A Framework for Detecting Intentions of Criminal Acts in Social Media: A Case Study on Twitter †
<p>Illocution classification framework (adapted from Liu [<a href="#B22-information-11-00154" class="html-bibr">22</a>]).</p> "> Figure 2
<p>Overview of the OFCIC.</p> "> Figure 3
<p>Machine learning training model in the the OFCIC.</p> "> Figure 4
<p>Key steps in the phrase selection and classification.</p> "> Figure 5
<p>Overview of the main OntoCexp classes (adapted from [<a href="#B21-information-11-00154" class="html-bibr">21</a>]).</p> "> Figure 6
<p>Partial representation of the Tweet (example) instantiated in the OntoCexp.</p> "> Figure 7
<p>Search interface of the SocCrime Prototype.</p> "> Figure 8
<p>Search result report interface of the SocCrime Prototype.</p> ">
Abstract
:1. Introduction
2. Theoretical and Methodological Background
2.1. Social Networks and Crimes
2.2. Semantic Web and Ontologies
2.3. Semiotics, Speech Act Theory, and Illocution Classification
2.4. Machine Learning Algorithms
3. Related Work
- I1—Research on analysis of intentions in natural language over social networks;
- I2—Research on analysis of encrypted language (e.g., slang);
- I3—Studies that use the Speech Act theory or Semiotics for analysis of encrypted languages;
- I4—Studies exploring ontologies to represent knowledge about criminal acts;
- E1—Articles written in languages other than English and Portuguese;
- E2—Articles that are not related to intention or emotion analysis in addition to at least one of the following themes: ciphered language analysis, speech acts theory, ontologies, and semiotics;
- E3—Articles that are not related to computing or multidisciplinary with computing;
- E4—Texts other than scientific publications;
- E5—Summary papers with less than four pages that do not have the depth or relevant results; and
- E6—Systematic Reviews and Books (Paper collection books had their articles evaluated individually).
3.1. Lexicon Dictionary and Ontology-Based Solutions
3.2. Machine Learning and Mixed Learning based Solutions
3.3. Discussion on Related Work
4. Ontology-Based Framework for Criminal Intention Classification (OFCIC)
4.1. Framework Description
4.1.1. OFCIC Training Component
4.1.2. OFCIC Intention Classification Component
4.2. OntoCexp—Ontology of Criminal Expressions
4.2.1. Ontology Engineering Process
- Scope and reuse. We defined the crime domain as the scope of the ontology, and performed the correlation between expressions and terms used by people in criminal activities. For reuse purposes, we evaluated the top-level ontologies SUMO, UFO-B, and DOLCE, as proposed in the studies [81,82,83]. However, we chose not to use them due to the particularities of the crime domain. The ontology requirements were defined by the researchers and are focused on the objective of representing CSE and associating them to standard language to translate encrypted messages. The ontology provides alternatives for representing weights and rules that determine the degree of suspicion. The solution uses it as an application ontology for selecting suspicious messages. Therefore, it is out of the scope of this ontology to represent the entire crime domain.
- Ontology elements specification. At this stage, we enumerate terms, define classes, properties, and constraints. Our proposal of conceptualization was inspired in a crime vocabulary [12], which is a result of eight years of gathering and translating criminal’s terms (words or statements) in the Rio de Janeiro state, Brazil. It contains around 1000 Criminal Slang Expressions (CSE). Despite the relevance of the vocabulary for police forces, a formal model computationally interpretable such as an ontology is needed. We performed the definition of classes by using a top-down strategy. The terms and expressions were analyzed by three researchers (co-authors in this article), who made the design decisions. Various expressions (e.g., “X9” or “Xisnovear”) are very different from their meanings (semantics) in the Portuguese language. For instance, the criminal slang expression “Vomitar/vomit” (Portuguese/English) means betraying someone by unveiling critical information. For the elucidation of the ontology elements, we analyzed a dataset (from Twitter®) related to criminal areas to understand how criminals use such slang expressions. We filtered the tweets by using terms from [12] and collected almost 5.9 million tweets by using our list of 1009 CSE. For each invocation in the Twitter API, we retrieved at most 100 tweets posted in the last seven days (first week of October 2018) of the day the search was occurring. The tweets should contain at least one CSE, due to a restriction of the Twitter API (standard). For each CSE, we collected all tweets we could get until reaching the 7-day limit. Our search was restricted to the Portuguese language to get more trustful data. Our procedure also filtered out retweets to avoid repetitions. The developed source-code used in this task is available in [79].
- Generation of instances and validation. From the statements extracted from the tweets dataset, a set of instances was generated to validate the proposal. These statements refer to terms and relationships of our ontology (OntoCexp). The collected tweets were ranked according to the number of CSE expressions, and 274 posts were used to specify representative cases (presented in the next subsection). In the validation procedure, we considered: (i) Positive when criminal communications used the modeled terms; (ii) False Positive when usual communications used the modeled terms; and (iii) False Negative when criminals communications did not use the modeled terms. The objective is to provide feedback for the modelers about how the terms are used in practice. We used the false negative assignments to review OntoCexp, i.e., we modeled new terms (or concepts if necessary) in this case. Various iterations were performed by the researchers until obtaining the generation of the current stable version of OntoCexp (V3). It must be continually refined, as the criminal language is very dynamic and regional. OntoCexp is publicly available in GitHub and WebProtégé [84,85]. Section 4.2.3 presents details of the results in the evaluation of our ontology. In addition, in the second iteration, the case study (Section 5) provided feedback on the suitability of the ontology to the requirements defined in the first step.
