Identification of Social Aspects by Means of Inertial Sensor Data
<p>Example run of the CERT algorithm. (<b>a</b>) shows <b>G</b><sup>(<span class="html-italic">P</span>)</sup>, (<b>b</b>) shows instead <b>G</b><sup>(<span class="html-italic">I</span>)</sup>. The clique generation, pictured in (<b>c</b>) finds all the subgraphs of of length <span class="html-italic">N</span> = 4 according to the length of <b>G</b><sup>(<span class="html-italic">P</span>)</sup>. The detection step is shown in (<b>d</b>), where we find the best possible match of <b>G</b><sup>(<span class="html-italic">P</span>)</sup>.</p> "> Figure 2
<p>(<b>a</b>,<b>b</b>) show the PDF of the road angles and road lengths for different worldwide cities, respectively. (<b>c</b>) shows the <span class="html-italic">α</span> and <span class="html-italic">β</span> values for different sized cities in the EU and US.</p> "> Figure 3
<p>Overarching schema of our proposal. Sensors read data from the car movement, which are reported to a central server. Here we create the two graphs, <math display="inline"><semantics> <msup> <mi mathvariant="script">G</mi> <mrow> <mo>(</mo> <mi>P</mi> <mo>)</mo> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi mathvariant="script">G</mi> <mrow> <mo>(</mo> <mi>I</mi> <mo>)</mo> </mrow> </msup> </semantics></math>, and from the latter we find all the possible subgraphs of any size. We then perform the matching between <math display="inline"><semantics> <msup> <mi mathvariant="script">G</mi> <mrow> <mo>(</mo> <mi>P</mi> <mo>)</mo> </mrow> </msup> </semantics></math> and the subgraphs we found, eventually detecting the best possible match and reporting it back. We note that the <math display="inline"><semantics> <msup> <mi mathvariant="script">G</mi> <mrow> <mo>(</mo> <mi>I</mi> <mo>)</mo> </mrow> </msup> </semantics></math> download and the clique operation can be performed in advance, and stored in memory, to save time for the matching operation.</p> "> Figure 4
<p>Measurement distribution gathered with 10 different smartphones placed at a constant direction.</p> "> Figure 5
<p>Number of paths in different cities, varying <span class="html-italic">ϵ</span> and <span class="html-italic">δ</span>. The cities tested are Bologna, Italy (<b>a</b>), Austin, Texas (<b>b</b>), Marrakech, Morocco (<b>c</b>), Manila, Philippines (<b>d</b>), Buenos Aires, Argentina (<b>e</b>), and Auckland, New Zealand (<b>f</b>).</p> "> Figure 6
<p>(<b>a</b>) shows the Identification probability for increasingly large cities. (<b>b</b>) shows the same metric, plotted instead against the path length. Finally (<b>c</b>) shows the comparison when considering only the accelerometer, only the magnetometer, or both.</p> "> Figure 7
<p>(<b>a</b>) shows the time needed to perform the clique generation and the detection for different cities worldwide. (<b>b</b>) shows the number of different subgraphs found for the same cities, versus the length of the path. Finally (<b>c</b>) shows the comparison in time between this work and [<a href="#B30-information-11-00534" class="html-bibr">30</a>].</p> ">
Abstract
:1. Introduction
2. Related Work
3. Graph Model
3.1. Construction
3.1.1. Road Segments Identification
3.1.2. Dead Reckoning System
3.2. Definition
3.3. Complexity of CERT
4. Segments Matching
Comparing Graphs
5. Evaluation
5.1. Simulator
5.2. Numerical Results
5.3. CERT Performance
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abd Rabbou, M.; El-Rabbany, A. Tightly coupled integration of GPS precise point positioning and MEMS-based inertial systems. GPS Solut. 2015, 19, 601–609. [Google Scholar] [CrossRef]
- Narain, S.; Vo-Huu, T.D.; Block, K.; Noubir, G. The Perils of User Tracking Using Zero-Permission Mobile Apps. IEEE Secur. Priv. 2017, 15, 32–41. [Google Scholar] [CrossRef]
- Mosenia, A.; Dai, X.; Mittal, P.; Jha, N.K. PinMe: Tracking a Smartphone User around the World. IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 420–435. [Google Scholar] [CrossRef] [Green Version]
- Narain, S.; Vo-Huu, T.D.; Block, K.; Noubir, G. Inferring User Routes and Locations Using Zero-Permission Mobile Sensors. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 397–413. [Google Scholar]
- Christidis, P. EU Travel Survey on Demand for Innovative Transport Systems. Available online: https://data.europa.eu/euodp/data/dataset/jrc-tem-eu_travel_survey_2014_new_technologies (accessed on 11 November 2020).
