An Approach for Detecting Parkinson’s Disease by Integrating Optimal Feature Selection Strategies with Dense Multiscale Sample Entropy
"> Figure 1
<p>(<b>a</b>) Gender and label distribution across each class in severity classification task; (<b>b</b>) gender and label distribution across each class in PD classification task.</p> "> Figure 2
<p>The methodology procedure has four stages: preprocessing, feature extraction, feature selection, and classification.</p> "> Figure 3
<p>The process of signal division using the time-slicing window method and outlier removal through the quartile approach and histogram analysis.</p> "> Figure 4
<p>Boxplot analysis of model consistency for PD and severity classification tasks.</p> "> Figure 5
<p>(<b>a</b>) Adjusted <span class="html-italic">p</span>-value matrix of paired T-tests comparing accuracies between classifier–feature selection method pairs (M-SamEn); (<b>b</b>) adjusted <span class="html-italic">p</span>-value matrix of paired <span class="html-italic">t</span>-tests comparing accuracies between classifier–feature selection method pairs (DM-SamEn).</p> "> Figure 6
<p>(<b>a</b>) Correlation matrix of the feature set extracted using the M-SamEn method; (<b>b</b>) correlation matrix of the feature set extracted using the DM-SamEn method.</p> "> Figure 7
<p>(<b>a</b>) Distribution of selected features by signal source (original and computed signals from Equations (<a href="#FD1-information-16-00001" class="html-disp-formula">1</a>)–(<a href="#FD3-information-16-00001" class="html-disp-formula">3</a>) after the feature selection stage; (<b>b</b>) distribution of selected features by feature extraction method after the feature selection stage.</p> "> Figure 8
<p>Comparison of feature count across feature selection methods (*: <span class="html-italic">p</span>-value < 0.05; **: <span class="html-italic">p</span>-value < 0.01).</p> ">
Abstract
:1. Introduction
- -
- Utilize the DM-SamEn method to reduce feature dimensionality while ensuring feature uniqueness and robustness.
- -
- Utilize two feature selection methods, sequential backward selection (SBS) and correlation-based feature selection (CFS), to identify the most significant features from the initial set. A hybrid SBS-CFS approach is also employed.
- -
- Validate the feature extraction (DM-SamEn) and selection (CFS and SBS) stages with three classifiers: adaptive weighted K-nearest neighbors (AW-KNN), radial basis function support vector machine (RBF-SVM), and multilayer perceptron (MLP). These classifiers evaluate this classification performance, which also determines the optimal results in the various feature selection strategies.
2. Material
3. Methodology
3.1. Preprocessing Stage
3.2. Feature Extraction Stage
3.2.1. Conventional Features
3.2.2. Dense Multiscale Sample Entropy (DM-SamEn) Features
- 1.
- Generate X:X = , = , ;
- 2.
- Construct :with
- 3.
- Define and :
- 4.
- Compute SamEn:
3.3. Feature Selection Stage
3.3.1. Correlation-Based Feature Selection (CFS)
- Input: X-Input Features Spaces (), t-Threshold
- Output: Selected-Feature-List of indices
- Procedure:
- 1
- Initialize Selected-Feature as an empty list.
- 2
- For each pair of features in X (where )
- a
- Compute the absolute correlation coefficient between and )
- b
- If the absolute correlation coefficient is less than or equal to the threshold t
- –
- Add and to Selected-Feature
- 3
- Remove any duplicate entries from Selected-Feature (keeping only unique feature indices)
- Return Selected-Feature
3.3.2. Sequential Backward Selection (SBS)
- Input:
- X-Input Features Spaces (), y-vector ()
- model-classifier, k-number of features to select (stopping criterion)
- Output:Selected-Feature-List of indices
- Procedure:
- 1
- Initialize Selected-Feature as an empty list.
- 2
- While the number of Selected-Feature > k:
- a
- Set min-performance = ∞ and candidate-feature = None
- b
- For each f in Selected-Feature:
- i
- Temporarily remove f from Selected-Feature
- ii
- Train the model using X[:, Selected-Feature] and y
- iii
- Evaluate the model performance
- iv
- If model-performance < min-performance:
- –
- set min-performance = model-performance
- –
- add f in candidate-feature
