Niche and Range Shifts of the Fall Webworm (Hyphantria cunea Dury) in Europe Imply Its Huge Invasion Potential in the Future
<p>Occurrence records of the fall webworm. Black and red points represent the occurrence of the fall webworm in North America and the fall webworm in Europe, respectively. After spatial sparsification, we obtained a total of 3661 records, including 3465 records of the fall webworm in North America and 196 records of the fall webworm in Europe.</p> "> Figure 2
<p>Principal component analysis used to generate axes for delimiting niche spaces. Load of each predictor is indicated by graduated colors. The first and second principal component axes explain 69.4% of the variations among the predictors, and the first and second principal component axes were responsible for 47.0% and 22.4% of the variations, respectively. bio1: annual mean temperature; bio2: mean diurnal range; bio3: isothermality; bio4: temperature seasonality; bio5: maximum temperature of warmest month; bio6: minimum temperature of coldest month; bio7: temperature annual range; bio8: mean temperature of wettest quarter; bio9: mean temperature of driest quarter; bio10: mean temperature of warmest quarter; bio11: mean temperature of coldest quarter; bio12: annual precipitation; bio13: precipitation of wettest month; bio14: precipitation of driest month; bio15: precipitation seasonality; bio16: precipitation of wettest quarter; bio17: precipitation of driest quarter; bio18: precipitation of warmest quarter; bio19: precipitation of coldest quarter.</p> "> Figure 3
<p>Comparisons of the ranges of the 19 predictors between those extracted from the occurrences of the fall webworm in Europe and the fall webworm in North America. Paired-samples <span class="html-italic">t</span>-tests showed that the ranges of the fall webworm in North America were significantly larger than those of the fall webworm in Europe (<span class="html-italic">p</span> = 0.01). The abbreviations are as indicated in the <a href="#insects-14-00316-f002" class="html-fig">Figure 2</a> legend.</p> "> Figure 4
<p>Niche shifts between the fall webworm in Europe and the fall webworm in North America. The green and blue colors indicate niche stability and unfilling niche, respectively, which were 1.00 and 0.41, respectively. Red arrow represents the direction of niche shifts. Solid and dotted contour lines in red indicate climatic conditions of the fall webworm in North America and Europe, respectively.</p> "> Figure 5
<p>Potential ranges of the fall webworm. (<b>a</b>,<b>b</b>) indicate the potential ranges of the fall webworm in Europe and the fall webworm in North America, respectively. The potential ranges for the fall webworm in Europe were mainly projected in France, Austria, Hungary, Croatia, Romania, Bulgaria and Ukraine. The potential ranges for the fall webworm in North America were mostly identified in vast regions of Europe, excluding Norway, Sweden, Finland and North Russia.</p> "> Figure 6
<p>Range dynamics of the fall webworm in Europe and in North America. The red and black indicate unfilling and stabilized ranges, respectively. Range ratio and range similarity were ca. 5.50 and 0.31, respectively. The climatic potential ranges for the fall webworm in North America, but not the fall webworm in Europe, were mostly projected in vast regions of Europe, excluding Norway, Sweden, Finland, North Russia, Hungary, Croatia, Romania, and Ukraine. The climatic potential range for the fall webworm in both Europe and in North America was mostly identified in France, Austria, Hungary, Croatia, Romania, Bulgaria and Ukraine.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Occurrence of Fall Webworm
2.2. Climatic Predictors
2.3. Niche Shifts between the Fall Webworm in Europe and North America
2.4. Projecting Potential Ranges of the Fall Webworm in Europe and Those in North America
2.5. Range Shifts between the Fall Webworm in Europe and Those in North America
3. Results
3.1. Climatic Predictors Responsible for the Niche Dynamics
3.2. Niche Dynamics of the Fall Webworm in Europe and Those in North America
3.3. Potential Ranges of the Fall Webworm in Europe and Those in North America
3.4. Range Dynamics between the Fall Webworm in Europe and North America
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitousek, P.M.; D’Antonio, C.M.; Loope, L.L.; Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 1996, 84, 468–478. [Google Scholar]
