Electrochemical Hydrogen Pump/Compressor in Single- and Double-Stage Regime
<p>Operation principle of electrochemical hydrogen pump/compressor.</p> "> Figure 2
<p>Principal of operation of electrochemical hydrogen pump/compressor under stack operation (<b>a</b>) with serial electrical connection (bipolarity) and (<b>b</b>) with parallel electrical connection.</p> "> Figure 3
<p>XRD spectra of commercial GDEs applicable for HT-PEMFC with 40%wt. and catalytic loading of 0.38 mg<sub>pt</sub>·cm<sup>2</sup> at the diffraction angle of 2θ in ranges of (<b>a</b>) 10° to 90° and (<b>b</b>) 40° to 90°.</p> "> Figure 4
<p>Voltampere characteristics U/j (<b>a</b>) and polarization curves E/j (<b>b</b>) of MEA with commercial gas diffusion electrode (0.38 mg<sub>Pt</sub>·cm<sup>−2</sup>) recorded at room temperature (25 C) with a potential scan rate of 1 mV·s<sup>−1</sup>.</p> "> Figure 5
<p>U/j curves of membrane electrode assembly in EHP/C regime with 51.3 mL·min<sup>−1</sup> hydrogen inflow at varying temperature; potential scan rate, 1 mV·s<sup>−1</sup>.</p> "> Figure 6
<p>Influence of differential pressure on the cell voltage at a constant current density of 0.6 A·cm<sup>−2</sup>, temperature of 60 °C, and hydrogen inflow rate of 51.3 mL·min<sup>−1</sup>.</p> "> Figure 7
<p>Influence of differential pressure (P<sub>diff</sub>) on hydrogen crossover (Jx-over,/mole cm<sup>−2</sup>·s<sup>−1</sup>) at different temperatures.</p> "> Figure 8
<p>Comparative data for MEAs with different working areas: (<b>a</b>) U/Pdiff curves recorded at a current density of 0.6 A·cm<sup>−2</sup>, temperature of 60 °C, and hydrogen inflow rate 51.3 mL·min; (<b>b</b>) calculated difference in the cell voltage measured at 1 and 10 bar differential pressure.</p> "> Figure 9
<p>U/P<sub>diff</sub> curve of the membrane electrode assembly in a double-stage compression regime with a current density of 0.6 A·cm<sup>−2</sup>, temperature of 60 °C, and a hydrogen inflow rate in the first single cell of 51.3 mL·min.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Gas Diffusion Electrodes
2.2. Physical Characterization of the Samples
2.3. MEA Preparation and Electrochemical Characterization
2.4. Electrochemical Characterization
2.4.1. Hydrogen Source
2.4.2. Hydrogen Crossover Measurements
2.5. Artificial Intelligent Tools (AI Model)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Nielsen, C.P.; Song, S.; McElroy, M.B. Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nat. Energy 2022, 7, 955–965. [Google Scholar] [CrossRef]
- McCay, M.H.; Shafiee, S. Hydrogen: An energy carrier. In Future Energy; Durban, Laurel House, Stratton on the Fosse, United Kingdom; Elsevier: Amsterdam, The Netherlands, 2020; pp. 475–493. [Google Scholar]
- Lu, W.-C. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries. Int. J. Environ. Res. Public Health 2017, 14, 1436. [Google Scholar] [CrossRef] [PubMed]
- Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Cardarelli, F. Materials Handbook: A Concise Desktop Reference; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Lototskyy, M.V.; Yartys, V.A.; Pollet, B.G.; Bowman, R.C., Jr. Metal hydride hydrogen compressors: A review. Int. J. Hydrogen Energy 2014, 39, 5818–5851. [Google Scholar] [CrossRef]
- Dehouche, Z.; Grimard, N.; Laurencelle, F.; Goyette, J.; Bose, T.K. Hydride alloys properties investigations for hydrogen sorption compressor. J. Alloys Compd. 2005, 399, 224–236. [Google Scholar] [CrossRef]
- Zou, J.; Han, N.; Yan, J.; Feng, Q.; Wang, Y.; Zhao, Z.; Fan, J.; Zeng, L.; Li, H.; Wang, H. Electrochemical compression technologies for high-pressure hydrogen: Current status, challenges, and perspective. Electrochem. Energy Rev. 2020, 3, 690–729. [Google Scholar] [CrossRef]
- Shah, M.; Veziroğlu, T.N. Hydrogen Energy: Applications and Perspectives. Int. J. Hydrogen Energy 2018, 43, 15211–15226. [Google Scholar]
- Yang, R.; Kweon, H.; Kim, K. Preliminary study for the commercialization of an electrochemical hydrogen compressor. Energies 2023, 16, 3128. [Google Scholar] [CrossRef]
- Kee, B.L.; Curran, D.; Zhu, H.; Braun, R.J.; DeCaluwe, S.C.; Kee, R.J.; Ricote, S. Thermodynamic insights for electrochemical hydrogen compression with proton-conducting membranes. Membranes 2019, 9, 77. [Google Scholar] [CrossRef]
- Kim, C.; Gong, M.; Lee, J.; Na, Y. Minimizing specific energy consumption of electrochemical hydrogen compressor at various operating conditions using pseudo-2D model simulation. Membranes 2022, 12, 1214. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Abad, A.; Balcombe, P.; Dodds, P.; Ekins, P.; Shah, N.; Ward, K. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Nordio, M.; Rizzi, F.; Manzolini, G.; Mulder, M.; Raymakers, L.; Van Sint Annaland, M.; Gallucci, F. Experimental and modelling study of an electrochemical hydrogen compressor. Chem. Eng. J. 2019, 369, 432–442. [Google Scholar] [CrossRef]