- c
- Remove candidate-feature from Selected-Feature
- Return Selected-Feature
3.4. Classification Stage
3.4.1. Adaptive Weighted K-Nearest Neighbors (AW-KNN)
3.4.2. Radial Basis Function Support Vector Machine (RBF-SVM)
3.4.3. Multilayer Perceptron (MLP)
3.4.4. Model Validation
4. Results and Discussion
4.1. Results
4.1.1. PD Classification Task Results
4.1.2. Severity Classification Task Results
4.1.3. Throughput Performance and CO2 Emission Results
4.1.4. Paired t-Test Results
4.2. Discussion
4.2.1. Analysis of Multicollinearity and Redundancy Problems in Feature Sets
4.2.2. Analysis of Dominant Feature Types in Selected Feature Sets
4.2.3. Analysis of Feature Selection Efficiency
4.2.4. Performance Comparison with Existing Studies
4.2.5. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement:
Conflicts of Interest
References
- Schalkamp, A.K.; Peall, K.J.; Harrison, N.A.; Sandor, C. Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis. Nat. Med. 2023, 29, 2048–2056. [Google Scholar] [CrossRef] [PubMed]
- Telarović, S. Epidemiology of Parkinson’s Disease. Arch. Psychiatry Res. 2023, 59, 147–148. [Google Scholar] [CrossRef]
- Pagano, G.; D’Addio, G.; Campi, M.D.; Donisi, L.; Biancardi, A.; Cesarelli, M. Rehabilitation Outcome in Patients undergone Hip or Knee Replacement Surgery using Inertial Technology for Gait Analysis. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; pp. 1–5. [Google Scholar]
- Aşuroğlu, T.; Oğul, H. A deep learning approach for parkinson’s disease severity assessment. Health Technol. 2022, 12, 943–953. [Google Scholar] [CrossRef]
- Zhao, A.; Qi, L.; Li, J.; Dong, J.; Yu, H. A hybrid spatio-temporal model for detection and severity rating of Parkinson’s disease from gait data. Neurocomputing 2018, 315, 1–8. [Google Scholar] [CrossRef]
- Maâchi, I.E.; Bilodeau, G.A.; Bouachir, W. Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. arXiv 2019, arXiv:abs/1910.11509. [Google Scholar]
- Suquilanda-Pesántez, J.D.; Zambonino-Soria, M.C.; López-Ramos, D.E.; Pineda-Molina, M.G.; Milán, N.S.; Muñoz, M.C.J.; Villalba-Meneses, G.F.; Almeida-Galárraga, D.A. Prediction of Parkinson’s Disease Severity Based on Gait Signals Using a Neural Network and the Fast Fourier Transform; Artificial Intelligence, Computer and Software Engineering Advances; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Faisal, M.A.A.; Chowdhury, M.E.H.; Mahbub, Z.B.; Pedersen, S.; Ahmed, M.U.; Khandakar, A.A.; Alhatou, M.; Nabil, M.; Ara, I.; Bhuiyan, E.; et al. NDDNet: A deep learning model for predicting neurodegenerative diseases from gait pattern. Appl. Intell. 2023, 53, 20034–20046. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Havlin, S.; Hausdorg, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; et al. Physionet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Yogev, G.; Giladi, N.; Peretz, C.; Springer, S.; Simon, E.S.; Hausdorff, J.M. Dual tasking, gait rhythmicity, and Parkinson’s disease: Which aspects of gait are attention demanding? Eur. J. Neurosci. 2005, 22, 1248–1256. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Lowenthal, J.; Herman, T.; Gruendlinger, L.; Peretz, C.; Giladi, N. Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur. J. Neurosci. 2007, 26, 2369–2375. [Google Scholar] [CrossRef]
- Frenkel-Toledo, S.; Giladi, N.; Peretz, C.; Herman, T.; Gruendlinger, L.; Hausdorff, J.M. Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Mov. Disord. 2005, 20, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Frenkel-Toledo, S.; Giladi, N.; Peretz, C.; Herman, T.; Gruendlinger, L.; Hausdorff, J.M. Effect of gait speed on gait rhythmicity in Parkinson’s disease: Variability of stride time and swing time respond differently. J. Neuroeng. Rehabil. 2005, 2, 23. [Google Scholar] [CrossRef] [PubMed]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism. Neurology 1998, 50, 318. [Google Scholar] [CrossRef]
- Nguyen, Q.D.N.; Liu, A.; Lin, C.W. Development of a Neurodegenerative Disease Gait Classification Algorithm Using Multiscale Sample Entropy and Machine Learning Classifiers. Entropy 2020, 22, 1340. [Google Scholar] [CrossRef] [PubMed]
