The (T, L)-Path Model and Algorithms for Information Dissemination in Dynamic Networks
<p>An examples of the instant path dynamicity.</p> "> Figure 2
<p>An example illustration of a (<span class="html-italic">5</span>, <span class="html-italic">4</span>)-<span class="html-italic">path</span> model.</p> "> Figure 3
<p>An example of a (<span class="html-italic">5</span>, <span class="html-italic">2</span>)*-<span class="html-italic">path</span> model.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Dynamic Network Models
2.2. Information Dissemination Algorithms
3. System Model and Problem Definition
3.1. System Model
3.2. Problem Definition
- Termination: each node in the network should eventually terminate the execution of the algorithm.
- Accuracy: each node gets all the k tokens at the end of the algorithm execution.
4. The Proposed Dynamic Network Models
4.1. Instant Path
- : the minimum accumulation of node number variance of ρt(u, v) from t to t′ (t′ > t), i.e.,
- : the maximum variance of node order of ρt(u, v) from t to t′ (t′ > t), i.e.,
4.2. The (T, l)-Path Model
4.3. The (T, l)*-Path Model
4.4. The Relationship between the (T, l)-Path and (T, l)*-Path
4.5. The Relationship between (T, l)-Path and T-Interval Connectivity
5. The Algorithm for Token Dissemination in (T, l)-Path
5.1. Algorithm 1: 1-Token Dissemination in (T, l)-Path
Algorithm 1: 1-token dissemination in the (T, l)-path. |
Initialization of per node: |
broNumber ← −1 |
For nodeu: |
broNumber ← l + 1 |
fori = 0, …, l + 1 do |
broadcasts msg(c, broNumber) |
broNumber ← broNumber-1 |
endfor |
For any nodevin roundi*T + r: |
ifbroNumber ≠ 0 |
broadcasts msg(c, broNumbe) |
broNumber ← broNumber-1 |
endif |
receive msg(c, broNumber) from neighbors |
set TR ← msg(c, broNumber) |
ifTR is not an empty set |
set m ← max(broNumber) in TR |
if broNumber = −1 |
set broNumber ← |
endif |
if broNumber = 0 and m≥2 or broNumber ≤m-2 |
set broNumber ← m-1 |
endif |
endif |
5.2. Algorithm 2: K-Token Dissemination in (T, l)-Path
Algorithm 2:k-token dissemination in the (T, l)-path. |
Initialization of per node: |
TC ← |
TS ← |
TR ← |
broNumber ← l + 1 |
c ← the token c that the node has in the beginning |
For any nodevin roundi*T + r: |
ift is not an empty set |
broadcasts msg(c, broNumbe) |
broNumber ← broNumber-1 |
endif |
receive msg(c′, broNumber) from neighbors |
TR ← {msg(c′, broNumber)} |
TA ← {c′} in TR |
ifTR is not an empty set |
minID ← minimal ID of token c′ in TR |
if minID < ID of token c and i<(n-1)* p (the ranks of c′) |
broNumber ← max(, (n-1)*p-i*T-r) |
c ← c |
TS ← TA − {c1, c2,... ci}, which ID of c i is not smaller than minID in TA |
endif |
if minID = ID of token c |
set m ← max(broNumber) in TR |
if broNumber ≤ m-2 |
set broNumber ← m-1 |
endif |
endif |
ifbroNumber = 0 |
set TS=TSc |
c ← min(TA-TS) |
broNumber ← l+1 |
endif |
6. The Algorithm for K-Token Dissemination in (T, L)*-Path
6.1. Algorithm 3: 1-Token Dissemination in (T, l)*-Path
Algorithm 3: 1-token dissemination in the (T, l)*-path. |
For nodeu: |
fori = 0, …, l do |
broadcasts msg(c) |
endfor |
For any nodev: |
if node v receives token c for the first time in round r |
for i = r+1, …,r+ l + 1 do |
broadcasts msg(c) |
endfor |
endif |
6.2. Algorithm 4: K-Token Dissemination in (T, l)*-Path
Algorithm 4:k-token dissemination in the (T, l)*-path. |
Initialization of per node: |
TC ← |