4.2.2. The Core Model of the OntoCexp
4.2.3. Scenarios and Rule Specification
Rule 1 - Gang(?g01), Act(?ac01), action(?g01, ?ac01), ’Police Helicopter’(?h01), requestExplode(?ac01, ?h01) -> Explode(?ac01), hasLabel(?ac01, “blowUpHelicopter”), hasWeight(?ac01, “8” sd:int) |
Rule 2 - Gang(?g01), Act(?ac01), action(?g01, ?ac01), ’Police Car’(?c01), requestExplode(?ac01, ?c01) -> Explode(?ac01), hasLabel(?ac01, “blowUpPoliceCar"), hasWeight(?ac01, “6” sd:int) |
Rule 3 - Person(?p01), Act(?ac01), action(?p01, ?ac01), Cocaine(?coc01), ’Drug use’(?du01), actUseDrug(?ac01, ?du01), consume(?ac01, ?coc01) -> ’Drug Abuse’(?ac01), hasLabel(?ac01, “cocaineConsumption”), hasWeight(?ac01, “4” sd:int) |
5. A Case Study on Twitter®
5.1. OFCIC for the Detection of Criminal Expression and Intentions
5.1.1. Procedures and Dataset
- ANN:—We use the MLPClassifier (http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html—Accessed in January 2020) class as our solution for Artificial Neural Networks (ANN). This class implements an ANN of Multilayer Perceptron (MLP) type and allows training the neural network with Backpropagation algorithm. An ANN is characterized as MLP when it satisfies two criteria: the structure of the neural network presents at least one intermediate layer, also known as hidden layer, and uses a nonlinear activation function for the neurons. The Backpropagation algorithm performs a comparison between the achieved results and the expected results in the neural network output layer. From this last layer, the algorithm adjusts the synaptic weights of the network. Conceptual details about MLP and the backpropagation algorithm can be consulted in [49].The main parameters of the class are: alpha, hidden_layer_sizes and the activation function. The alpha parameter is a scalar value. The hidden_layer_sizes parameter indicates the number of neurons in the intermediate layers, and it is necessary to specify the total number of neurons for each intermediate layer. The activation function selected was the hyperbolic tangent (Equation (1)):We set and trained the ANN for one and three intermediate layers. The following ANN configuration was used for the one intermediate layer case:
- –
- Input Layer: Total neurons equals to feature vector dimension;
- –
- Intermediate layer: composed of L neurons;
- –
- Output layer: 8 neurons (one for each illocution class).
In the case of three intermediate layers, two intermediate layers were added to the above-mentioned structure: the second intermediate layer, composed of neurons and the third one, also composed of neurons. The hidden_layer_sizes parameter was set to the respective value of each mentioned hidden layer. We trained and evaluated the following values for L: , for every L multiple by 20. - SVM: We used the (https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html—Accessed in January 2020) class as our solution for SVM. This class implements the training and classification of separable nonlinear data by combining a function and a linear SVM. In particular, the and methods of the class are responsible for training and classification, respectively. Thus, from the received parameters, the class maps the dataset to an abstract space using a function and then linearly separates the data looking for the maximum margin hyperplane. We use the multi-class version one-versus-one. Linear and nonlinear SVM theory, as well as kernel functions, which can be consulted in detail in [49].The key parameters of the class were: the kernel function and C (error penalty parameter). We chose the kernel function Radial Basis Function (RBF), defined in Equation (2). It was also necessary to determine a value for the parameter of the kernel function:We evaluated during training the following parameter settings: , for every C multiple by 10. For each value of C, , for every multiple by 10.
- Random Forest—We used the RandomForestClassifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html—Accessed in January 2020) class as our solution for Random Forest. The main parameter is the (the number of trees in the forest). We adopted for all tests performed, after a preliminary analysis of values between 20 and 160, for every multiple of 10.
5.1.2. Results of Intention Detection Using ML Algorithms
- ANN: number of intermediate layers (1 or 3)/value of L;
- SVM: g/c;
- Random Forest: .
5.2. The OFCIC Framework in Use
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Networks |
CNN | Convolutional Neural Networks |
CSE | Criminal Slang Expression |
DTDNN | Distributed Time Delay Neural Network |
GRN | Gated Recurrent Networks |
ML | Machine Learning |
MLP | Multilayer Perceptron |
NLP | Natural Language Processing |
OFCIC | Ontology-Based Framework for Criminal Intention Classification |
OntoCexp | Ontology of Criminal Expressions |
OWL | Ontology Web Language |
TF-IDF | Term Frequency-Inverse Document Frequency |
LSTM | Long Short-Term Memory |
RBF | Radial Basis Function |
RDF | Resource Description Framework |
RNN | Recurrent Neural Network |
SAT | Speech Act Theory |
SMOTE | Synthetic Minority Over-sampling Technique |
SRL | Semantic Role Labeling |
SVM | Support Vector Machine |
References
- Gill, P.; Corner, E.; Conway, M.; Thornton, A.; Bloom, M.; Horgan, J. Terrorist Use of the Internet by the Numbers: Quantifying Behaviors, Patterns, and Processes. Criminol. Public Policy 2017, 16, 99–117. [Google Scholar] [CrossRef]
- Cerqueira, D.; de Lima, R.S.; Bueno, S.; Neme, C.; Ferreira, H.; Coelho, D.; Alves, P.P.; Pinheiro, M.; Astolfi, R.; Marques, D.; et al. Atlas da Violência. 2018. Available online: http://www.ipea.gov.br/atlasviolencia/download/9/atlas-2018 (accessed on 18 January 2020).