- Cirugeda-Roldán, E.M.; Molina-Picó, A.; Novák, D.; Cuesta-Frau, D.; Kremen, V. Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation. Comput. Math. Methods Med. 2018, 2018, 1874651. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Bonal, A.; Marshak, A. Approximate Entropy and Sample Entropy: A Comprehensive Tutorial. Entropy 2019, 21, 541. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shen, X.; Li, Y.; Chen, Z. Improved multivariate multiscale sample entropy and its application in multi-channel data. Chaos 2023, 33, 063125. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Li, G.; Jiang, Y.; Baim, R.; Tang, C.; Yan, T.; Ding, X.; Yan, Y. Multi-Scale Sample Entropy-Based Energy Moment Features Applied to Fault Classification. IEEE Access 2021, 9, 8444–8454. [Google Scholar] [CrossRef]
- Nguyen, Q.D.N.; Tran, T.H.; Nakano, T. Optimizing Parkinson’s Disease Classification and Severity Assessment Using Dense Multiscale Sample Entropy and Hybrid Feature Selection. In Proceedings of the 2023 11th International Conference on Information Technology: IoT and Smart City, Kyoto, Japan, 14–17 December 2023; ICIT ’23. pp. 64–69. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.M.; Carl, G.; Carré, G.; Márquez, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Michalak, K.; Kwasnicka, H. Correlation-based feature selection strategy in classification problems. Int. J. Appl. Math. Comput. Sci. 2006, 16, 503–511. [Google Scholar]
- Chormunge, S.; Jena, S. Correlation based feature selection with clustering for high dimensional data. J. Electr. Syst. Inf. Technol. 2018, 5, 542–549. [Google Scholar] [CrossRef]
- Aregbesola, S.O.; Won, J.; Kim, S.; Byun, Y.H. Sequential backward feature selection for optimizing permanent strain model of unbound aggregates. Case Stud. Constr. Mater. 2023, 19, e02554. [Google Scholar] [CrossRef]
- Chaurasia, V.; Chaurasia, A. Novel Method of Characterization of Heart Disease Prediction Using Sequential Feature Selection-Based Ensemble Technique. Biomed. Mater. Devices 2023, 1, 932–941. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Xia, W.; Ni, Y.; Zhao, H. Weighted Adaptive KNN Algorithm With Historical Information Fusion for Fingerprint Positioning. IEEE Wirel. Commun. Lett. 2022, 11, 1002–1006. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, J.; Ding, W.; Xu, J. Feature reduction for imbalanced data classification using similarity-based feature clustering with adaptive weighted K-nearest neighbors. Inf. Sci. 2022, 593, 591–613. [Google Scholar] [CrossRef]
- Razaque, A.; Ben Haj Frej, M.; Almi’ani, M.; Alotaibi, M.; Alotaibi, B. Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification. Sensors 2021, 21, 4431. [Google Scholar] [CrossRef] [PubMed]
- Thurnhofer-Hemsi, K.; L’opez-Rubio, E.; Molina-Cabello, M.A.; Najarian, K. Radial basis function kernel optimization for Support Vector Machine classifiers. arXiv 2020, arXiv:abs/2007.08233. [Google Scholar]
- Liu, C.L. One-Vs-All Training of Prototype Classifier for Pattern Classification and Retrieval. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Türkiye, 23–26 August 2010; pp. 3328–3331. [Google Scholar]
- Taud, H.; Mas, J.F. Multilayer Perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Balaji, E.; Brindha, D.; Kumar, E.V.; Vikrama, R. Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network. Appl. Soft Comput. 2021, 108, 107463. [Google Scholar]
- Wang, Q.; Zeng, W.; Dai, X. Gait classification for early detection and severity rating of Parkinson’s disease based on hybrid signal processing and machine learning methods. Cogn. Neurodynamics 2022, 18 1, 109–132. [Google Scholar] [CrossRef]
- Alharthi, A.S.; Casson, A.J.; Ozanyan, K.B. Gait Spatiotemporal Signal Analysis for Parkinson’s Disease Detection and Severity Rating. IEEE Sensors J. 2021, 21, 1838–1848. [Google Scholar] [CrossRef]
- Nguyen, D.M.D.; Miah, M.; Bilodeau, G.A.; Bouachir, W. Transformers for 1D signals in Parkinson’s disease detection from gait. In Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 5089–5095. [Google Scholar] [CrossRef]
- Zeng, W.; Yuan, C.; Wang, Q.; Liu, F.; Wang, Y. Classification of gait patterns between patients with Parkinson’s disease and healthy controls using phase space reconstruction (PSR), empirical mode decomposition (EMD) and neural networks. Neural Netw. 2019, 111, 64–76. [Google Scholar] [CrossRef]