- Federal Highway Administration (FHWA). National Household Travel Survey. Available online: https://nhts.ornl.gov/ (accessed on 11 November 2020).
- German DLR. Mobility in Germany 2008. Available online: http://daten.clearingstelle-verkehr.de/223/ (accessed on 11 November 2020).
- UK Department of Transport (DfT). UK Natinoal Travel Survey 2016; Technical Report; UK Department of Transport: London, UK, 2016. Available online: https://www.gov.uk/government/collections/national-travel-survey-statistics (accessed on 11 November 2020).
- Golle, P.; Partridge, K. On the Anonymity of Home/Work Location Pairs. In Pervasive Computing; Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 390–397. [Google Scholar]
- Dey, A.K. Understanding and Using Context. Pers. Ubiquitous Comput. 2001, 5, 4–7. [Google Scholar] [CrossRef]
- Ayu, M.A.; Mantoro, T.; Matin, A.F.A.; Basamh, S.S.O. Recognizing user activity based on accelerometer data from a mobile phone. In Proceedings of the 2011 IEEE Symposium on Computers Informatics, Kuala Lumpur, Malaysia, 20–22 March 2011; pp. 617–621. [Google Scholar]
- Bedogni, L.; Di Felice, M.; Bononi, L. Context-aware Android applications through transportation mode detection techniques. Wirel. Commun. Mob. Comput. 2016, 16, 2523–2541. [Google Scholar] [CrossRef] [Green Version]
- Casale, P.; Pujol, O.; Radeva, P. Human activity recognition from accelerometer data using a wearable device. Pattern Recognit. Image Anal. 2011, 6669 LNCS, 289–296. [Google Scholar]
- Reddy, S.; Mun, M.; Burke, J.; Estrin, D.; Hansen, M.; Srivastava, M. Using mobile phones to determine transportation modes. ACM Trans. Sens. Netw. 2010, 6, 1–27. [Google Scholar] [CrossRef]
- Chen, L.; Yang, D.; Nogueira, M.; Wang, C.; Zhang, D. Data-Driven C-RAN Optimization Exploiting Traffic and Mobility Dynamics of Mobile Users. Available online: https://ieeexplore.ieee.org/document/8981890 (accessed on 17 November 2020).
- Leppäkoski, H.; Collin, J.; Takala, J. Pedestrian Navigation Based on Inertial Sensors, Indoor Map, and WLAN Signals. J. Signal Process. Syst. 2013, 71, 287–296. [Google Scholar] [CrossRef]
- Cankaya, I.A.; Koyun, A.; Yigit, T.; Yuksel, A.S. Mobile indoor navigation system in iOS platform using augmented reality. In 2015 9th International Conference on Application of Information and Communication Technologies (AICT); IEEE: New York, NY, USA, 2015; pp. 281–284. [Google Scholar] [CrossRef]
- Rehman, U.; Cao, S. Augmented-Reality-Based Indoor Navigation: A Comparative Analysis of Handheld Devices Versus Google Glass. IEEE Trans. Hum.-Mach. Syst. 2016, 47, 140–151. [Google Scholar] [CrossRef]
- Bedogni, L.; Franzoso, F.; Bononi, L. A Self-Adapting Algorithm Based on Atmospheric Pressure to Localize Indoor Devices. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Jimenez, A.; Seco, F.; Prieto, C.; Guevara, J. A comparison of Pedestrian Dead-Reckoning algorithms using a low-cost MEMS IMU. In 2009 IEEE International Symposium on Intelligent Signal Processing; IEEE: New York, NY, USA, 2009; pp. 37–42. [Google Scholar] [CrossRef]
- Kang, W.; Han, Y. SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization. IEEE Sens. J. 2015, 15, 2906–2916. [Google Scholar] [CrossRef]
- Wahab, A.A.; Khattab, A.; Fahmy, Y.A. Two-way TOA with limited dead reckoning for GPS-free vehicle localization using single RSU. In 2013 13th International Conference on ITS Telecommunications (ITST); IEEE: New York, NY, USA, 2013; pp. 244–249. [Google Scholar] [CrossRef]
- Han, J.; Owusu, E.; Nguyen, L.T.; Perrig, A.; Zhang, J. ACComplice: Location inference using accelerometers on smartphones. In Proceedings of the 2012 Fourth International Conference on Communication Systems and Networks (COMSNETS 2012), Bangalore, India, 3–7 January 2012; pp. 1–9. [Google Scholar]