- Júnior, A.P.; Veiga, E.F.; Barbosa, J.L.F.; Calixto, W.P.; Silva, L.F.A.; Campos, P.H.M.; Gomes, V.M.; Castro, L.L.P. Ontology applied in the judicial sentences. In Proceedings of the 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2017, Pucon, Chile, 18–20 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Andrews, S.; Brewster, B.; Day, T. Organised crime and social media: A system for detecting, corroborating and visualising weak signals of organised crime online. Secur. Inform. 2018, 7, 3. [Google Scholar] [CrossRef]
- Chen, S.H.; Santoso, A.; Lee, Y.S.; Wang, J.C. Latent dirichlet allocation based blog analysis for criminal intention detection system. In Proceedings of the International Carnahan Conference on Security Technology (ICCST), Taipei, Taiwan, 21–24 September 2015; Volume 2015, pp. 73–76. [Google Scholar] [CrossRef]
- Wu, L.; Morstatter, F.; Liu, H. SlangSD: Building, expanding and using a sentiment dictionary of slang words for short-text sentiment classification. Lang. Resour. Eval. 2018, 52, 839–852. [Google Scholar] [CrossRef]
- Idrees, S.M.; Alam, M.A.; Agarwal, P. A study of big data and its challenges. Int. J. Inf. Technol. 2018. [Google Scholar] [CrossRef]
- Matos, S.C.D. A Lingua dos “Filhos Errantes da Sociedade”: Discurso, Poder e Discriminação nas Gírias do Sistema Penitenciário do Interior do Tocantins. Master’s Thesis, University of Brasilia, Brasília, Brazil, 2013. [Google Scholar]
- Rupa, C.; Avadhani, P.S. Message encryption scheme using cheating text. In Proceedings of the 2009 Sixth International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 27–29 April 2009; pp. 470–474. [Google Scholar] [CrossRef]
- Fatemi Moghaddam, F.; Karimi, O.; Alrashdan, M.T. A comparative study of applying real-time encryption in cloud computing environments. In Proceedings of the 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet), San Francisco, CA, USA, 11–13 November 2013; pp. 185–189. [Google Scholar] [CrossRef]
- Michel, M.C.; Carvalho, M.; Crawford, H.; Esterline, A.C. Cyber Identity: Salient Trait Ontology and Computational Framework to Aid in Solving Cybercrime. In Proceedings of the 2018 17th IEEE International Conference on Trust, Security And Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science And Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp. 1242–1249. [Google Scholar] [CrossRef]
- Mota, A. Glossário de Palavras e Expressões Utilizadas por Facções Criminosas e Presos. 2016. Available online: https://docplayer.com.br/72549176-Glossario-de-palavras-e-expressoes-utilizada-por-faccoes-criminosas-e-presos.html (accessed on 18 January 2020).
- Agarwal, S.; Sureka, A. However, I did not Mean It!—Intent Classification of Racist Posts on Tumblr. In Proceedings of the 2016 European Intelligence and Security Informatics Conference (EISIC), Uppsala, Sweden, 17–19 August 2016; pp. 124–127. [Google Scholar] [CrossRef]
- Teh, P.L.; Cheng, C.B.; Chee, W.M. Identifying and Categorising Profane Words in Hate Speech. In Proceedings of the 2nd International Conference on Compute and Data Analysis-ICCDA, DeKalb, IL, USA, 23–25 March 2018; ACM Press: New York, NY, USA, 2018; pp. 65–69. [Google Scholar] [CrossRef]
- Pierce, C.S. The Collected Papers of Charles Sanders Peirce; Hartshorne, C., WeissHarvard, P., Eds.; University Press: Cambridge, MA, USA, 1935. [Google Scholar]
- Searle, J.R. Speech Acts: An Essay in the Philosophy of Language; Cambridge University Press: Cambridge, MA, USA, 1969; p. 212. [Google Scholar]
- Austin, J. How to Do Things with Words; Oxford University Press: Oxford, UK, 1975; p. 167. [Google Scholar] [CrossRef]
- Jo, D.W.; Kim, M.H. Web-based semantic web retrieval service for law ontology. In Proceedings of the 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing, Zhangjiajie, China, 13–15 November 2013; pp. 666–673. [Google Scholar] [CrossRef]
- Osathitporn, P.; Soonthornphisaj, N.; Vatanawood, W. A scheme of criminal law knowledge acquisition using ontology. In Proceedings of the 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2017, Kanazawa, Japan, 26–28 June 2017; pp. 29–34. [Google Scholar] [CrossRef]
- Gang, L.; Yingge, M.; Kejun, W.; Shaobin, H. A domain security ontology network constructing and hardening technology. In Proceedings of the 2014 4th International Conference on Instrumentation and Measurement, Computer, Communication and Control, IMCCC 2014, Harbin, China, 18–20 September 2014; pp. 788–793. [Google Scholar] [CrossRef]
- Mendonça, R.R.; de Franco Rosa, F.; Theophilo Costa, A.C.; Bonacin, R.; Jino, M. OntoCexp: A Proposal for Conceptual Formalization of Criminal Expressions. In Proceedings of the 16th International Conference on Information Technology-New Generations (ITNG 2019), Las Vegas, NV, USA, 1–3 April 2019; Latifi, S., Ed.; Springer: Cham, Switzerland, 2019; pp. 43–48. [Google Scholar]
- Liu, K. Semiotics in Information Systems Engineering; Cambridge University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Liu, K.; Li, W. Organisational Semiotics for Business Informatics; Routledge: Abingdon, UK, 2014; p. 288. [Google Scholar]
- Musiał, K.; Kazienko, P. Social networks on the Internet. World Wide Web 2013, 16, 31–72. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, Y.K.; Kelly, G.; Janssen, M.; Rana, N.P.; Slade, E.L.; Clement, M. Social Media: The Good, the Bad, and the Ugly. Inf. Syst. Front. 2018, 20, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Weimann, G. The Psychology of Mass-Mediated Terrorism. Am. Behav. Sci. 2008, 52, 69–86. [Google Scholar] [CrossRef]
- Wijeratne, S.; Doran, D.; Sheth, A.; Dustin, J.L. Analyzing the social media footprint of street gangs. In Proceedings of the 2015 IEEE International Conference on Intelligence and Security Informatics (ISI), Baltimore, MD, USA, 27–29 May 2015; pp. 91–96. [Google Scholar] [CrossRef] [Green Version]
- Choo, K.K.R. Organised crime groups in cyberspace: A typology. Trends Organ. Crime 2008, 11, 270–295. [Google Scholar] [CrossRef]
- Dhouioui, Z.; Akaichi, J. Privacy Protection Protocol in Social Networks Based on Sexual Predators Detection. In Proceedings of the International Conference on Internet of Things and Cloud Computing, ICC ’16, Cambridge, UK, 22–23 March 2016; ACM: New York, NY, USA, 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic Web. Sci. Am. 2001, 284, 34–43. [Google Scholar] [CrossRef]
- Gruber, T.R. A translation approach to portable ontology specifications. Knowl. Acquis. 1993, 5, 199–220. [Google Scholar] [CrossRef]
- Isotani, S.; Bittencourt, I.I. Dados Abertos Conectados; NOVATEC: São Paulo, Brazil, 2015; p. 176. [Google Scholar]
- W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview. 2012. Available online: https://www.w3.org/TR/owl2-overview/ (accessed on 18 January 2020).