- Rehman, R.Z.U.; Din, S.D.; Guan, Y.; Yarnall, A.J.; Shi, J.Q.; Rochester, L. Selecting Clinically Relevant Gait Characteristics for Classification of Early Parkinson’s Disease: A Comprehensive Machine Learning Approach. Sci. Rep. 2019, 9, 17269. [Google Scholar] [CrossRef]
- Noella, R.S.N.; Gupta, D.; Priyadarshini, J. Diagnosis of Parkinson’s disease using Gait Dynamics and Images. Procedia Comput. Sci. 2019, 165, 428–434. [Google Scholar] [CrossRef]
Task | PD Classification | Severity Classification | |||
---|---|---|---|---|---|
Label | Co | PD | 2 | 2.5 | 3 |
Age | 63.65 | 66.3 | 64.21 | 68.78 | 70.8 |
Height (m) | 1.68 | 1.67 | 1.67 | 1.67 | 1.64 |
Weight (kg) | 72.534 | 72.172 | 73.182 | 72.289 | 66.3 |
Gait Speed (m/s) | 1.24 | 1.03 | 1.08 | 1 | 0.79 |
Model | FS | Label | M-SamEn | DM-SamEn | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Sen | Spec | F1 | Acc | Pre | Sen | Spec | F1 | Acc | ||||
AW-KNN | CFS | PD | Mean | 98.28 | 98.41 | 96.16 | 98.34 | 97.72 | 94.46 | 96.32 | 87.47 | 95.38 | 93.56 |
SD | 0.41 | 0.69 | 0.81 | 0.36 | 0.46 | 0.80 | 1.01 | 1.40 | 0.66 | 0.85 | |||
CO | Mean | 96.48 | 96.16 | 98.41 | 96.31 | 97.72 | 91.75 | 87.47 | 96.32 | 89.36 | 93.56 | ||
SD | 1.32 | 0.81 | 0.7 | 0.66 | 0.46 | 2.27 | 1.4 | 1.01 | 1.33 | 0.85 | |||
SBS | PD | Mean | 98.69 | 98.76 | 97.04 | 98.72 | 98.24 | 98.04 | 98.36 | 95.60 | 98.19 | 97.51 | |
SD | 0.31 | 0.75 | 0.75 | 0.39 | 0.5 | 0.36 | 0.84 | 0.72 | 0.44 | 0.58 | |||
CO | Mean | 97.30 | 97.04 | 98.76 | 91.16 | 98.24 | 96.34 | 95.60 | 98.36 | 95.95 | 97.51 | ||
SD | 1.4 | 0.75 | 0.75 | 0.75 | 0.5 | 1.73 | 0.72 | 0.84 | 0.86 | 0.58 | |||
SBS-CFS | PD | Mean | 98.31 | 98.41 | 96.19 | 98.36 | 97.74 | 94.34 | 97.24 | 89.58 | 89.36 | 94.11 | |
SD | 0.30 | 0.66 | 0.69 | 0.37 | 0.48 | 0.72 | 1.04 | 1.27 | 0.57 | 0.74 | |||
CO | Mean | 96.48 | 96.19 | 98.41 | 96.33 | 97.74 | 93.65 | 87.98 | 92.61 | 95.04 | 94.11 | ||
SD | 1.12 | 0.69 | 0.66 | 0.70 | 0.48 | 2.25 | 1.27 | 1.04 | 1.12 | 0.74 | |||
RBF-SVM | CFS | PD | Mean | 93.65 | 87.98 | 92.61 | 98.56 | 98.00 | 94.96 | 96.19 | 88.7 | 95.57 | 93.87 |
SD | 0.50 | 0.53 | 1.2 | 0.43 | 0.6 | 0.89 | 0.64 | 1.58 | 0.67 | 0.84 | |||
CO | Mean | 97.47 | 95.96 | 98.92 | 96.70 | 98.00 | 91.27 | 88.7 | 96.19 | 89.97 | 93.87 | ||
SD | 1.27 | 1.12 | 0.53 | 1.06 | 0.6 | 1.12 | 1.58 | 0.64 | 1.13 | 0.84 | |||
SBS | PD | Mean | 98.27 | 99.21 | 96.11 | 98.73 | 98.25 | 98.59 | 99.07 | 96.81 | 98.83 | 98.38 | |
SD | 0.49 | 0.45 | 1.04 | 0.26 | 0.35 | 0.46 | 0.56 | 0.98 | 0.2 | 0.26 | |||
CO | Mean | 98.18 | 96.11 | 99.21 | 97.12 | 98.25 | 97.93 | 96.81 | 99.07 | 97.35 | 98.38 | ||
SD | 0.98 | 1.04 | 0.45 | 0.57 | 0.35 | 1.16 | 0.98 | 0.56 | 0.43 | 0.26 | |||
SBS-CFS | PD | Mean | 98.43 | 99.00 | 96.43 | 98.71 | 98.21 | 96.05 | 97.26 | 91.18 | 96.64 | 95.36 | |
SD | 0.42 | 0.44 | 1.04 | 0.28 | 0.42 | 0.98 | 0.78 | 1.87 | 0.82 | 1.06 | |||
CO | Mean | 97.66 | 96.43 | 99.00 | 97.04 | 98.21 | 93.81 | 91.18 | 97.29 | 92.41 | 95.36 | ||
SD | 1.08 | 1.04 | 0.44 | 0.80 | 0.42 | 1.56 | 1.87 | 0.78 | 1.56 | 1.06 | |||
MLP | CFS | PD | Mean | 95.35 | 95.34 | 89.58 | 95.34 | 93.58 | 88.53 | 89.83 | 74.14 | 89.16 | 84.98 |
SD | 0.78 | 0.90 | 1.95 | 0.52 | 0.65 | 1.49 | 1.32 | 2.25 | 1.23 | 1.38 | |||
CO | Mean | 89.67 | 89.58 | 95.34 | 89.59 | 93.58 | 76.68 | 74.14 | 89.83 | 75.34 | 84.98 | ||
SD | 1.47 | 1.95 | 0.90 | 1.09 | 0.65 | 1.63 | 2.25 | 1.32 | 1.36 | 1.38 | |||
SBS | PD | Mean | 95.78 | 95.87 | 90.68 | 95.82 | 94.24 | 93.70 | 94.42 | 86.07 | 94.08 | 91.83 | |
SD | 0.87 | 0.88 | 1.49 | 0.57 | 0.7 | 0.94 | 1.15 | 1.69 | 0.70 | 0.84 | |||
CO | Mean | 90.82 | 90.68 | 95.87 | 90.72 | 94.24 | 87.84 | 86.68 | 94.46 | 86.75 | 91.83 | ||
SD | 1.71 | 1.49 | 0.88 | 0.87 | 0.7 | 2.09 | 1.69 | 1.15 | 1.05 | 0.84 | |||
SBS-CFS | PD | Mean | 94.90 | 94.97 | 88.73 | 94.93 | 93.02 | 88.30 | 90.42 | 73.24 | 89.38 | 95.16 | |
SD | 0.93 | 0.71 | 1.50 | 0.71 | 0.88 | 1.10 | 1.09 | 2.83 | 0.63 | 0.88 | |||
CO | Mean | 88.75 | 88.73 | 94.97 | 88.72 | 93.02 | 77.27 | 73.25 | 90.40 | 75.21 | 95.16 | ||
SD | 1.49 | 1.51 | 0.71 | 1.18 | 0.88 | 2.88 | 2.82 | 1.09 | 2.24 | 0.88 |