- Aziz, M.; Aryal, U.R.; Prasad, A.K. Optimization of electrochemical hydrogen compression through computational modeling. Int. J. Hydrogen Energy 2022, 47, 33195–33208. [Google Scholar] [CrossRef]
- Chouhan, A.; Bahar, B.; Prasad, A.K. Effect of back-diffusion on the performance of an electrochemical hydrogen compressor. Int. J. Hydrogen Energy 2020, 45, 10991–10999. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, J.; Kim, S.Y.; Chu, C.H.; Rho, K.H.; Kim, M.; Kim, D.K. Parametric study on the performance of electrochemical hydrogen compressors. Renew. Energy 2022, 199, 1176–1188. [Google Scholar]
- Omrani, R.; Shabani, B. Hydrogen crossover in proton exchange membrane electrolysers: The effect of current density, pressure, temperature, and compression. Electrochim. Acta 2021, 377, 138085. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, J.; Tang, Y.; Song, C.; Shen, J.; Song, D.; Zhang, J. Hydrogen crossover in high-temperature PEM fuel cells. J. Power Sources 2007, 167, 25–31. [Google Scholar] [CrossRef]
- Zhang, J.; Song, C.; Zhang, J.; Baker, R.; Zhang, L. Understanding the effects of backpressure on PEM fuel cell reactions and performance. J. Electroanal. Chem. 2013, 688, 130–136. [Google Scholar] [CrossRef]
- Ströbel, R.; Oszcipok, M.; Fasil, M.; Rohland, B.; Jörissen, L.; Garche, J. The compression of hydrogen in an electrochemical cell based on a PE fuel cell design. J. Power Sources 2002, 105, 208–215. [Google Scholar] [CrossRef]
- Chouhan, A.; Aryal, U.R.; Bahar, B.; Prasad, A.K. Analysis of an electrochemical compressor stack. Int. J. Hydrogen Energy 2020, 45, 31452–31465. [Google Scholar] [CrossRef]
- Chu, C.; Kim, M.; Kim, Y.; Park, S.; Beom, T.; Kim, S.; Kim, D.K. Serial electrochemical hydrogen compressor stack for high-pressure compression. Appl. Energy 2025, 383, 125397. [Google Scholar] [CrossRef]
- Long, R.; Quan, S.; Zhang, L.; Chen, Q.; Zeng, C.; Ma, L. Current sharing in parallel fuel cell generation system based on model predictive control. Int. J. Hydrogen Energy 2015, 40, 11587–11594. [Google Scholar] [CrossRef]
- Slavcheva, E.; Borisov, G.; Lefterova, E.; Petkucheva, E.; Boshnakova, I. Ebonex supported iridium as anode catalyst for PEM water electrolysis. Int. J. Hydrogen Energy 2015, 40, 11356–11361. [Google Scholar] [CrossRef]
- Borisov, G.; Borisov, N.; Heiss, J.; Schnakenberg, U.; Slavcheva, E. PEM electrochemical hydrogen compression with sputtered Pt catalysts. Membranes 2023, 13, 594. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.R. In Situ PEMFC Fuel Crossover & Electrical Short Circuit Measurement. Fuel Cell Magazine, August/September 2008; pp. 8–9. Available online: https://www.scribner.com/files/tech-papers/Scribner-on-Crossover-Fuel-Cell-Magazine-2008.pdf (accessed on 28 February 2025).
- Su, H.; Pasupathi, S.; Bladergroen, B.; Linkov, V.; Pollet, B.G. Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer. Int. J. Hydrogen Energy 2013, 38, 11370–11378. [Google Scholar] [CrossRef]
- Lopez-Haro, M.; Guétaz, L.; Printemps, T.; Morin, A.; Escribano, S.; Jouneau, P.-H.; Bayle-Guillemaud, P.; Chandezon, F.; Gebel, G. Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat. Commun. 2014, 5, 5229. [Google Scholar] [CrossRef]
Element | Weight, % |
---|---|
Carbon (C) | 34.20 |
Fluorine (F) | 29.76 |
Platinum (Pt) | 29.04 |
Number of Points | Measured Thickness, µm | Deviation, µm |
---|---|---|
Point 1 | 254 µm | 4 µm |
Point 2 | 256 µm | 6 µm |
Point 3 | 253 µm | 3 µm |
Point 4 | 252 µm | 2 µm |
Point 5 | 256 µm | 6 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borisov, G.; Borisov, N.; Slavcheva, E. Electrochemical Hydrogen Pump/Compressor in Single- and Double-Stage Regime. Hydrogen 2025, 6, 14. https://doi.org/10.3390/hydrogen6010014
Borisov G, Borisov N, Slavcheva E. Electrochemical Hydrogen Pump/Compressor in Single- and Double-Stage Regime. Hydrogen. 2025; 6(1):14. https://doi.org/10.3390/hydrogen6010014
Chicago/Turabian StyleBorisov, Galin, Nevelin Borisov, and Evelina Slavcheva. 2025. "Electrochemical Hydrogen Pump/Compressor in Single- and Double-Stage Regime" Hydrogen 6, no. 1: 14. https://doi.org/10.3390/hydrogen6010014
APA StyleBorisov, G., Borisov, N., & Slavcheva, E. (2025). Electrochemical Hydrogen Pump/Compressor in Single- and Double-Stage Regime. Hydrogen, 6(1), 14. https://doi.org/10.3390/hydrogen6010014