- Guarino, N. Understanding, building and using ontologies. Int. J. Hum.-Comput. Stud. 1997, 46, 293–310. [Google Scholar] [CrossRef]
- Breitman, K.K. Web Semântica—A Internet do Futuro; LTC: Rio de Janeiro, Brazil, 2005. [Google Scholar]
- Ali, F.; Kim, E.K.; Kim, Y.G. Type-2 fuzzy ontology-based opinion mining and information extraction: A proposal to automate the hotel reservation system. Appl. Intell. 2015, 42, 481–500. [Google Scholar] [CrossRef]
- Ali, F.; Kwak, K.S.; Kim, Y.G. Opinion mining based on fuzzy domain ontology and Support Vector Machine: A proposal to automate online review classification. Appl. Soft Comput. 2016, 47, 235–250. [Google Scholar] [CrossRef]
- Ali, F.; Khan, P.; Riaz, K.; Kwak, D.; Abuhmed, T.; Park, D.; Kwak, K.S. A fuzzy ontology and SVM–based Web content classification system. IEEE Access 2017, 5, 25781–25797. [Google Scholar] [CrossRef]
- Ali, F.; Kwak, D.; Khan, P.; Islam, S.R.; Kim, K.H.; Kwak, K.S. Fuzzy ontology-based sentiment analysis of transportation and city feature reviews for safe traveling. Transp. Res. Part C Emerg. Technol. 2017, 77, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Ali, F.; Kwak, D.; Khan, P.; Ei-Sappagh, S.H.A.; Islam, S.R.; Park, D.; Kwak, K.S. Merged ontology and SVM-based information extraction and recommendation system for social robots. IEEE Access 2017, 5, 12364–12379. [Google Scholar] [CrossRef]
- Ali, F.; Kwak, D.; Khan, P.; El-Sappagh, S.; Ali, A.; Ullah, S.; Kim, K.H.; Kwak, K.S. Transportation sentiment analysis using word embedding and ontology-based topic modeling. Knowl.-Based Syst. 2019, 174, 27–42. [Google Scholar] [CrossRef]
- Bonacin, R. Um Modelo de Desenvolvimento de Sistemas Para Suporte a Cooperação Fundamentado em Design Participativo e Semiótica Organizacional. Ph.D. Thesis, University of Campinas, Campinas, Brazil, 2004. [Google Scholar]
- Costa, I.B. Linguística III, 2nd ed.; IESDE Brasil: Curitiba, Brazil, 2012; p. 252. [Google Scholar]
- Marcondes, D. A Pragmática na Filosofia Contemporânea; Jorge Zahar: Rio de Janeiro, Brazil, 2005. [Google Scholar]
- Searle, J.R.; Vanderveken, D. Foundations of Illocutionary Logic; Cambridge University Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Bonacin, R.; Dos Reis, J.C.; Hornung, H.; Baranauskas, M.C.C. An Ontological Model for Representing Pragmatic Aspects of Collaborative Problem Solving. In Proceedings of the 2012 IEEE 21st International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, Hammamet, Tunisia, 25–27 June 2012; pp. 444–449. [Google Scholar] [CrossRef]
- Bonacin, R.; Dos Reis, J.C.; Hornung, H.; Baranauskas, M.C.C. An ontological model for supporting intention-based information sharing on collaborative problem solving. Int. J. Collab. Enterp. 2013, 3, 130–150. [Google Scholar] [CrossRef] [Green Version]
- Bonacin, R.; dos Reis, J.C.; Perciani, E.M.; Nabuco, O. Exploring intentions on electronic health records retrieval. Studies with collaborative scenarios. Ingénierie Des Systèmes D’Information 2018, 23, 111–135. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Cham, Switzerland, 2006. [Google Scholar]
- Zhang, Z.; Robinson, D.; Tepper, J. Detecting Hate Speech on Twitter Using a Convolution-GRU Based Deep Neural Network. In Advances in Information Technologies for Electromagnetics; Springer: Cham, Switzerland, 2018; Volume 1, pp. 745–760. [Google Scholar] [CrossRef] [Green Version]
- García-Díaz, V.; Espada, J.P.; Crespo, R.G.; Pelayo G-Bustelo, B.C.; Cueva Lovelle, J.M. An approach to improve the accuracy of probabilistic classifiers for decision support systems in sentiment analysis. Appl. Soft Comput. J. 2018, 67, 822–833. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, S. Research on Crime Degree of Internet Speech Based on Machine Learning and Dictionary. In Proceedings of the 2016 3rd International Conference on Information Science and Control Engineering, ICISCE 2016, Beijing, China, 8–10 July 2016; pp. 532–537. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kitchenham, B. Procedures for Performing Systematic Reviews; Technical Report; Keele University: Keele, UK, 2004. [Google Scholar]
- Teodorescu, H.N.; Saharia, N. An internet slang annotated dictionary and its use in assessing message attitude and sentiments. In Proceedings of the 2015 International Conference on Speech Technology and Human-Computer Dialogue, SpeD, Bucharest, Romania, 14–17 October 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Xiaomei, Z.; Jing, Y.; Jianpei, Z. Sentiment-based and hashtag-based Chinese online bursty event detection. Multimed. Tools Appl. 2018, 77, 21725–21750. [Google Scholar] [CrossRef]
- Waseem, Z.; Thorne, J.; Bingel, J. Bridging the Gaps: Multi Task Learning for Domain Transfer of Hate Speech Detection. In Online {Harassment}; Golbeck, J., Ed.; Springer: Cham, Switzerland, 2018; pp. 29–55. [Google Scholar] [CrossRef]
- Hagen, L.; Harrison, T.M.; Uzuner, Ö.; Fake, T.; Lamanna, D.; Kotfila, C. Introducing textual analysis tools for policy informatics. In Proceedings of the 16th Annual International Conference on Digital Government Research-dg.o ’15, Phoenix, AR, USA, 27–30 May 2015; ACM Press: New York, NY, USA, 2015; pp. 10–19. [Google Scholar] [CrossRef]
