When Personalization Is Not an Option: An In-The-Wild Study on Persuasive News Recommendation
<p>The official home page of our university web site (<b>b</b>), embeds featured news from the magazine (<b>a</b>).</p> "> Figure 2
<p>News detail page with a set of recommended news (1). Notice the yellow box used to provide visual accent and the persuasive sentence introducing recommendations (2).</p> "> Figure 3
<p>Experimental design.</p> "> Figure 4
<p>Recommended news with positive framing (<b>left</b>) and negative framing (<b>right</b>).</p> "> Figure 5
<p>Users remembering at least one type of recommendations (<b>a</b>), and user perceptions of their interestingness (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Social Navigation
2.2. Recommender Systems as Persuasive Technologies
2.3. Non-Personalized Recommenders
3. Background: Fallacies, Framing and Persuasive Technologies
4. Case Study: The Online Magazine
5. Evaluations Rationale
5.1. Evaluation: Fallacies
5.2. Evaluation: Framing
5.2.1. Survey
6. Discussion
7. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Fogg, B.J. Persuasive Technology: Using Computers to Change What We Think and Do; Morgan Kaufmann Series in Interactive Technologies; Morgan Kaufmann: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Petty, R.; Cacioppo, J.; Goldman, R. Personal involvement as a determinant of argument-based persuasion. J. Pers. Soc. Psychol. 1981, 41, 847–855. [Google Scholar] [CrossRef]
- Beniger, J.R. Personalization of Mass Media and the Growth of Pseudo-Community. Commun. Res. 1987, 14, 352–371. [Google Scholar] [CrossRef]
- Kaptein, M.; Markopoulos, P.; de Ruyter, B.E.R.; Aarts, E.H.L. Personalizing persuasive technologies: Explicit and implicit personalization using persuasion profiles. Int. J. Hum.-Comput. Stud. 2015, 77, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Orji, F.A.; Oyibo, K.; Orji, R.; Greer, J.E.; Vassileva, J. Personalization of Persuasive Technology in Higher Education. In Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2019, Larnaca, Cyprus, 9–12 June 2019; pp. 336–340. [Google Scholar] [CrossRef]
- Nkwo, M.; Orji, R. Personalized Persuasion to Promote Positive Work Attitudes in Public Workplaces. In Proceedings of the Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization, UMAP 2019, Larnaca, Cyprus, 9–12 June 2019; pp. 185–190. [Google Scholar] [CrossRef]
- Dijkstra, A.; Ballast, K. Personalization and perceived personal relevance in computer-tailored persuasion in smoking cessation. Br. J. Health Psychol. 2011, 17, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Orji, R.; Vassileva, J.; Mandryk, R.L. Modeling the efficacy of persuasive strategies for different gamer types in serious games for health. User Model. User-Adapt. Interact. 2014, 24, 453–498. [Google Scholar] [CrossRef]
- Khatwani, S.; Chandak, M.B. Building Personalized and Non Personalized recommendation systems. In Proceedings of the 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, India, 9–10 September 2016; pp. 623–628. [Google Scholar] [CrossRef]
- Poriya, A.; Bhagat, T.; Patel, N.; Sharma, R. Article: Non-Personalized Recommender Systems and User-based Collaborative Recommender Systems. Int. J. Appl. Inf. Syst. 2014, 6, 22–27. [Google Scholar]
- Ricci, F.; Rokach, L.; Shapira, B.; Kantor, P.B. Recommender Systems Handbook, 1st ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Lieto, A.; Vernero, F. Unveiling the link between logical fallacies and web persuasion. In Proceedings of the 5th Annual ACM Web Science Conference, Paris, France, 2–4 May 2013; pp. 473–478. [Google Scholar]