TS ← |
broNumber ← −1 |
broID ← MAX |
For any other nodevin roundi: |
IDt ← min(TC-TS) |
if broNumber = −1 or (broNumber ≠ −1 and broID> IDt) |
broID ← IDt |
broadcast c to neighbors |
broNumber ← k |
TS=TS-{IDj}(which IDj > IDt) |
endif |
if broNumber ≠ −1 and broID ≤ IDt |
broadcast c′ to neighbors (ID of token c′ is broID) |
broNumber ← broNumber-1 |
endif |
if broNumber = 0 |
set TS=TSbroID |
broNumber ← −1 |
borID ← MAX |
endif |
receive c1, ..., cs from neighbors |
TC←TC{c1, ..., cs} |
7. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Grindrod, P.; Higham, D.J. Evolving graphs: Dynamical models, inverse problems and propagation. Proc. R. Soc. Lond. Ser. A 2010, 466, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Erlebach, T.; Hoffmann, M.; Kammer, F. On temporal graph exploration. In Proceedings of the International Colloquium on Automata, Languages and Programming, Kyoto, Japan, 6–10 July 2015; pp. 444–455. [Google Scholar]
- Datta, S.; Giannella, C.; Kargupta, H. K-means clustering over a large, dynamic network. In Proceedings of the Sixth SIAM International Conference on Data Mining, Bethesda, MD, USA, 20–22 April 2006; pp. 153–164. [Google Scholar]
- Vaidya, N.H.; Krishna, P.; Chatterjee, M.; Pradhan, D.K. A Cluster-based approach for routing in dynamic networks. ACM SIGCOMM Comput. Commun. Rev. 1997, 27, 49–64. [Google Scholar]
- Michail, O.; Chatzigiannakis, I.; Spirakis, P.G. Naming and counting in anonymous unknown dynamic networks. In Proceedings of the 26th International Symposium on Distributed Computing (DISC), Salvador, Brazil, 16–18 October 2012; pp. 437–438. [Google Scholar]
- Kuhn, F.; Oshman, R. Dynamic networks: Models and algorithms. ACM SIGACT News 2011, 42, 82–96. [Google Scholar] [CrossRef]
- Van de Bovenkamp, R.; kuipers, F.; van Mieghem, P. Gossip-based counting in dynamic networks. In Proceedings of the 11th International IFIP TC 6 Networking Conference, Prague, Czech Republic, 21–25 May 2012; pp. 404–417. [Google Scholar]
- O’Dell, R.; Wattenhofer, R. Information dissemination in highly dynamic graphs. In Proceedings of the 9th Joint Workshop on Foundations of Mobile Computing, Cologne, Germany, 2 September 2005; pp. 104–110. [Google Scholar]
- Haeupler, B.; Karger, D. Faster information dissemination in dynamic networks via network coding. In Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, San Jose, CA, USA, 6–8 June 2011; pp. 381–390. [Google Scholar]
- Kuhn, F.; Lynch, N.; Oshman, R. Distributed computation in dynamic networks. In Proceedings of the 42nd ACM Symposium on Theory of Computing, Cambridge, MA, USA, 6–8 June 2010; pp. 513–522. [Google Scholar]
- Kempe, D.; Kleinberg, J.; Kumar, A. Connectivity and inference problems for temporal networks. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC), Portland, OR, USA, 21–23 May 2000; pp. 504–513. [Google Scholar]
- Casteigts, A.; Flocchini, P.; Quattrociocchi, W.; Santoro, N. Time-Varying graphs and dynamic networks. Int. J. Parallel Emerg. Distrib. Syst. 2012, 27, 387–408. [Google Scholar] [CrossRef]
- Shang, Y. Multi-agent coordination in directed moving neighbourhood random networks. Chin. Phys. B 2010, 19, 070201. [Google Scholar] [Green Version]