- Chang, Q.; Van de Velde, S.; Wang, W.; Li, Q.; Hou, H.; Heidi, S. Wi-Fi Fingerprint Positioning Updated by Pedestrian Dead Reckoning for Mobile Phone Indoor Localization. In China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III; Sun, J., Liu, J., Fan, S., Lu, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 729–739. [Google Scholar]
- Zhang, X.; Jin, Y.; Tan, H.X.; Soh, W.S. CIMLoc: A crowdsourcing indoor digital map construction system for localization. In 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP); IEEE: New York, NY, USA, 2014; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Aguilar Herrera, J.C.; Hinkenjann, A.; Ploger, P.G.; Maiero, J. Robust indoor localization using optimal fusion filter for sensors and map layout information. In International Conference on Indoor Positioning and Indoor Navigation; IEEE: New York, NY, USA, 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Link, J.A.B.; Smith, P.; Viol, N.; Wehrle, K. FootPath: Accurate map-based indoor navigation using smartphones. In 2011 International Conference on Indoor Positioning and Indoor Navigation; IEEE: New York, NY, USA, 2011; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bedogni, L.; Gramaglia, M.; Vesco, A.; Fiore, M.; Härri, J.; Ferrero, F. The Bologna ringway dataset: Improving road network conversion in SUMO and validating urban mobility via navigation services. IEEE Trans. Veh. Technol. 2015, 64, 5464–5476. [Google Scholar] [CrossRef] [Green Version]
- Luxen, D.; Vetter, C. Real-time routing with OpenStreetMap data. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems—GIS ’11, Chicago, IL, USA, 1–4 November 2011; p. 513. [Google Scholar] [CrossRef]
- Bedogni, L.; Bononi, L. Vehicular Route Identification Using Mobile Devices Integrated Sensors. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kyoto, Japan, 11–15 March 2019; pp. 820–825. [Google Scholar] [CrossRef]
- Fiedler, M.; Markham, T.L. An inequality for the Hadamard product of an M-matrix and an inverse M-matrix. Linear Algebra Appl. 1988, 101, 1–8. [Google Scholar] [CrossRef] [Green Version]
Reference | Type | Data |
---|---|---|
[19] | Indoor navigation | Barometer |
[20] | Indoor navigation | Barometer |
[26] | Indoor navigation | Sensor fusion |
[27] | Indoor navigation | Accelerometer and Open data |
[22] | Indoor navigation | Accelerometer |
[21] | GPS correction | Accelerometer |
[28] | Vehicular traces improvement | Open data |
[29] | Map Enhancement | Open data |
[25] | Map Enhancement | Accelerometer, Magnetometer and Gyroscope |
[24] | Pedestrian tracking | Wi-Fi and Open data |
[23] | Driving tracking | Accelerometer |
[2] | Driving tracking | Accelerometer, Magnetometer and Gyroscope |
[30] | Driving tracking | Accelerometer, Magnetometer and Gyroscope |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedogni, L.; Cabri, G. Identification of Social Aspects by Means of Inertial Sensor Data. Information 2020, 11, 534. https://doi.org/10.3390/info11110534
Bedogni L, Cabri G. Identification of Social Aspects by Means of Inertial Sensor Data. Information. 2020; 11(11):534. https://doi.org/10.3390/info11110534
Chicago/Turabian StyleBedogni, Luca, and Giacomo Cabri. 2020. "Identification of Social Aspects by Means of Inertial Sensor Data" Information 11, no. 11: 534. https://doi.org/10.3390/info11110534
APA StyleBedogni, L., & Cabri, G. (2020). Identification of Social Aspects by Means of Inertial Sensor Data. Information, 11(11), 534. https://doi.org/10.3390/info11110534