- Tversky, A.; Kahneman, D. The framing of decisions and the psychology of choice. Science 1981, 211, 453–458. [Google Scholar] [CrossRef]
- Lieto, A.; Vernero, F. Influencing the Others’ Minds: An Experimental Evaluation of the Use and Efficacy of Fallacious-Reducible Arguments in Web and Mobile Technologies. Psychnol. J. 2014, 12, 87–105. [Google Scholar]
- Cataldi, M.; Aufaure, M.A. The 10 million follower fallacy: Audience size does not prove domain-influence on Twitter. Knowl. Inf. Syst. 2015, 44, 559–580. [Google Scholar] [CrossRef]
- Gkika, S.; Lekakos, G. The Persuasive Role of Explanations in Recommender Systems. In Proceedings of the Second International Workshop on Behavior Change Support Systems, Padua, Italy, 22 May 2014; pp. 59–68. [Google Scholar]
- Salganik, M.J.; Dodds, P.S.; Watts, D.J. An experimental study of inequality and unpredictability in an artificial cultural market. Science 2006, 311, 854–856. [Google Scholar] [CrossRef]
- Zhu, H.; Huberman, B.A. To Switch or Not To Switch: Understanding Social Influence in Online Choices. Am. Behav. Sci. 2014, 58, 1329–1344. [Google Scholar] [CrossRef]
- Su, J.; Sharma, A.; Goel, S. The Effect of Recommendations on Network Structure. In Proceedings of the 25th International World Wide Web Conference, Montreal, QC, Canada, 11–15 April 2016; pp. 1157–1167. [Google Scholar] [CrossRef]
- Brusilovsky, P. Adaptive Navigation Support. The Adaptive Web, Methods and Strategies of Web Personalization; Lecture Notes in Computer Science; Brusilovsky, P., Kobsa, A., Nejdl, W., Eds.; Springer: Berlin, Germany, 2007; Volume 4321, pp. 263–290. [Google Scholar] [CrossRef]
- Dourish, P.; Chalmers, M. Running out of Space: Models of Information Navigation. In HCI ’94; ACM Press: Glasgow, UK, 1994. [Google Scholar]
- Brusilovsky, P. Social Information Access Tutorial, at UMAP 2015. In Proceedings of the 23rd Conference on User Modelling, Adaptation and Personalization, Dublin, Ireland, 29 June–3 July 2015. [Google Scholar]
- Cialdini, R.B. Influence: Science and Practice, 4th ed.; Allyn & Bacon: Boston, MA, USA, 2000. [Google Scholar]
- Hill, W.C.; Hollan, J.D.; Wroblewski, D.; McCandless, T. Edit Wear and Read Wear. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Monterey, CA, USA, 3–7 May 1992; pp. 3–9. [Google Scholar] [CrossRef]
- Hill, W.; Stead, L.; Rosenstein, M.; Furnas, G. Recommending and Evaluating Choices in a Virtual Community of Use. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 7–11 May 1995; pp. 194–201. [Google Scholar] [CrossRef]
- Berkovsky, S.; Freyne, J.; Oinas-Kukkonen, H. Influencing individually: Fusing personalization and persuasion. ACM Trans. Interact. Intell. Syst. (TiiS) 2012, 2, 9. [Google Scholar] [CrossRef]
- Kaptein, M.; De Ruyter, B.; Markopoulos, P.; Aarts, E. Adaptive Persuasive Systems: A Study of Tailored Persuasive Text Messages to Reduce Snacking. ACM Trans. Interact. Intell. Syst. 2012, 2, 1–25. [Google Scholar] [CrossRef]
- Tintarev, N.; Masthoff, J. Designing and Evaluating Explanations for Recommender Systems. In Recommender Systems Handbook; Ricci, F., Rokach, L., Shapira, B., Kantor, P.B., Eds.; Springer: Boston, MA, USA, 2011; pp. 479–510. [Google Scholar] [CrossRef]
- Herlocker, J.L.; Konstan, J.A.; Riedl, J. Explaining Collaborative Filtering Recommendations. In Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, Philadelphia, PA, USA, 2–6 December 2000; pp. 241–250. [Google Scholar] [CrossRef]
- Cialdini, R.B. Influence: Science and Practice; Pearson Education: Boston, MA, USA, 2009. [Google Scholar]
- Zanker, M.; Schoberegger, M. An empirical study on the persuasiveness of fact-based explanations for recommender systems. CEUR Worksh. Proc. 2014, 1253, 33–36. [Google Scholar]