Model | FS | Label | M-SamEn | DM-SamEn | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Sen | Spec | F1 | Acc | Pre | Sen | Spec | F1 | Acc | ||||
AW-KNN | CFS | PD | Mean | 88.78 | 83.76 | 86.62 | 83.81 | 85.19 | 82.04 | 81.98 | 79.69 | 80.43 | 80.83 |
SD | 2.24 | 3.31 | 3.04 | 2.60 | 2.22 | 2.36 | 2.96 | 2.94 | 2.35 | 2.19 | |||
CO | Mean | 87.33 | 86.62 | 83.76 | 84.67 | 85.19 | 83.72 | 79.69 | 81.98 | 79.99 | 80.83 | ||
SD | 2.38 | 3.04 | 3.31 | 2.22 | 2.22 | 2.45 | 2.94 | 2.96 | 2.41 | 2.19 | |||
SBS | PD | Mean | 87.71 | 84.39 | 85.67 | 83.93 | 85.03 | 87.43 | 83.84 | 85.35 | 83.27 | 83.27 | |
SD | 2.35 | 3.22 | 2.94 | 2.53 | 2.19 | 2.37 | 3.4 | 3.02 | 2.67 | 2.27 | |||
CO | Mean | 87.73 | 85.67 | 84.39 | 84.57 | 85.03 | 87.56 | 85.35 | 83.84 | 84.18 | 83.27 | ||
SD | 2.38 | 2.94 | 3.22 | 2.38 | 2.19 | 2.49 | 3.02 | 3.4 | 2.42 | 2.27 | |||
SBS-CFS | PD | Mean | 88.30 | 83.93 | 86.59 | 84.44 | 85.26 | 84.94 | 83.37 | 82.26 | 81.94 | 82.81 | |
SD | 2.36 | 3.2 | 2.85 | 2.41 | 2.17 | 2.36 | 3.21 | 3.17 | 2.55 | 2.22 | |||
CO | Mean | 87.03 | 86.59 | 83.93 | 85.01 | 85.26 | 86.02 | 82.26 | 83.37 | 81.82 | 82.81 | ||
SD | 2.33 | 2.85 | 3.2 | 2.32 | 2.17 | 2.43 | 3.17 | 3.21 | 2.54 | 2.22 | |||
RBF-SVM | CFS | PD | Mean | 84.87 | 91.01 | 80.33 | 86.36 | 85.67 | 77.61 | 86.6 | 72.15 | 80.72 | 79.37 |
SD | 2.37 | 2.55 | 3.35 | 2.15 | 2.13 | 2.24 | 2.5 | 3.2 | 2.07 | 2.14 | |||
CO | Mean | 92.24 | 80.33 | 91.01 | 83.35 | 85.67 | 85.66 | 72.15 | 86.60 | 76.48 | 79.37 | ||
SD | 2.05 | 3.35 | 2.55 | 2.13 | 2.13 | 2.43 | 3.2 | 2.5 | 2,64 | 2.14 | |||
SBS | PD | Mean | 84.36 | 91.06 | 78.97 | 86.07 | 85.01 | 83.42 | 90.99 | 78.09 | 85.26 | 84.54 | |
SD | 2.52 | 2.53 | 3.75 | 2.25 | 2.32 | 2.37 | 2.72 | 3.41 | 2.28 | 2.19 | |||
CO | Mean | 91.74 | 78.97 | 91.06 | 81.88 | 85.01 | 92.04 | 78.08 | 90.99 | 81.96 | 84.54 | ||
SD | 2.19 | 3.75 | 2.53 | 3.03 | 2.32 | 2.21 | 3.41 | 2.72 | 2.19 | 2.19 | |||
SBS-CFS | PD | Mean | 84.6 | 91.2 | 79.74 | 86.43 | 85.47 | 80.40 | 88.02 | 74.56 | 82.40 | 81.29 | |
SD | 2.42 | 2.42 | 3.44 | 2.12 | 2.19 | 2.42 | 2.71 | 3.57 | 2.20 | 2.24 | |||
CO | Mean | 91.58 | 79.74 | 91.20 | 82.99 | 85.47 | 88.71 | 74.56 | 88.02 | 78.46 | 81.29 | ||
SD | 2.23 | 3.44 | 2.42 | 2.72 | 2.19 | 2.42 | 3.57 | 2.71 | 2.83 | 2.24 | |||
MLP | CFS | PD | Mean | 81.9 | 86.68 | 77.27 | 82.59 | 81.98 | 78.34 | 81.16 | 74.13 | 77.59 | 77.65 |
SD | 2.37 | 2.63 | 3.24 | 2.13 | 2.08 | 2.44 | 3.17 | 3.3 | 2.45 | 2.24 | |||
CO | Mean | 87.37 | 77.27 | 86.68 | 79.79 | 81.98 | 82.5 | 74.13 | 81.16 | 75.67 | 77.65 | ||
SD | 2.2 | 3.24 | 2.63 | 2.52 | 2.08 | 2.55 | 3.3 | 3.17 | 2.62 | 2.24 | |||
SBS | PD | Mean | 83.28 | 87.74 | 78.92 | 84.04 | 83.33 | 82.89 | 86.37 | 78.71 | 82.97 | 82.54 | |
SD | 2.4 | 2.45 | 3.31 | 2.07 | 2.07 | 2.42 | 2.93 | 3.24 | 2.24 | 2.09 | |||
CO | Mean | 88.30 | 78.92 | 87.74 | 81.07 | 83.33 | 88.03 | 78.71 | 86.37 | 80.61 | 82.54 | ||
SD | 2.13 | 3.31 | 2.45 | 2.60 | 2.07 | 2.16 | 3.24 | 2.93 | 2.49 | 2.09 | |||
SBS-CFS | PD | Mean | 82.12 | 88.08 | 77.59 | 83.63 | 82.84 | 81.66 | 82.54 | 77.95 | 79.81 | 80.24 | |
SD | 2.2 | 2.41 | 3.24 | 1.96 | 1.93 | 2.48 | 3.26 | 3.37 | 2.49 | 2.23 | |||
CO | Mean | 88.85 | 77.59 | 88.08 | 80.31 | 82.84 | 85.20 | 77.95 | 82.54 | 78.86 | 80.24 | ||
SD | 1.94 | 3.24 | 2.41 | 2.51 | 1.93 | 2.49 | 3.37 | 3.26 | 3.42 | 2.23 |
Model | FS | Label | M-SamEn | Dm-SamEn | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Sen | Spec | F1 | Acc | Pre | Sen | Spec | F1 | Acc | ||||
AW-KNN | CFS | 2 | Mean | 96.71 | 96.81 | 96.51 | 96.15 | 96.15 | 94.35 | 94.76 | 94.15 | 94.56 | 93.02 |
SD | 0.95 | 0.84 | 1.07 | 0.54 | 0.44 | 1.08 | 1.47 | 1.02 | 1.03 | 1.03 | |||
2.5 | Mean | 96.50 | 97.16 | 97.91 | 96.80 | 96.15 | 92.48 | 94.47 | 95.35 | 93.44 | 93.02 | ||
SD | 1.19 | 0.97 | 0.70 | 0.41 | 0.44 | 1.86 | 1.30 | 1.23 | 1.24 | 1.03 | |||
3 | Mean | 92.40 | 89.79 | 99.04 | 90.92 | 96.15 | 87.79 | 80.15 | 98.64 | 83.75 | 93.02 | ||
SD | 3.06 | 3.54 | 0.43 | 1.76 | 0.44 | 3.12 | 3.58 | 0.32 | 2.94 | 1.03 | |||
SBS | 2 | Mean | 97.12 | 97.29 | 96.96 | 97.20 | 96.72 | 97.06 | 96.53 | 96.89 | 96.79 | 96.23 | |
SD | 0.46 | 0.73 | 0.56 | 0.34 | 0.66 | 0.65 | 1.08 | 0.79 | 0.6 | 0.65 | |||