- Losada, D.E.; Crestani, F. A Test Collection for Research on Depression and Language Use. In Experimental IR Meets Multilinguality, Multimodality, and Interaction; Fuhr, N., Quaresma, P., Gonçalves, T., Larsen, B., Balog, K., Macdonald, C., Cappellato, L., Ferro, N., Eds.; Springer: Cham, Switzerland, 2016; pp. 28–39. [Google Scholar]
- Anzovino, M.; Fersini, E.; Rosso, P. Automatic Identification and Classification of Misogynistic Language on Twitter. In Natural Language Processing and Information Systems; Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F., Eds.; Springer: Cham, Switzerland, 2018; pp. 57–64. [Google Scholar]
- Ghosh, D.; Fabbri, A.R.; Muresan, S. Sarcasm Analysis Using Conversation Context. Comput. Linguist. 2018, 44, 755–792. [Google Scholar] [CrossRef]
- Justo, R.; Corcoran, T.; Lukin, S.M.; Walker, M.; Torres, M.I. Extracting relevant knowledge for the detection of sarcasm and nastiness in the social web. Knowl.-Based Syst. 2014, 69, 124–133. [Google Scholar] [CrossRef]
- Appling, D.S.; Briscoe, E.J.; Hutto, C.J. Discriminative Models for Predicting Deception Strategies. In Proceedings of the 24th International Conference on World Wide Web—WWW ’15 Companion, Florence, Italy, 18–22 May 2015; ACM Press: New York, NY, USA, 2015; pp. 947–952. [Google Scholar] [CrossRef]
- Barreira, R.; Pinheiro, V.; Furtado, V. A framework for digital forensics analysis based on semantic role labeling. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics: Security and Big Data, ISI 2017, Beijing, China, 22–24 July 2017; pp. 66–71. [Google Scholar] [CrossRef]
- Levitan, S.I.; An, G.; Wang, M.; Mendels, G.; Hirschberg, J.; Levine, M.; Rosenberg, A. Cross-Cultural Production and Detection of Deception from Speech. In Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, WMDD ’15, Seattle, WA, USA, 9–13 November 2015; ACM: New York, NY, USA, 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Raisi, E.; Huang, B. Cyberbullying Detection with Weakly Supervised Machine Learning. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017—ASONAM ’17, Sydney, Australia, July 2017; ACM Press: New York, NY, USA, 2017; pp. 409–416. [Google Scholar] [CrossRef]
- Pandey, R.; Purohit, H.; Stabile, B.; Grant, A. Distributional Semantics Approach to Detect Intent in Twitter Conversations on Sexual Assaults. In Proceedings of the 2018 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2018, Santiago, Chile, 3–6 December 2018; pp. 270–277. [Google Scholar] [CrossRef]
- Escalante, H.J.; Villatoro-Tello, E.; Garza, S.E.; López-Monroy, A.P.; Montes-y Gómez, M.; Villaseñor-Pineda, L. Early detection of deception and aggressiveness using profile-based representations. Expert Syst. Appl. 2017, 89, 99–111. [Google Scholar] [CrossRef]
- Mundra, S.; Mannarswamy, S.; Sinha, M.; Sen, A. Embedding Learning of Figurative Phrases for Emotion Classification in Micro-Blog Texts. In Proceedings of the Fourth ACM IKDD Conferences on Data Sciences, CODS ’17, Chennai, India, 9–11 March 2017; ACM: New York, NY, USA, 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Sharma, M.; Sarma, K.K. Learning aided mood and dialect recognition using telephonic speech. In Proceedings of the 2016 International Conference on Accessibility to Digital World, ICADW 2016, Guwahati, India, 16–18 December 2016; pp. 163–167. [Google Scholar] [CrossRef]
- Aghababaei, S.; Makrehchi, M. Mining Social Media Content for Crime Prediction. In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2016, Omaha, NE, USA, 13–16 October 2016; pp. 526–531. [Google Scholar] [CrossRef]
- Park, G.; Rayz, J. Ontological Detection of Phishing Emails. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 2858–2863. [Google Scholar] [CrossRef]
- Suárez-Serrato, P.; Velázquez Richards, E.I.; Yazdani, M. Socialbots Supporting Human Rights. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society—AIES ’18, Orleans, LA, USA, 2–3 February 2018; ACM Press: New York, NY, USA, 2018; pp. 290–296. [Google Scholar] [CrossRef] [Green Version]
- Lundquist, D.; Zhang, K.; Ouksel, A. Ontology-driven cyber-security threat assessment based on sentiment analysis of network activity data. In Proceedings of the 2014 International Conference on Cloud and Autonomic Computing, ICCAC 2014, London, UK, 8–12 September 2014; pp. 5–14. [Google Scholar] [CrossRef]
- Maynard, D.; Bontcheva, K.; Augenstein, I. Natural Language Processing for the Semantic Web; Morgan & Claypool, 2016; Volume 6, pp. 1–194. Available online: https://tianjun.me/static/essay_resources/RelationExtraction/Paper/NaturalLanguageProcessingfortheSemanticWeb.pdf (accessed on 10 March 2020). [CrossRef] [Green Version]
- Andersen, P.B. What Semiotics can and cannot do for HCI. Knowl.-Based Syst. 2001, 14, 419–424. [Google Scholar] [CrossRef]
- Langford, C.H.; Morris Charles, W. Foundations of the theory of signs. International encyclopedia of unified science, vol. 1, no. 2. The University of Chicago Press, Chicago 1938, vii + 59 pp. J. Symb. Log. 1938, 3, 158. [Google Scholar] [CrossRef]
- Horrocks, I.; Patel-Schneider, P.F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. 2004. Available online: https://www.w3.org/Submission/SWRL/ (accessed on 18 January 2020).