- Yoo, K.H.; Gretzel, U.; Zanker, M. Persuasive Recommender Systems-Conceptual Background and Implications; Springer Briefs in Electrical and Computer Engineering; Springer: Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Yoo, K.H.; Gretzel, U. The Influence of Perceived Credibility on Preferences for Recommender Systems as Sources of Advice. J. IT Tour. 2008, 10, 133–146. [Google Scholar] [CrossRef]
- Adomavicius, G.; Tuzhilin, A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [Google Scholar] [CrossRef]
- Schafer, J.B.; Konstan, J.; Riedl, J. Recommender Systems in e-Commerce. In Proceedings of the 1st ACM Conference on Electronic Commerce, Denver, CO, USA, 3–5 November 1999; pp. 158–166. [Google Scholar] [CrossRef]
- McNee, S.M.; Riedl, J.; Konstan, J.A. Being Accurate is Not Enough: How Accuracy Metrics Have Hurt Recommender Systems. In Proceedings of the CHI ’06 Extended Abstracts on Human Factors in Computing Systems, Montreal, QC, Canada, 22–27 April 2006; pp. 1097–1101. [Google Scholar] [CrossRef]
- Agrawal, R.; Imieliński, T.; Swami, A. Mining Association Rules Between Sets of Items in Large Databases. SIGMOD Rec. 1993, 22, 207–216. [Google Scholar] [CrossRef]
- Demiriz, A. Enhancing Product Recommender Systems on Sparse Binary Data. Data Min. Knowl. Discov. 2004, 9, 147–170. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, D.; Dutta, R.; Kundu, A.; Dattagupta, R. A Product Recommendation System Using Vector Space Model and Association Rule. In Proceedings of the 2008 International Conference on Information Technology, Bhubaneswar, India, 17–20 December 2008; pp. 279–282. [Google Scholar] [CrossRef]
- Chen, J.; Miller, C.; Dagher, G.G. Product recommendation system for small online retailers using association rules mining. In Proceedings of the 2014 International Conference on Innovative Design and Manufacturing (ICIDM), Bhubaneswar, India, 17–20 December 2008; pp. 71–77. [Google Scholar] [CrossRef]
- Mican, D.; Tomai, N. Association-Rules-Based Recommender System for Personalization in Adaptive Web-Based Applications. In Current Trends in Web Engineering; Daniel, F., Facca, F.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 85–90. [Google Scholar]
- Nolt, J.; Rohatyn, D.; Varzi, A. Schaum’s Outline of Logic; McGraw-Hill Education: New York, NY, USA, 1998. [Google Scholar]
- Perelman, C.; Olbrechts-Tyteca, L. Traité de L’argumentation. La Nouvelle Rhétorique; Presses Universitaires de France: Paris, France, 1958. [Google Scholar]
- Ross, D. Aristotle Topica Et Sophistici Elenchi; Oxford Classical Texts; Clarendon Press: Oxford, UK, 1963. [Google Scholar]
- Cohen, M.R.; Nagel, E.; Corcoran, J. An Introduction to Logic; Hackett Publishing: Cambridge, MA, USA, 1993. [Google Scholar]
- Hamblin, C.L. Fallacies; Vale Press: Willersey, UK, 1970. [Google Scholar]
- Walton, D.N. The New Dialectic: Conversational Contexts of Argument; University of Toronto Press: Toronto, ON, Canada, 1998. [Google Scholar]
- Turner, J. Social Influence; A Volume in the Brooks/Cole Mapping Social Psychology Series; Brooks/Cole Publishing Company: Boston, MA, USA, 1991. [Google Scholar]
- Fogg, B.J.; Marshall, J.; Laraki, O.; Osipovich, A.; Varma, C.; Fang, N.; Paul, J.; Rangnekar, A.; Shon, J.; Swani, P.; et al. What makes Web sites credible? A report on a large quantitative study. In Proceedings of the CHI 2001 Conference on Human Factors in Computing Systems, Seattle, WA, USA, 31 March–5 April 2001; pp. 61–68. [Google Scholar] [CrossRef]