- Liebhold, A.M.; Brockerhoff, E.G.; Kalisz, S.; Nuñez, M.A.; Wardle, D.A.; Wingfield, M.J. Biological invasions in forest ecosystems. Biol. Invasions 2017, 19, 3437–3458. [Google Scholar] [CrossRef]
- Diagne, C.; Catford, J.A.; Essl, F.; Nunez, M.A.; Courchamp, F. What are the economic costs of biological invasions? A complex topic requiring international and interdisciplinary expertise. Neobiota 2020, 63, 25–37. [Google Scholar] [CrossRef]
- Lounibos, L.P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 2002, 47, 233–266. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Madrinan, M.J.; Turell, M. Factors of Concern Regarding Zika and Other Aedes aegypti-Transmitted Viruses in the United States. J. Med. Entomol. 2017, 54, 251–257. [Google Scholar]
- Herath, J.M.M.K.; Abeyasundara, H.T.K.; De Silva, W.A.P.P.; Weeraratne, T.C.; Karunaratne, S.H.P.P. Weather-Based Prediction Models for the Prevalence of Dengue Vectors Aedes aegypti and Ae. albopictus. J. Trop. Med. 2022, 2022, 4494660. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Leroy, B.; Bellard, C.; Roiz, D.; Albert, C.; Fournier, A.; Barbet-Massin, M.; Salles, J.M.; Simard, F.; Courchamp, F. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 2016, 7, 12986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, R.S.; Kumar, L.; Shabani, F.; Picanco, M.C. Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios. Agric. Syst. 2019, 173, 524–535. [Google Scholar] [CrossRef]
- Thomas, S.M.; Verhoeven, M.R.; Walsh, J.R.; Larkin, D.J.; Hansen, G.J.A. Species distribution models for invasive Eurasian watermilfoil highlight the importance of data quality and limitations of discrimination accuracy metrics. Ecol. Evol. 2021, 11, 12567–12582. [Google Scholar] [CrossRef]
- Baer, K.C.; Gray, A.N. Biotic predictors improve species distribution models for invasive plants in Western US Forests at high but not low spatial resolutions. For. Ecol. Manag. 2022, 518, 120249. [Google Scholar] [CrossRef]
- Ma, L.; Cao, L.J.; Hoffmann, A.A.; Gong, Y.J.; Chen, J.C.; Chen, H.S.; Wang, X.B.; Zeng, A.P.; Wei, S.J.; Zhou, Z.S. Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. Divers. Distrib. 2020, 26, 610–622. [Google Scholar] [CrossRef] [Green Version]
- Jardeleza, M.K.G.; Koch, J.B.; Pearse, I.S.; Ghalambor, C.K.; Hufbauer, R.A. The roles of phenotypic plasticity and adaptation in morphology and performance of an invasive species in a novel environment. Ecol. Entomol. 2022, 47, 25–37. [Google Scholar] [CrossRef]
- Hutchinson, G.E. Concluding remarks of Cold Spring Harbor Symposium. Quant. Biol. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- Cadotte, M.W.; McMahon, S.M.; Fukami, T. Exploring the relationship between niche breadth and invasion success. In Springer Series in Invasion Ecology; Vazquez, D.P., Ed.; Springer Nature One: New York, NY, USA, 2006; pp. 307–322. [Google Scholar]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araujo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Cornuault, J.; Khimoun, A.; Cuneo, P.; Besnard, G. Spatial segregation and realized niche shift during the parallel invasion of twoolive subspecies in south-eastern Australia. J. Biogeogr. 2015, 42, 1930–1941. [Google Scholar] [CrossRef]
- Pili, A.N.; Tingley, R.; Sy, E.Y.; Diesmos, M.L.L.; Diesmos, A.C. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Sci. Rep. 2020, 10, 7972. [Google Scholar] [CrossRef]
- Guisan, A.; Petitpierre, B.; Broennimann, O.; Daehler, C.; Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 2014, 29, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Lee, D.S.; Kwon, T.S.; Athar, M.; Park, Y.S. Predicting the Global Distribution of Solenopsis geminata (Hymenoptera: Formicidae) under Climate Change Using the MaxEnt Model. Insects 2021, 12, 229. [Google Scholar] [CrossRef]
- Kambach, S.; Lenoir, J.; Decocq, G.; Welk, E.; Seidler, G.; Dullinger, S.; Gegout, J.C.; Guisan, A.; Pauli, H.; Svenning, J.C. Of niches and distributions: Range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography 2019, 42, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Bernard, J.; Wall, C.B.; Costantini, M.S.; Rollins, R.L.; Atkins, M.L.; Cabrera, F.P.; Cetraro, N.D.; Feliciano, C.K.J.; Greene, A.L.; Kitamura, P.K.; et al. Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed. ISME J. 2021, 15, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Yarmand, H.; Sadeghi, S.; Mohammadi, M.; Mehrabi, A.; Zamani, S.; Ajamhasani, M.; Angeli, S. The fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae): A new emerging pest insect for forests and agricultural crops of Iran. In Review of Forests, Wood Products and Wood Biotechnology of Iran and Germany; Kharazipour, A.R., Schopper, C., Muller, C., Euring, M., Eds.; Gottingen University: Gottingen, Germany, 2009; pp. 120–134. [Google Scholar]