- Theophilo, A. Twitter Reader—Python Code. 2018. Available online: https://github.com/theocjr/twitter-reader (accessed on 18 January 2020).
- Noy, N.F.; Mcguinness, D. Ontology Development 101: A Guide to Creating Your First, Ontology. Knowl. Syst. Lab. 2001, 32. Available online: http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html (accessed on 10 March 2020).
- De Oliveira Rodrigues, C.M.; De Freitas, F.L.G.; Da Silva Oliveira, I.J. An ontological approach to the three-phase method of imposing penalties in the Brazilian criminal code. In Proceedings of the 2017 Brazilian Conference on Intelligent Systems, BRACIS 2017, Uberlandia, Brazil, 2–5 October 2017; pp. 414–419. [Google Scholar] [CrossRef]
- El Ghosh, M.; Naja, H.; Abdulrab, H.; Khalil, M. Towards a Legal Rule-Based System Grounded on the Integration of Criminal Domain Ontology and Rules. Procedia Comput. Sci. 2017, 112, 632–642. [Google Scholar] [CrossRef]
- Dhouib, K.; Gargouri, F. Legal application ontology in Arabic. In Proceedings of the 2013 4th International Conference on Information and Communication Technology and Accessibility, ICTA 2013, Hammamet, Tunisia, 24–26 October 2013. [Google Scholar] [CrossRef]
- Mendonça, R.R.; Rosa, F.d.F.; Bonacin, R. OntoCexp—Ontology of Criminal Expressions. 2018. Available online: https://github.com/ricardoresende/OntoCexp (accessed on 18 January 2020).
- Mendonça, R.R.; Rosa, F.d.F.; Bonacin, R. OntoCexp—Ontology of Criminal Expressions. 2018. Available online: https://webprotege.stanford.edu/#projects/37030aff-54c4-491b-b3df-063d0f434bbf/edit/Classes (accessed on 18 January 2020).
- Hartmann, N.; Fonseca, E.; Shulby, C.; Treviso, M.; Rodrigues, J.; Aluisio, S. Portuguese word embeddings: Evaluating on word analogies and natural language tasks. arXiv 2017, arXiv:1708.06025. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C. Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Doha, Qatar, 2014; pp. 1532–1543. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.S.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Ling, W.; Dyer, C.; Black, A.W.; Trancoso, I. Two/Too Simple Adaptations of Word2Vec for Syntax Problems. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, CO, USA, 31 May–5 June 2015; Association for Computational Linguistics: Denver, CO, USA, 2015; pp. 1299–1304. [Google Scholar] [CrossRef] [Green Version]
- Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching Word Vectors with Subword Information. arXiv 2016, arXiv:1607.04606. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 2017, 18, 1–5. [Google Scholar]
- Searle, J.R. Indirect speech acts. In Speech Acts; Brill: Leiden, The Netherlands, 1975; pp. 59–82. [Google Scholar]
- Horridge, M.; Aranguren, M.E.; Mortensen, J.; Musen, M.; Noy, N.F. Ontology Design Pattern Language Expressivity Requirements. In Proceedings of the 3rd Workshop on Ontology Patterns, WOP’12, Boston, MA, USA, 11–15 November 2012; CEUR-WS.org: Aachen, Germany, 2012; pp. 25–36. [Google Scholar]
- Dos Reis, J.C.; Bonacin, R.; Baranauskas, M.C.C. Recognizing Intentions in Free Text Messages: Studies with Portuguese Language. In Proceedings of the 2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Poznan, Poland, 21–23 June 2017; pp. 302–307. [Google Scholar] [CrossRef]
Class | # |
---|---|
Inducements | 267 |
Assertions | 150 |
Proposals | 116 |
Valuations | 78 |
Wish | 54 |
Forecasts | 21 |
Contrition | 16 |
Palinode | 0 |
Total | 704 |
ML Technique | Word Embedding Technique | Best Configuration | Overall Average F1-Score Original Phases | Overall Average F1-Score Deciphered Phase |
---|---|---|---|---|
ANN | fastText | 1/240 | 0.39 | 0.44 |
fastText_skip | 1/160 | 0.38 | 0.45 | |
Word2Vec | 1/220 | 0.39 | 0.44 | |
Word2Vec_skip | 1/280 | 0.39 | 0.45 | |
Wang2Vec | 1/200 | 0.38 | 0.44 | |