2.5 | Mean | 97.50 | 97.56 | 98.46 | 97.51 | 96.72 | 96.40 | 97.25 | 97.82 | 96.81 | 96.23 | ||
SD | 1.26 | 1.01 | 0.78 | 0.67 | 0.66 | 1.35 | 0.95 | 0.75 | 0.52 | 0.65 | |||
3 | Mean | 92.73 | 91.12 | 99.04 | 91.77 | 96.72 | 92.10 | 91.55 | 98.98 | 91.69 | 96.23 | ||
SD | 3.13 | 3.16 | 0.39 | 1.66 | 0.66 | 2.58 | 3.68 | 0.47 | 1.88 | 0.65 | |||
SBS-CFS | 2 | Mean | 97.20 | 96.97 | 97.10 | 97.08 | 96.48 | 94.86 | 95.04 | 94.64 | 94.94 | 94.02 | |
SD | 0.84 | 0.81 | 0.83 | 0.55 | 0.53 | 1.23 | 1.26 | 1.28 | 1.03 | 0.83 | |||
2.5 | Mean | 96.85 | 97.54 | 98.07 | 97.18 | 96.48 | 94.50 | 95.09 | 96.63 | 94.79 | 94.02 | ||
SD | 1.27 | 0.73 | 0.79 | 0.64 | 0.53 | 1.05 | 1.04 | 0.67 | 0.91 | 0.83 | |||
3 | Mean | 91.71 | 90.55 | 98.98 | 91.18 | 96.48 | 88.06 | 85.42 | 98.55 | 86.65 | 94.02 | ||
SD | 2.79 | 3.42 | 0.39 | 1.52 | 0.53 | 2.04 | 3.14 | 0.29 | 2.04 | 0.83 | |||
RBF-SVM | CFS | 2 | Mean | 96.76 | 97.45 | 96.58 | 97.15 | 96.72 | 93.56 | 94.72 | 93.29 | 94.12 | 92.84 |
SD | 0.95 | 0.96 | 0.97 | 0.71 | 0.67 | 1.61 | 1.39 | 1.43 | 1.24 | 1.18 | |||
2.5 | Mean | 97.82 | 97.36 | 98.71 | 97.59 | 96.72 | 93.00 | 93.86 | 95.82 | 93.40 | 92.84 | ||
SD | 0.79 | 0.89 | 0.46 | 0.59 | 0.67 | 1.54 | 1.72 | 0.76 | 1.18 | 1.18 | |||
3 | Mean | 92.73 | 90.98 | 99.11 | 91.68 | 96.72 | 88.24 | 80.79 | 98.61 | 84.23 | 92.84 | ||
SD | 3.06 | 3.88 | 0.35 | 2.12 | 0.67 | 2.44 | 3.5 | 0.39 | 1.95 | 1.18 | |||
SBS | 2 | Mean | 96.94 | 97.90 | 96.85 | 97.25 | 96.86 | 96.99 | 97.88 | 96.96 | 97.30 | 96.80 | |
SD | 0.67 | 0.85 | 0.73 | 0.49 | 0.43 | 0.90 | 0.73 | 0.81 | 0.68 | 0.82 | |||
2.5 | Mean | 98.10 | 97.62 | 98.86 | 97.84 | 96.86 | 97.94 | 97.58 | 98.78 | 97.75 | 96.80 | ||
SD | 0.78 | 1.05 | 0.47 | 0.57 | 0.43 | 0.66 | 1.01 | 0.38 | 0.68 | 0.82 | |||
3 | Mean | 93.97 | 89.69 | 98.26 | 91.58 | 96.86 | 92.09 | 90.92 | 98.89 | 91.37 | 96.80 | ||
SD | 2.98 | 4.53 | 0.38 | 2.36 | 0.43 | 2.65 | 4.12 | 0.42 | 2.39 | 0.82 | |||
SBS-CFS | 2 | Mean | 96.76 | 97.61 | 96.59 | 97.18 | 96.86 | 94.44 | 95.99 | 94.14 | 95.20 | 94.18 | |
SD | 0.95 | 1.12 | 0.94 | 0.78 | 0.77 | 1.02 | 1.60 | 0.89 | 1.13 | 1.1 | |||
2.5 | Mean | 97.91 | 97.64 | 98.76 | 97.78 | 96.86 | 95.61 | 94.54 | 97.43 | 95.06 | 94.18 | ||
SD | 0.79 | 0.97 | 0.52 | 0.56 | 0.77 | 1.88 | 1.41 | 1.04 | 1.48 | 1.1 | |||
3 | Mean | 93.90 | 90.73 | 99.23 | 91.94 | 96.86 | 87.78 | 84.41 | 98.48 | 85.86 | 94.18 | ||
SD | 3.85 | 4.13 | 0.44 | 2.42 | 0.77 | 2.36 | 3.32 | 0.345 | 1.65 | 1.1 | |||
MLP | CFS | 2 | Mean | 92.91 | 93.49 | 92.37 | 93.18 | 91.26 | 89.90 | 88.31 | 90.18 | 89.76 | 86.78 |
SD | 1.24 | 1.28 | 1.56 | 0.74 | 0.56 | 1.82 | 2.45 | 1.93 | 1.36 | 1.65 | |||
2.5 | Mean | 91.19 | 90.28 | 94.70 | 90.70 | 91.26 | 87.12 | 88.11 | 89.05 | 85.26 | 86.78 | ||
SD | 1.07 | 1.73 | 0.67 | 0.94 | 0.56 | 3.89 | 2.07 | 2.52 | 2.27 | 1.65 | |||
3 | Mean | 84.06 | 84.19 | 98.18 | 83.93 | 91.26 | 75.98 | 69.37 | 97.32 | 72.03 | 86.78 | ||
SD | 5.45 | 5.11 | 0.76 | 4.27 | 0.56 | 6.81 | 6.27 | 0.572 | 5.88 | 1.65 | |||
SBS | 2 | Mean | 93.28 | 93.98 | 92.98 | 93.59 | 91.78 | 92.93 | 93.08 | 92.65 | 92.99 | 90.77 | |
SD | 1.42 | 1.35 | 1.39 | 1.06 | 0.88 | 1.35 | 1.08 | 1.38 | 0.92 | 0.71 | |||
2.5 | Mean | 91.73 | 91.93 | 95.01 | 91.81 | 91.78 | 89.51 | 91.29 | 93.52 | 90.32 | 90.77 | ||
SD | 1.32 | 1.33 | 0.85 | 0.81 | 0.88 | 2.32 | 1.92 | 1.32 | 0.87 | 0.71 | |||
3 | Mean | 84.89 | 82.03 | 98.13 | 82.83 | 91.78 | 84.71 | 79.32 | 98.18 | 81.78 | 90.77 | ||
SD | 4.77 | 4.51 | 0.50 | 2.76 | 0.88 | 4.36 | 4.58 | 0.67 | 2.55 | 0.71 | |||
SBS-CFS | 2 | Mean | 92.05 | 92.66 | 91.67 | 92.31 | 90.19 | 89.70 | 88.15 | 88.59 | 88.97 | 95.75 | |
SD | 1.40 | 1.63 | 1.40 | 1.34 | 1.22 | 1.83 | 1.98 | 1.71 | 1.59 | 1.36 | |||
2.5 | Mean | 89.59 | 90.24 | 93.64 | 89.91 | 90.19 | 83.35 | 85.53 | 89.49 | 84.61 | 95.75 | ||
SD | 2.39 | 1.89 | 1.42 | 1.15 | 1.22 | 2.15 | 1.63 | 1.40 | 1.62 | 1.36 | |||
3 | Mean | 83.16 | 79.05 | 98.12 | 80.74 | 90.19 | 75.91 | 74.64 | 97.67 | 75.31 | 95.75 | ||
SD | 4.56 | 5.67 | 0.512 | 4.06 | 1.22 | 6.96 | 6.17 | 0.69 | 5.20 | 1.36 |
Model | FS | Label | M-SamEn | Dm-SamEn | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Sen | Spec | F1 | Acc | Pre | Sen | Spec | F1 | Acc | ||||
AW-KNN | CFS | 2 | Mean | 87.74 | 81.8 | 92.38 | 82.89 | 85.90 | 84.66 | 78.55 | 91.56 | 79.87 | 79.49 |
