Three-Dimensional Digital Documentation for the Conservation of the Prambanan Temple Cluster Using Guided Multi-Sensor Techniques
<p>The Prambanan Temple cluster’s location and its concentric layout arrangement.</p> "> Figure 2
<p>The proposed workflow. Solid arrows represent the main data flow, while the dashed arrows represent the supporting data flow.</p> "> Figure 3
<p>Data acquisition concept for three different scale levels. Darker colors represent larger scale levels, while lighter colors represent smaller scale levels. Google Earth and SketchUp 3D Warehouse provide background images for the left and center illustrations, respectively.</p> "> Figure 4
<p>Distribution of GDCPs (<b>a</b>) and FDCPs (<b>b</b>).</p> "> Figure 5
<p>Summary of the quality assessment of each sensor processing result.</p> "> Figure 6
<p>Orthophoto result of the sites that cover the first and second courtyards.</p> "> Figure 7
<p>Registered and georeferenced 3D point clouds from (<b>a</b>) TLS 2020 and (<b>b</b>) TLS 2023.</p> "> Figure 8
<p>Point cloud model from aerial UAV Lidar.</p> "> Figure 9
<p>Dense point cloud model from CR-UAVP integrated with terrestrial photogrammetry.</p> "> Figure 10
<p>Point cloud results from multiple sensors and their combinations (the example of the Brahma Temple). (<b>a</b>) Nadiral UAV Lidar; (<b>b</b>) TLS; (<b>c</b>) CR-UAV photogrammetry; (<b>d</b>) terrestrial photogrammetry; (<b>e</b>) combination of each sensor point clouds. The true color and texture of the temple are presented by (<b>b</b>–<b>d</b>), while (<b>a</b>) only displays the scalar color scale based on the Z coordinate.</p> "> Figure 11
<p>C2C and M3C2 Euclidean distance analysis results of the six main temples of interest.</p> "> Figure 12
<p>C2C results of the corridor part of the Shiva Temple.</p> "> Figure 13
<p>Four sample measurements captured on the base part (Bhurloka) of a single temple.</p> "> Figure 14
<p>Rectangular-based planimetric proportions of the Garuda, Nandhi, and Hamsha Temples.</p> "> Figure 15
<p>The parameter of the Cartesian–cruciform-based planimetric proportion.</p> "> Figure 16
<p>Cartesian–cruciform planimetric proportion of the Shiva, Vishnu, and Brahma Temples (Bhurloka part).</p> "> Figure 17
<p>Cartesian–cruciform planimetric proportion of the Shiva, Vishnu, and Brahma Temples (Bhuvarloka part).</p> "> Figure 18
<p>Cartesian–cruciform planimetric proportion of the Garuda, Nandhi, and Hamsha Temples (Bhuvarloka part).</p> "> Figure 19
<p>Cartesian–cruciform planimetric proportion of the Shiva, Vishnu, and Brahma Temples (Svarloka part).</p> "> Figure 20
<p>Cartesian–cruciform planimetric proportion of the Garuda, Nandhi, and Hamsha Temples (Svarloka part).</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Materials and Methods