- Varjas, L.; Sehnal, F. Use of a juvenile hormone analogue against the fall webworm, Hyphantria cunea. Entomol. Exp. Appl. 1973, 16, 115–122. [Google Scholar] [CrossRef]
- Li, X.Y.; Cowles, R.S.; Cowles, E.A.; Gaugler, R.; Cox-Foster, D.L. Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int. J. Parasitol. 2007, 37, 365–374. [Google Scholar] [CrossRef]
- Schowalter, T.D.; Ring, D.R. Biology and Management of the FallWebworm, Hyphantria cunea (Lepidoptera: Erebidae). J. Integr. Pest Manag. 2017, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Nakonechna, Y.O.; Stankevych, S.V.; Zabrodina, I.V.; Lezhenina, I.P.; Filatov, M.O.; Yushchuk, D.D.; Lutytska, N.V.; Molchanova, O.A.; Melenti, V.O.; Poliakh, V.M.; et al. Distribution area of Hyphantria cunea Drury: The analysis of Ukrainian and world data. Ukr. J. Ecol. 2019, 9, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Park, I.K.; Lee, H.S.; Lee, S.G.; Park, J.D.; Ahn, Y.J. Antifeeding activity of isoquinoline alkaloids identified in Coptis japonica roots against Hyphantria cunea (Lepidoptera: Arctiidae) and Agelastica coerulea (Coleoptera: Galerucinae). J. Econ. Entomol. 2000, 93, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Kiyota, R.; Arakawa, M.; Yamakawa, R.; Yasmin, A.; Ando, T. Biosynthetic pathways of the sex pheromone components and substrate selectivity of the oxidation enzymes working in pheromone glands of the fall webworm, Hyphantria cunea. Insect Biochem. Mol. Biol. 2011, 41, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.R.; Zhu, M.M.; Li, L.L.; Zhang, G.C.; Zheng, Y.; Li, T.; Sun, S.H. Cold hardiness characteristic of the overwintering pupae of fall webworm Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) in the northeast of China. J. Asia-Pac. Entomol. 2015, 18, 39–45. [Google Scholar] [CrossRef]
- Fields, P.G.; Fleurat-Lessard, F.; Lavenseau, L.; Febvay, G.; Peypelut, L.; Bonnot, G. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera). J. Insect Physiol. 1998, 44, 955–965. [Google Scholar] [CrossRef]
- Warren, L.O.; Tadic, M. The fall webworm, Hyphantria cunea, its distribution and natural enemies: A world list (Lepidoptera: Arctiidae). J. Kans. Entomol. Soc. 1967, 40, 194–202. [Google Scholar]
- Oliver, A.D. A behavioral study of two races of the fallwebworm, Hyphantria cunea (Lepidoptera: Arctiidae) in Louisiana. Ann. Entomol. Soc. Am. 1964, 57, 192–194. [Google Scholar] [CrossRef] [Green Version]
- Masaki, S. Biology of Hyphantria cunea Drury (Lepidoptera: Arctiidae) in Japan: A review. J. Rev. Plant Prot. Res. 1975, 8, 14–28. [Google Scholar]
- Zhang, X.X.; Wang, Z.J. Research progress on the Hyphantria cunea (Drury) of alien invasive species. J. Anhui Agric. Sci. 2009, 37, 215–219. [Google Scholar]
- Tang, X.G.; Yuan, Y.D.; Liu, X.F.; Zhang, J.C. Potential range expansion and niche shift of the invasive Hyphantria cunea between native and invasive countries. Ecol. Entomol. 2021, 46, 910–925. [Google Scholar] [CrossRef]
- Ge, X.Z.; He, S.Y.; Zhu, C.Y.; Wang, T.; Xu, Z.C.; Zong, S.X. Projecting the current and future potential global distribution of Hyphantria cunea (Lepidoptera: Arctiidae) using CLIMEX. Pest Manag. Sci. 2019, 75, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.E.; Hijmans, R.J. WorldClim2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Di Cola, V.; Broennimann, O.; Petitpierre, B.; Breiner, F.T.; D’Amen, M.; Randin, C.; Engler, R.; Pottier, J.; Pio, D.; Dubuis, A. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 2017, 40, 774–787. [Google Scholar] [CrossRef]
- Broennimann, O.; Fitzpatrick, M.C.; Pearman, P.B.; Petitpierre, B.; Pellissier, L.; Yoccoz, N.G.; Thuiller, W.; Fortin, M.J.; Randin, C.; Zimmermann, N.E.; et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 2012, 21, 481–497. [Google Scholar] [CrossRef] [Green Version]