- Shang, Y. Consensus in averager-copier-voter networks of moving dynamical agents. Chaos Interdisciplin. J. Nonlinear Sci. 2017, 27, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Clementi, A.; Macci, C.; Monti, A.; Pasquale, F.; Silvestri, R. Flooding time in edge-markovian dynamic graphs. In Proceedings of the 27th ACM Symposium on Principles of Distributed Computing, Toronto, ON, Canada, 18–21 August 2008; pp. 213–222. [Google Scholar]
- Avin, C.; Koucky, M.; Lotker, Z. How to explore a fast-changing world (cover time of a simple random walk on evolving graphs). In Proceedings of the 35th International Colloquium on Automata, Languages and Programming, Reykjavik, Iceland, 7–11 July 2008; pp. 121–132. [Google Scholar]
- Pittel, B. On spreading a rumor. SIAM J. Appl. Math. 1987, 47, 213–223. [Google Scholar] [CrossRef]
- Clementi, A.; Monti, A.; Silvestri, R. Flooding over Manhattan. In Proceedings of the 29th ACM Symposium on Principles of Distributed Computing, Zurich, Switzerland, 25–28 July 2010. [Google Scholar]
- Shang, Y. The Estrada index of evolving graphs. Appl. Math. Comput. 2015, 250, 415–423. [Google Scholar] [CrossRef]
- Shang, Y. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs. PLoS ONE 2015, 10, e0123426. [Google Scholar] [CrossRef] [PubMed]
- Wehmuth, K.; Fleury, E.; Ziviani, A. On multiaspect graphs. Theor. Comput. Sci. 2016, 651, 50–61. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ghodselahi, A.; Kuhn, F.; Molla, A.R. The cost of global broadcast in dynamic radio networks. In Proceedings of the International Conference on Principles of Distributed Systems, Rennes, France, 14–17 December 2015. [Google Scholar]
- Yang, Z.; Wu, W.; Chen, Y.; Li, X.; Cao, J. (Q, S)-distance model and counting algorithms in dynamic distributed systems. Int. J. Distrib. Sens. Netw. 2018, 14. [Google Scholar] [CrossRef]
- Jelasity, M.; Guerraoui, R.; Kermarrec, A.; Steem, M. The peer sampling service: Experimental evaluation of unstructured gossip-based implementations. In Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middleware, Toronto, ON, Canada, 18–22 October 2004; pp. 79–98. [Google Scholar]
- Clementi, A.; Crescenzi, P.; Doerr, C.; Fraigniaud, P.; Pasquale, F.; Silvestri, R. Rumor spreading in random evolving graphs. Random Struct. Algorithms 2016, 48, 290–312. [Google Scholar] [CrossRef]
- Acan, H.; Collevecchio, A.; Mehrabian, A.; Wormald, N. On the push & pull protocol for rumor spreading. SIAM J. Discret. Math. 2017, 31, 647–668. [Google Scholar]
- Augustine, J.; Chen, A.; Liaee, M.; Pandurangan, G.; Rajaraman, R. Information spreading in dynamic networks under oblivious adversaries. In Proceedings of the International Symposium on Distributed Computing, Paris, France, 27–29 September 2016; pp. 399–413. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Wu, W. The (T, L)-Path Model and Algorithms for Information Dissemination in Dynamic Networks. Information 2018, 9, 212. https://doi.org/10.3390/info9090212
Yang Z, Wu W. The (T, L)-Path Model and Algorithms for Information Dissemination in Dynamic Networks. Information. 2018; 9(9):212. https://doi.org/10.3390/info9090212
Chicago/Turabian StyleYang, Zhiwei, and Weigang Wu. 2018. "The (T, L)-Path Model and Algorithms for Information Dissemination in Dynamic Networks" Information 9, no. 9: 212. https://doi.org/10.3390/info9090212
APA StyleYang, Z., & Wu, W. (2018). The (T, L)-Path Model and Algorithms for Information Dissemination in Dynamic Networks. Information, 9(9), 212. https://doi.org/10.3390/info9090212