SD | 3.27 | 4.45 | 2.25 | 3.09 | 2.66 | 3.74 | 4.91 | 2.25 | 3.78 | 2.88 | |||
2.5 | Mean | 87.11 | 81.87 | 93.66 | 82.26 | 85.90 | 79.18 | 81.89 | 87.57 | 78.16 | 79.49 | ||
SD | 3.4 | 5.32 | 1.71 | 4.2 | 2.66 | 3.76 | 4.92 | 2.52 | 3.95 | 2.88 | |||
3 | Mean | 87.55 | 91.01 | 91.30 | 87.48 | 85.90 | 83.19 | 78.04 | 90.10 | 77.71 | 79.49 | ||
SD | 3.19 | 3.41 | 2.63 | 2.90 | 2.66 | 3.8 | 5.54 | 2.61 | 4.29 | 2.88 | |||
SBS | 2 | Mean | 88.21 | 82.30 | 92.13 | 82.43 | 85.37 | 86.30 | 82.29 | 91.46 | 81.82 | 83.77 | |
SD | 3.55 | 4.58 | 2.71 | 3.69 | 2.85 | 3.67 | 4.64 | 2.54 | 3.76 | 3.05 | |||
2.5 | Mean | 88.10 | 82.75 | 94.16 | 85.02 | 85.37 | 86.49 | 82.18 | 92.33 | 81.73 | 83.77 | ||
SD | 3.53 | 5.3 | 1.74 | 2.85 | 2.85 | 3.37 | 5.11 | 2.13 | 4.09 | 3.05 | |||
3 | Mean | 87.59 | 91.07 | 91.76 | 85.37 | 85.37 | 86.6 | 86.8 | 91.85 | 85.04 | 83.77 | ||
SD | 3.17 | 3.98 | 2.36 | 3.28 | 2.85 | 3.77 | 4.97 | 2.39 | 3.77 | 3.05 | |||
SBS-CFS | 2 | Mean | 87.13 | 82.41 | 92.38 | 83.25 | 85.27 | 85.40 | 80.23 | 91.88 | 80.95 | 81.52 | |
SD | 3.81 | 4.66 | 2.48 | 3.46 | 2.83 | 3.5 | 4.44 | 2.18 | 3.55 | 2.97 | |||
2.5 | Mean | 88.75 | 82.77 | 94.49 | 83.64 | 85.27 | 80.51 | 81.8 | 88.77 | 79.22 | 81.52 | ||
SD | 3.23 | 5.19 | 1.67 | 4.21 | 2.83 | 3.67 | 4.88 | 2.52 | 3.93 | 2.97 | |||
3 | Mean | 87.28 | 90.63 | 91.03 | 86.82 | 85.27 | 85.89 | 82.54 | 91.62 | 81.36 | 81.52 | ||
SD | 3.24 | 3.8 | 2.68 | 3.02 | 2.83 | 3.26 | 4.94 | 2.19 | 3.82 | 2.97 | |||
RBF-SVM | CFS | 2 | Mean | 85.58 | 89.67 | 89.40 | 85.72 | 86.26 | 80.67 | 83.63 | 88.66 | 81.14 | 81.35 |
SD | 3.78 | 3.46 | 3.30 | 3.25 | 2.83 | 3.84 | 4.47 | 2.43 | 3.35 | 2.76 | |||
2.5 | Mean | 87.03 | 85.45 | 92.83 | 84.08 | 86.26 | 81.99 | 82.81 | 88.91 | 80.46 | 81.35 | ||
SD | 3.44 | 5.04 | 2.01 | 4.12 | 2.83 | 3.68 | 4.35 | 2.69 | 3.52 | 2.76 | |||
3 | Mean | 94.80 | 83.66 | 97.16 | 86.37 | 86.26 | 88.65 | 77.6 | 94.44 | 80.14 | 81.35 | ||
SD | 2.2 | 5.53 | 1.38 | 4.19 | 2.83 | 3.07 | 5.27 | 1.63 | 4.08 | 2.76 | |||
SBS | 2 | Mean | 85.81 | 88.79 | 90.02 | 86.61 | 86.52 | 83.64 | 89.36 | 88.70 | 85.66 | 86.23 | |
SD | 3.88 | 3.58 | 2.99 | 3.33 | 2.77 | 4.15 | 3.81 | 3.08 | 3.12 | 2.85 | |||
2.5 | Mean | 87.19 | 85.44 | 92.63 | 84.26 | 86.52 | 86.56 | 84.95 | 92.70 | 83.74 | 86.23 | ||
SD | 3.55 | 4.85 | 2.14 | 3.9 | 2.77 | 3.37 | 4.99 | 1.9 | 4.03 | 2.85 | |||
3 | Mean | 95.02 | 85.31 | 97.12 | 86.78 | 86.52 | 96.05 | 84.36 | 97.93 | 87.72 | 86.23 | ||
SD | 2.3 | 5.34 | 1.37 | 4.2 | 2.77 | 1.75 | 5.27 | 0.92 | 3.88 | 2.85 | |||
SBS-CFS | 2 | Mean | 85.6 | 90.44 | 89.42 | 86.19 | 86.40 | 80.82 | 83.31 | 88.33 | 80.48 | 81.31 | |
SD | 3.73 | 3.3 | 3.25 | 3.09 | 2.76 | 4.26 | 5.01 | 2.72 | 3.91 | 3.07 | |||
2.5 | Mean | 85.85 | 84.02 | 92.79 | 83.68 | 86.40 | 81.46 | 81.31 | 88.77 | 79.08 | 81.31 | ||
SD | 3.83 | 5.27 | 1.94 | 4.17 | 2.76 | 3.88 | 4.81 | 2.71 | 3.91 | 3.07 | |||
3 | Mean | 95.26 | 84.74 | 97.38 | 87.34 | 86.40 | 90.67 | 79.29 | 94.86 | 92.18 | 81.31 | ||
SD | 1.98 | 5.38 | 1.17 | 4.05 | 2.76 | 3.11 | 5.48 | 2.03 | 4.36 | 3.07 | |||
MLP | CFS | 2 | Mean | 82.87 | 83.77 | 89.34 | 81.73 | 81.67 | 78.83 | 80.84 | 87.29 | 77.63 | 77.47 |
SD | 3.55 | 3.8 | 2.76 | 3.29 | 2.7 | 3.7 | 4.61 | 2.46 | 3.61 | 2.81 | |||
2.5 | Mean | 78.81 | 82.24 | 87.42 | 78.65 | 81.67 | 76.65 | 76.72 | 85.66 | 74.19 | 77.47 | ||
SD | 3.48 | 3.48 | 2.43 | 3.61 | 2.7 | 3.85 | 4.62 | 2.81 | 3.51 | 2.81 | |||
3 | Mean | 92.51 | 79.01 | 95.74 | 81.9 | 81.67 | 86.48 | 74.86 | 93.26 | 77.40 | 77.47 | ||
SD | 2.44 | 5.24 | 1.66 | 4.06 | 2.7 | 3.3 | 5.25 | 1.76 | 4.08 | 2.81 | |||
SBS | 2 | Mean | 80.75 | 81.74 | 88.16 | 79.36 | 80.37 | 78.61 | 79.83 | 87.89 | 78.53 | 79.03 | |
SD | 3.97 | 4.34 | 2.9 | 3.72 | 2.91 | 4.15 | 4.6 | 2.77 | 3.79 | 2.84 | |||
2.5 | Mean | 78.73 | 80.83 | 87.63 | 77.52 | 80.37 | 76.59 | 79.52 | 85.77 | 79.03 | 79.03 | ||
SD | 4.01 | 5.15 | 2.55 | 4.26 | 2.91 | 3.95 | 4.82 | 2.71 | 3.83 | 2.84 | |||
3 | Mean | 90.58 | 78.53 | 94.75 | 81.44 | 80.37 | 89.8 | 77.73 | 94.87 | 80.78 | 79.03 | ||
SD | 3.15 | 5.03 | 1.96 | 3.89 | 2.91 | 3.13 | 5.53 | 1.72 | 4.2 | 2.84 | |||
SBS-CFS | 2 | Mean | 81.54 | 83.93 | 88.15 | 80.86 | 81.03 | 77.56 | 80.43 | 85.52 | 76.84 | 77.23 | |