- Petitpierre, B.; Kueffer, C.; Broennimann, O.; Randin, C.; Daehler, C.; Guisan, A. Climatic niche shifts are rare among terrestrial plant invaders. Science 2012, 335, 1344–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellinger, A.S.; Essl, F.; Hojsgaard, D.; Kirchheimer, B.; Klatt, S.; Dawson, W.; Pergl, J.; Pysek, P.; van Kleunen, M.; Weber, E.; et al. Niche dynamics of alien species do not differ among sexual and apomictic flowering plants. New Phytol. 2016, 209, 1313–1323. [Google Scholar] [CrossRef] [Green Version]
- Baselga, A. Partitioning abundance-based multiple-site dissimilarity into components: Balanced variation in abundance and abundance gradients. Methods Ecol. Evol. 2017, 8, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.G.; Cao, R.Y.; Gong, X.; Feng, J.M. Large shifts of niche and range in the golden apple snail (Pomacea canaliculata), an aquatic invasive species. Ecosphere 2023, 14, e4391. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carre, G.; Marquez, J.R.G.; Jaime, R.; Gruber, B.; Lafourcade, B.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Gong, X.; Chen, Y.J.; Wang, T.; Jiang, X.F.; Hu, X.K.; Feng, J.M. Double-edged effects of climate change on plant invasions: Ecological niche modeling global distributions of two invasive alien plants. Sci. Total Environ. 2020, 740, 139933. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.Y.; Gong, X.; Feng, J.M.; Yang, R.J. Niche and range dynamics of Tasmanian blue gum (Eucalyptus globulus Labill.), a globally cultivated invasive tree. Ecol. Evol. 2022, 12, e9305. [Google Scholar] [CrossRef] [PubMed]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Gallien, L.; Douzet, R.; Pratte, S.; Zimmermann, N.E.; Thuiller, W. Invasive species distribution models—How violating the equilibrium assumption can create new insights. Glob. Ecol. Biogeogr. 2012, 21, 1126–1136. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence–only data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellard, C.; Thuiller, W.; Leroy, B.; Genovesi, P.; Bakkenes, M.; Courchamp, F. Will climate change promote future invasions? Glob. Change Biol. 2013, 19, 3740–3748. [Google Scholar] [CrossRef] [PubMed]
- Zobel, M. Eltonian niche width determines range expansion success in ectomycorrhizal conifers. New Phytol. 2018, 220, 947–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, P.X.; Feng, J.M. Global niche and range shifts of Batrachochytrium dendrobatidis, a highly virulent amphibian-killing fungus. Fungal Biol. 2022, 126, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Warren, L.O.; Tadic, M. Fall Webworm, Hyphantria cunea (Drury). Ark. Agric. Exp. Sta. Bull. 1970, 759, 1–106. [Google Scholar]
- Szalay-Marzso, L. Biology and control of the Fall webworm (Hyphantria cunea Drury) in the Middle- and East European Countries. Organ. Eur. Mediterr. Pour La Prot. Des Plantes 1972, 3, 25–35. [Google Scholar] [CrossRef]
- Baird, A.B. An Historical Account of the Forest Tent Caterpillar and of the Fall Webworm in North America. In Proceedings of the 47th Annual Report of the Entomological Society of Ontario, Toronto, ON, Canada, 1 May 1917; pp. 73–87. [Google Scholar]
- Edosa, T.T.; Jo, Y.H.; Keshavarz, M.; Anh, Y.S.; Noh, M.Y.; Han, Y.S. Current status of the management of fall webworm, Hyphantria cunea: Towards the integrated pest management development. J. Appl. Entomol. 2019, 143, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Beshai, R.A.; Barnes, E.E.; Murphy, S.M. The Role of Enemy-mediated Competition in Determining Fitness of a Generalist Herbivore. Southwest Entomol. 2019, 44, 69–77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, P.; Yang, R.; Cao, R.; Hu, X.; Feng, J. Niche and Range Shifts of the Fall Webworm (Hyphantria cunea Dury) in Europe Imply Its Huge Invasion Potential in the Future. Insects 2023, 14, 316. https://doi.org/10.3390/insects14040316
Nie P, Yang R, Cao R, Hu X, Feng J. Niche and Range Shifts of the Fall Webworm (Hyphantria cunea Dury) in Europe Imply Its Huge Invasion Potential in the Future. Insects. 2023; 14(4):316. https://doi.org/10.3390/insects14040316
Chicago/Turabian StyleNie, Peixiao, Rujing Yang, Runyao Cao, Xiaokang Hu, and Jianmeng Feng. 2023. "Niche and Range Shifts of the Fall Webworm (Hyphantria cunea Dury) in Europe Imply Its Huge Invasion Potential in the Future" Insects 14, no. 4: 316. https://doi.org/10.3390/insects14040316
APA StyleNie, P., Yang, R., Cao, R., Hu, X., & Feng, J. (2023). Niche and Range Shifts of the Fall Webworm (Hyphantria cunea Dury) in Europe Imply Its Huge Invasion Potential in the Future. Insects, 14(4), 316. https://doi.org/10.3390/insects14040316