities of the Honey Bee Hemolymph. Insects 2023, 14, 365. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tlak Gajger, I.; Mutinelli, F. Impact of Environmental Factors and Management Practices on Bee Health. Insects 2024, 15, 996. https://doi.org/10.3390/insects15120996
Tlak Gajger I, Mutinelli F. Impact of Environmental Factors and Management Practices on Bee Health. Insects. 2024; 15(12):996. https://doi.org/10.3390/insects15120996
Chicago/Turabian StyleTlak Gajger, Ivana, and Franco Mutinelli. 2024. "Impact of Environmental Factors and Management Practices on Bee Health" Insects 15, no. 12: 996. https://doi.org/10.3390/insects15120996
APA StyleTlak Gajger, I., & Mutinelli, F. (2024). Impact of Environmental Factors and Management Practices on Bee Health. Insects, 15(12), 996. https://doi.org/10.3390/insects15120996