SD | 3.62 | 3.97 | 2.89 | 3.32 | 2.86 | 4.25 | 4.69 | 3.25 | 3.97 | 3.48 | |||
2.5 | Mean | 80.03 | 82.06 | 88.19 | 78.92 | 81.03 | 77.06 | 75.37 | 87.12 | 73.47 | 77.23 | ||
SD | 3.73 | 4.89 | 2.65 | 4.04 | 2.86 | 3.99 | 5.46 | 2.49 | 4.26 | 3.48 | |||
3 | Mean | 91.26 | 77.10 | 95.19 | 80.02 | 81.03 | 86.76 | 75.89 | 93.20 | 78.76 | 77.23 | ||
SD | 2.68 | 4.26 | 1.67 | 4.15 | 2.86 | 3.76 | 5.04 | 2.26 | 4.20 | 3.48 |
Model | FS | Inference Throughput ( obj/s) | |||
---|---|---|---|---|---|
PD Classification | Severity Classification | ||||
M-SamEn | DM-SamEn | M-SamEn | DM-SamEn | ||
CFS | 0.24 | 0.55 | 0.22 | 0.52 | |
AW-KNN | SBS | 0.18 | 0.41 | 0.18 | 0.43 |
SBS-CFS | 0.24 | 0.61 | 0.24 | 0.57 | |
CFS | 0.4 | 0.51 | 0.16 | 0.34 | |
RBF-SVM | SBS | 0.34 | 0.51 | 0.15 | 0.31 |
SBS-CFS | 0.37 | 0.63 | 0.16 | 0.59 | |
CFS | 1.34 | 1.99 | 0.92 | 1.7 | |
MLP | SBS | 1.04 | 1.7 | 0.75 | 1.33 |
SBS-CFS | 1.27 | 2.05 | 0.99 | 1.76 |
Model | FS | CO2 Emissions ( kg/obj) | |||||||
---|---|---|---|---|---|---|---|---|---|
PD Classification | Severity Classification | ||||||||
M-SamEn | DM-SamEn | M-SamEn | DM-SamEn | ||||||
Train | Test | Train | Test | Train | Test | Train | Test | ||
CFS | 0.23 | 0.194 | 0.083 | 0.081 | 0.132 | 0.136 | 0.056 | 0.062 | |
AW-KNN | SBS | 0.298 | 0.251 | 0.12 | 0.11 | 0.169 | 0.171 | 0.07 | 0.077 |
SBS-CFS | 0.211 | 0.182 | 0.073 | 0.07 | 0.123 | 0.129 | 0.049 | 0.056 | |
CFS | 0.915 | 0.117 | 1.22 | 0.08 | 1.027 | 0.1889 | 1.06 | 0.088 | |
RBF-SVM | SBS | 0.937 | 0.133 | 0.811 | 0.085 | 1.071 | 0.201 | 0.789 | 0.095 |
SBS-CFS | 0.872 | 0.115 | 1.04 | 0.068 | 1.001 | 0.18 | 0.87 | 0.055 | |
CFS | 0.321 | 0.038 | 0.31 | 0.023 | 0.28 | 0.035 | 0.254 | 0.02 | |
MLP | SBS | 0.348 | 0.047 | 0.31 | 0.027 | 0.171 | 0.043 | 0.253 | 0.026 |
SBS-CFS | 0.317 | 0.038 | 0.293 | 0.022 | 0.272 | 0.034 | 0.257 | 0.019 |
Existing Research | Algorithm | Task | Accuracy | |
---|---|---|---|---|
[32] | Adam-LSTM | PD Classification | 98.60% | |
Severity Classification | 96.6% | |||
[33] | PSR, SEE, DQSD, VMD, and SVM | PD Classification | 98.92% | |
Severity Classification | 93.37% | |||
[34] | Parallel 2D-DCNN | PD Classification | 95.5% | |
Severity Classification | 95.75% | |||
[35] | Transformer 1D-STE | PD Classification | 95.2% | |
Severity Classification | N/A | |||
[36] | PSR, EMD, and NN | PD Classification | 98.8% | |
Severity Classification | N/A | |||
[37] | RFE, and RF | PD Classification | 94.28% | |
Severity Classification | N/A | |||
[38] | PARAFAC, and TD | PD Classification | 97% | |
Severity Classification | N/A | |||
Proposed Algorithm | AW-KNN, RBF-SVM, MLP | PD Classification | 98.38% | |
Severity Classification | 96.80% | |||
DQSD: Factor Signal Decomposition VMD: Variational Mode Decomposition PSR: Phase Space Reconstruction SEE: Shannon Energy Envelope 1D-STE: 1D-Spatial Transformer Encoder | EMD: Empirical Mode Decomposition RFE: Recursive Feature Elimination RF: Random Forest TD: Tucker Decomposition PARAFAC: Parallel Factor Analysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.T.P.; Tran, M.K.P.; Nakano, T.; Tran, T.H.; Nguyen, Q.D.N. An Approach for Detecting Parkinson’s Disease by Integrating Optimal Feature Selection Strategies with Dense Multiscale Sample Entropy. Information 2025, 16, 1. https://doi.org/10.3390/info16010001
Nguyen MTP, Tran MKP, Nakano T, Tran TH, Nguyen QDN. An Approach for Detecting Parkinson’s Disease by Integrating Optimal Feature Selection Strategies with Dense Multiscale Sample Entropy. Information. 2025; 16(1):1. https://doi.org/10.3390/info16010001
Chicago/Turabian StyleNguyen, Minh Tai Pham, Minh Khue Phan Tran, Tadashi Nakano, Thi Hong Tran, and Quoc Duy Nam Nguyen. 2025. "An Approach for Detecting Parkinson’s Disease by Integrating Optimal Feature Selection Strategies with Dense Multiscale Sample Entropy" Information 16, no. 1: 1. https://doi.org/10.3390/info16010001
APA StyleNguyen, M. T. P., Tran, M. K. P., Nakano, T., Tran, T. H., & Nguyen, Q. D. N. (2025). An Approach for Detecting Parkinson’s Disease by Integrating Optimal Feature Selection Strategies with Dense Multiscale Sample Entropy. Information, 16(1), 1. https://doi.org/10.3390/info16010001