Wang2Vec_skip | 1/140 | 0.38 | 0.45 | |
GloVe | 1/120 | 0.40 | 0.44 | |
SVM | fastText | 0.01/1 | 0.27 | 0.30 |
fastText_skip | 0.01/1 | 0.37 | 0.44 | |
Word2Vec | 0.01/1 | 0.37 | 0.45 | |
Word2Vec_skip | 0.01/1 | 0.38 | 0.47 | |
Wang2Vec | 0.01/1 | 0.27 | 0.31 | |
Wang2Vec_skip | 0.01/1 | 0.37 | 0.43 | |
GloVe | 0.01/1 | 0.35 | 0.39 | |
Random Forest | fastText | 100 | 0.43 | 0.45 |
fastText_skip | 100 | 0.43 | 0.44 | |
Word2Vec | 100 | 0.41 | 0.44 | |
Word2Vec_skip | 100 | 0.41 | 0.44 | |
Wang2Vec | 100 | 0.41 | 0.45 | |
Wang2Vec_skip | 100 | 0.41 | 0.45 | |
GloVe | 100 | 0.41 | 0.44 |
ML Technique | Word Embedding | Best Configuration | Overall Average F1-Score by Illocution Class (Deciphered Phases) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Proposal | Inducement | Forecast | Wish | Assertion | Valuation | Palinode | Contrition | |||
ANN | fastText | 1/240 | 0.36 | 0.60 | 0.08 | 0.40 | 0.44 | 0.22 | - | 0.04 |
fastText_skip | 1/160 | 0.38 | 0.58 | 0.08 | 0.43 | 0.40 | 0.35 | - | 0.15 | |
Word2Vec | 1/220 | 0.36 | 0.60 | 0.16 | 0.36 | 0.40 | 0.27 | - | 0.07 | |
Word2Vec_skip | 1/280 | 0.38 | 0.59 | 0.25 | 0.47 | 0.4 | 0.29 | - | 0.07 | |
Wang2Vec | 1/200 | 0.33 | 0.58 | 0.23 | 0.43 | 0.41 | 0.30 | - | 0.07 | |
Wang2Vec_skip | 1/140 | 0.37 | 0.59 | 0.11 | 0.44 | 0.45 | 0.24 | - | 0.10 | |
GloVe | 1/120 | 0.37 | 0.57 | 0.06 | 0.48 | 0.41 | 0.34 | - | 0.08 | |
SVM | fastText | 0.01/1 | 0.19 | 0.56 | 0 | 0.12 | 0.19 | 0.05 | - | 0 |
fastText_skip | 0.01/1 | 0.39 | 0.60 | 0.07 | 0.38 | 0.39 | 0.24 | - | 0 | |
Word2Vec | 0.01/1 | 0.38 | 0.61 | 0.17 | 0.31 | 0.42 | 0.29 | - | 0 | |
Word2Vec_skip | 0.01/1 | 0.39 | 0.63 | 0.26 | 0.34 | 0.45 | 0.28 | - | 0 | |
Wang2Vec | 0.01/1 | 0.19 | 0.56 | 0 | 0.16 | 0.18 | 0.08 | - | 0 | |
Wang2Vec_skip | 0.01/1 | 0.37 | 0.61 | 0.07 | 0.37 | 0.39 | 0.24 | - | 0 | |
GloVe | 0.01/1 | 0.30 | 0.58 | 0 | 0.31 | 0.31 | 0.23 | - | 0 | |
Random Forest | fastText | 100 | 0.36 | 0.61 | 0.21 | 0.41 | 0.41 | 0.30 | - | 0 |
fastText_skip | 100 | 0.33 | 0.59 | 0.15 | 0.44 | 0.43 | 0.25 | - | 0.06 | |
Word2Vec | 100 | 0.33 | 0.59 | 0.30 | 0.51 | 0.39 | 0.22 | - | 0 | |
Word2Vec_skip | 100 | 0.37 | 0.59 | 0.28 | 0.40 | 0.38 | 0.25 | - | 0.08 | |
Wang2Vec | 100 | 0.34 | 0.62 | 0.21 | 0.39 | 0.39 | 0.29 | - | 0 | |
Wang2Vec_skip | 100 | 0.29 | 0.61 | 0.36 | 0.38 | 0.42 | 0.31 | - | 0.05 | |
GloVe | 100 | 0.37 | 0.59 | 0.31 | 0.42 | 0.42 | 0.21 | - | 0.05 |
ML Technique | Word Embedding | Best Configuration | Average F1-Score by Illocution Class (Original Phases) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Proposal | Inducement | Forecast | Wish | Assertion | Valuation | Palinode | Contrition | |||
ANN | fastText | 1/240 | 0.29 | 0.52 | 0.03 | 0.30 | 0.41 | 0.23 | - | 0.06 |
fastText_skip | 1/160 | 0.27 | 0.51 | 0.14 | 0.36 | 0.40 | 0.23 | - | 0.15 | |
Word2Vec | 1/220 | 0.32 | 0.51 | 0.24 | 0.32 | 0.38 | 0.28 | - | 0 | |
Word2Vec_skip | 1/280 | 0.33 | 0.51 | 0.25 | 0.35 | 0.33 | 0.27 | - | 0.2 | |
Wang2Vec | 1/200 | 0.29 | 0.53 | 0.18 | 0.25 | 0.36 | 0.26 | - | 0 | |
Wang2Vec_skip | 1/140 | 0.30 | 0.52 | 0.03 | 0.32 | 0.39 | 0.21 | - | 0.09 | |
GloVe | 1/120 | 0.38 | 0.53 | 0.18 | 0.31 | 0.39 | 0.21 | - | 0.10 | |
SVM | fastText | 0.01/1 | 0.06 | 0.55 | 0 | 0.16 | 0.09 | 0.16 | - | 0 |
fastText_skip | 0.01/1 | 0.27 | 0.51 | 0.09 | 0.35 | 0.39 | 0.16 | - | 0 | |
Word2Vec | 0.01/1 | 0.28 | 0.47 | 0.27 | 0.32 | 0.39 | 0.28 | - | 0 | |
Word2Vec_skip | 0.01/1 | 0.29 | 0.50 | 0.18 | 0.37 | 0.40 | 0.22 | - | 0 | |
Wang2Vec | 0.01/1 | 0.03 | 0.54 | 0 | 0.14 | 0.15 | 0.17 | - | 0 | |
Wang2Vec_skip | 0.01/1 | 0.26 | 0.53 | 0.08 | 0.39 | 0.33 | 0.20 | - | 0 | |
Glove | 0.01/1 | 0.16 | 0.52 | 0.08 | 0.33 | 0.34 | 0.25 | - | 0 | |
Random Forest | fastText | 100 | 0.36 | 0.55 | 0.33 | 0.38 | 0.43 | 0.24 | - | 0.10 |