- Dion, K.; Berscheids, E.; Walster, E. What is Beautiful is Good. J. Pers. Soc. Psychol. 1972, 24, 285–290. [Google Scholar] [CrossRef]
- Copi, I.M.; Cohen, C.; McMahon, K. Introduction to Logic; Routledge: Abingdon, UK, 2016. [Google Scholar]
- Endsley, M.R.; Bolte, B.; Jones, D.G. Designing for Situation Awareness: An Approach to User-Centered Design; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Lakoff, G. The All New Don’t Think of an Elephant!: Know Your Values and Frame the Debate; Chelsea Green Publishing: London, UK, 2014. [Google Scholar]
- Shimizu, K. Prospect theory, behavioral theory, and the threat-rigidity thesis: Combinative effects on organizational decisions to divest formerly acquired units. Acad. Manag. J. 2007, 50, 1495–1514. [Google Scholar] [CrossRef]
- Palmer, T.B.; Wiseman, R.M. Decoupling risk taking from income stream uncertainty: A holistic model of risk. Strateg. Manag. J. 1999, 20, 1037–1062. [Google Scholar] [CrossRef]
- Theocharous, G.; Healey, J.; Mahadevan, S.; Saad, M. Personalizing with Human Cognitive Biases. In Proceedings of the Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization, UMAP’19 Adjunct, Larnaca, Cyprus, 9–12 June 2019; pp. 13–17. [Google Scholar] [CrossRef]
- Schneider, C.; Weinmann, M.; vom Brocke, J. Digital nudging: Guiding online user choices through interface design. Commun. ACM 2018, 61, 67–73. [Google Scholar] [CrossRef]
- Rogers, Y. Interaction Design Gone Wild: Striving for Wild Theory. Interactions 2011, 18, 58–62. [Google Scholar] [CrossRef]
- Royce, S.A.; Straits, B.C. Approaches to Social Research, 3rd ed.; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Tene, O.; Polonetsky, J. To Track or “Do Not Track”: Advancing Transparency and Individual Control in Online Behavioral Advertising. Minn. J. L. Sci. Technol. 2012, 13, 281. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T. The Elaboration Likelihood Model of Persuasion. In Communication and Persuasion; Springer: Berlin, Germany, 1986; pp. 1–24. [Google Scholar]
- Roccato, M. Desiderabilità Sociale e Acquiescenza: Alcune Trappole Delle Inchieste e dei Sondaggi; LED: Milan, Italy, 2003. [Google Scholar]
- Orquin, J.L.; Perkovic, S.; Grunert, K.G. Visual biases in decision making. Appl. Econ. Perspect. Policy 2018, 40. [Google Scholar] [CrossRef]
- Johnson, B.T. Effects of outcome-relevant involvement and prior information on persuasion. J. Exp. Soc. Psychol. 1994, 30, 556–579. [Google Scholar] [CrossRef]
- Floridi, L.; Cowls, J.; Beltrametti, M.; Chatila, R.; Chazerand, P.; Dignum, V.; Luetge, C.; Madelin, R.; Pagallo, U.; Rossi, F.; et al. AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds Mach. 2018, 28, 1–19. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gena, C.; Grillo, P.; Lieto, A.; Mattutino, C.; Vernero, F. When Personalization Is Not an Option: An In-The-Wild Study on Persuasive News Recommendation. Information 2019, 10, 300. https://doi.org/10.3390/info10100300
Gena C, Grillo P, Lieto A, Mattutino C, Vernero F. When Personalization Is Not an Option: An In-The-Wild Study on Persuasive News Recommendation. Information. 2019; 10(10):300. https://doi.org/10.3390/info10100300
Chicago/Turabian StyleGena, Cristina, Pierluigi Grillo, Antonio Lieto, Claudio Mattutino, and Fabiana Vernero. 2019. "When Personalization Is Not an Option: An In-The-Wild Study on Persuasive News Recommendation" Information 10, no. 10: 300. https://doi.org/10.3390/info10100300
APA StyleGena, C., Grillo, P., Lieto, A., Mattutino, C., & Vernero, F. (2019). When Personalization Is Not an Option: An In-The-Wild Study on Persuasive News Recommendation. Information, 10(10), 300. https://doi.org/10.3390/info10100300