fastText_skip | 100 | 0.37 | 0.57 | 0.28 | 0.39 | 0.37 | 0.27 | - | 0.10 | |
Word2Vec | 100 | 0.25 | 0.56 | 0.32 | 0.46 | 0.40 | 0.24 | - | 0.10 | |
Word2Vec_skip | 100 | 0.26 | 0.57 | 0.35 | 0.33 | 0.42 | 0.16 | - | 0.10 | |
Wang2Vec | 100 | 0.30 | 0.54 | 0.31 | 0.44 | 0.38 | 0.19 | - | 0.08 | |
Wang2Vec_skip | 100 | 0.25 | 0.57 | 0.36 | 0.40 | 0.37 | 0.23 | - | 0.08 | |
GloVe | 100 | 0.30 | 0.56 | 0.29 | 0.43 | 0.39 | 0.23 | - | 0.10 |
ML Technique | Word Embedding | Best Configuration | F1-Score by Illocution Class (Deciphered Phases) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Proposal | Inducement | Forecast | Wish | Assertion | Valuation | Palinode | Contrition | F1-Score | Accuracy | |||
ANN | fastText | 1/200 | 0.50 | 0.56 | 0.36 | 0.36 | 0.48 | 0.42 | - | 0.40 | 049 | 0.49 |
fastText_skip | 1/160 | 0.39 | 0.59 | 0.33 | 0.55 | 0.54 | 0.41 | - | 0.29 | 0.51 | 0.51 | |
Word2Vec | 1/220 | 0.41 | 0.71 | 0.22 | 0.26 | 0.39 | 0.23 | - | 0.33 | 0.49 | 0.48 | |
Word2Vec_skip | 3/120 | 0.45 | 0.65 | 0.25 | 0.38 | 0.45 | 0.38 | - | 0.33 | 0.50 | 0.51 | |
Wang2Vec | 1/280 | 0.36 | 0.60 | 0.46 | 0.52 | 0.49 | 0.32 | - | 0.33 | 0.50 | 0.49 | |
Wang2Vec_skip | 1/140 | 0.47 | 0.61 | 0.20 | 0.70 | 0.45 | 0.15 | - | 0.50 | 0.49 | 0.50 | |
GloVe | 1/120 | 0.42 | 0.61 | 0.20 | 0.43 | 0.45 | 0.21 | - | 0.40 | 0.47 | 0.46 | |
ANN(w/o all classes) | Wang2Vec | 1/120 | 0.49 | 0.66 | 0.33 | 0.46 | 0.59 | 0.37 | - | 0 | 0.54 | 0.54 |
SVM | fastText | 0.01/1 | 0.30 | 0.57 | 0 | 0.43 | 0.18 | 0.12 | - | 0 | 0.35 | 0.45 |
fastText_skip | 0.01/1 | 0.48 | 0.69 | 0.25 | 0.58 | 0.37 | 0.36 | - | 0 | 0.51 | 0.54 | |
Word2Vec | 0.01/1 | 0.55 | 0.72 | 0.29 | 0.11 | 0.43 | 0.30 | - | 0 | 0.50 | 0.53 | |
Word2Vec_skip | 0.01/1 | 0.43 | 0.65 | 0.29 | 0.56 | 0.62 | 0.41 | - | 0 | 0.55 | 0.56 | |
Wang2Vec | 0.01/1 | 0.40 | 0.58 | 0 | 0.13 | 0.18 | 0.11 | - | 0 | 0.35 | 0.44 | |
Wang2Vec_skip | 0.01/1 | 0.41 | 0.56 | 0.25 | 0.47 | 0.52 | 0.18 | - | 0 | 0.46 | 0.47 | |
Glove | 0.01/1 | 0.43 | 0.62 | 0 | 0.42 | 0.46 | 0.32 | - | 0 | 0.47 | 0.51 | |
Random Forest | fastText | 100 | 0.48 | 0.67 | 0.14 | 0.32 | 0.56 | 0.29 | - | 0 | 0.52 | 0.51 |
fastText_skip | 100 | 0.38 | 0.64 | 0.29 | 0.42 | 0.49 | 0.24 | - | 0.29 | 0.49 | 0.50 | |
Word2Vec | 100 | 0.23 | 0.69 | 0.33 | 0.55 | 0.55 | 0.38 | - | 0 | 0.52 | 0.52 | |
Word2Vec_skip | 100 | 0.31 | 0.61 | 0.67 | 0.42 | 0.48 | 0.52 | - | 0 | 0.50 | 0.49 | |
Wang2Vec | 100 | 0.47 | 0.62 | 0.29 | 0.32 | 0.54 | 0.24 | - | 0 | 0.48 | 0.49 | |
Wang2Vec_skip | 100 | 0.56 | 0.65 | 0.25 | 0.42 | 0.44 | 0.21 | - | 0 | 0.49 | 0.50 | |
GloVe | 100 | 0.48 | 0.64 | 0.25 | 0.26 | 0.49 | 0.31 | - | 0 | 0.49 | 0.49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resende de Mendonça, R.; Felix de Brito, D.; de Franco Rosa, F.; dos Reis, J.C.; Bonacin, R. A Framework for Detecting Intentions of Criminal Acts in Social Media: A Case Study on Twitter. Information 2020, 11, 154. https://doi.org/10.3390/info11030154
Resende de Mendonça R, Felix de Brito D, de Franco Rosa F, dos Reis JC, Bonacin R. A Framework for Detecting Intentions of Criminal Acts in Social Media: A Case Study on Twitter. Information. 2020; 11(3):154. https://doi.org/10.3390/info11030154
Chicago/Turabian StyleResende de Mendonça, Ricardo, Daniel Felix de Brito, Ferrucio de Franco Rosa, Júlio Cesar dos Reis, and Rodrigo Bonacin. 2020. "A Framework for Detecting Intentions of Criminal Acts in Social Media: A Case Study on Twitter" Information 11, no. 3: 154. https://doi.org/10.3390/info11030154
APA StyleResende de Mendonça, R., Felix de Brito, D., de Franco Rosa, F., dos Reis, J. C., & Bonacin, R. (2020). A Framework for Detecting Intentions of Criminal Acts in Social Media: A Case Study on Twitter. Information, 11(3), 154. https://doi.org/10.3390/info11030154