2.2. Data Acquisition for Geometric Control and Check
2.3. Data Acquisition for the Geometry of the Main Temple
2.4. Data Processing
2.5. Data Integration
2.6. Evaluation and Assessment
2.7. Visualization
2.8. Search for Architectural Rules and Patterns
3. Results
3.1. The Geometric Quality of Each Sensor
3.1.1. Individual Assessment of Photogrammetry Data
3.1.2. Individual Assessment of TLS Data
3.1.3. Individual Assessment of Aerial Lidar Data
3.1.4. Individual Assessment of Close-Range UAV and Terrestrial Photogrammetry Data
3.1.5. Summary of the Quality Assessment
3.2. Combined 3D Point Cloud Model from Multiple Sensors
3.3. Adjacency or Closeness Between Data (M3C2 and C2C) and Adjacency to Check Data
3.4. The Proof of the Existence of Several Architectural Design Attributes of the Temples
4. Discussion
4.1. How Does the Architectural Pattern Design (APD) Influence the Data Acquisition and Processing?
4.2. How Do They Complement Each Other, and Which Parts Remain Unrecorded or Missing?
4.3. Lesson Learned About Using Multi-Sensor to Document a Concentric Squared Layout of a Temple Cluster
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emeralda, M.I. The Advantages of Prambanan Temple Existence and Its Conservation. J. Bus. Hosp. Tour. 2015, 1, 15. [Google Scholar] [CrossRef]
- Khairunnisa, S.A.; Hidayat, T.; Orchiston, W.; Nikeu, N. Astronomical Aspects of the Prambanan Temple in Central Java, Indonesia. In Exploring the History of Southeast Asian Astronomy; Orchiston, W., Vahia, M.N., Eds.; Historical & Cultural Astronomy; Springer International Publishing: Cham, Switzerland, 2021; pp. 487–502. ISBN 978-3-030-62776-8. [Google Scholar]
- de Casparis, J.G. Prasasti Indonesia II; Selected Inscriptions from 7th to the 9th Century AD; Masa Baru: Bandung, Indonesia, 1956. [Google Scholar]
- Jordaan, R.E. In Praise of Prambanan: Dutch Essays on The Lord Jonggrang Temple Complex; Brill: Leiden, The Netherlands, 1996; ISBN 978-90-04-26042-9. [Google Scholar]
- Tanudirjo, D.A. Pemugaran Kembali Candi Siwa Pascagempa 2006: Perspektif Arkeologi. Bul. Narasimha 2011, 4, 15–22. [Google Scholar]
- Ohsumi, T.; Baba, K. Field Investigation on the Damage of Prambanan Temple, Housing and Infrastructure Caused by Earthquake in Central Java, Indonesia. Proc. JSCE Earthq. Eng. Symp. 2007, 29, 50–59. [Google Scholar] [CrossRef]
- Herwindo, R.P. Candi Prambanan dalam Perspektif Arsitektur. In Proceedings of the Diskusi dan Pameran: Kompleks Candi Prambanan Sebagai Warisan Umat Manusia; Universitas Katholik Parahyangan: Jakarta, Indonesia, 2010; pp. 1–16. [Google Scholar]
- Herwindo, R.P. Eksistensi Candi: Sebagai Karya Agung Arsitektur Indonesia di Asia Tenggara; PT Kanisius: Yogyakarta, Indonesia, 2018; ISBN 979-21-5517-1. [Google Scholar]
- Setyastuti, A. Belajar dari Kearifan Lokal Nenek Moyang dalam Rekayasa Lahan dan Pembangunan Candi Prambanan. Bul. Narasimha 2011, 4, 10–14. [Google Scholar]
- Ayuati, M.S. Studi Kelayakan Candi Perwara Deret I No. 5 Bagian dari Upaya Pelestarian Candi Prambanan. Bul. Narasimha 2019, 12, 35–43. [Google Scholar]
- Setyastuti, A. Daya Dukung Fisik Zona 1 Candi Prambanan. Bul. Narasimha 2010, 3, 32–45. [Google Scholar]
- Atmadi, P. Some Architectural Design Principles of Temples in Java: A Study Through the Buildings Projection on the Reliefs of Borobudur Temple, 2nd ed.; Gadjah Mada University Press: Yogyakarta, Indonesia, 1988; ISBN 979-420-085-9. [Google Scholar]
- Datta, K. Relational Aspects of Hindu Temple Architecture Design: The Case of Candi Siwa & Lingaraja Temple. In Proceedings of the Conference Proceedings-International Conference on Built Environment, Science, and Technology (ICON-BEST 2021), Virtual, 20–21 February 2021; p. 122. [Google Scholar]
- Martinus, A.; Herwindo, R.P. The Comparative Study on Architectural Typo-Morphology of Borobudur-Prambanan Temple and Angkor Wat, Case Study on Mass Order, Floor Plan, Figure and Ornaments. Ris. Arsit. RISA 2018, 2, 335–359. [Google Scholar] [CrossRef]
- Sardar, D.; Kulkarni, S.Y. Role of Fractal Geometry in Indian Hindu Temple Architecture. Int. J. Eng. Res. Technol. 2015, V4, IJERTV4IS050709. [Google Scholar] [CrossRef]
- Saelee, C.; Riyaprao, O.; Komonjinda, S.; Sriboonrueang, K. An Archaeoastronomical Investigation of Vaastu Shastra Principles (Vedic Architecture) Implemented in the City Planning of Ancient Chiang Mai. In Exploring the History of Southeast Asian Astronomy; Orchiston, W., Vahia, M.N., Eds.; Historical & Cultural Astronomy; Springer International Publishing: Cham, Switzerland, 2021; pp. 461–485. ISBN 978-3-030-62776-8. [Google Scholar]
- Muryamto, R.; Taftazani, M.I.; Yulaikhah, Y.; Cahyono, B.K.; Prasidya, A.S. Development and Definition of Prambanan Temple Deformation Monitoring Control Points. J. Geospat. Inf. Sci. Eng. 2019, 1, 81–86. [Google Scholar] [CrossRef]
- Adrisijanti, I.; Putranto, A.; Ngesti, V. Site Conservation Assesment Report: Prambanan Temple Compound Indonesia. 2011. Available online: http://ghn.globalheritagefund.org/uploads/documents/document_1944.pdf (accessed on 28 June 2021).
- Suryolelono, K.B. Candi Prambanan Pasca Gempa Bumi. Forum Tek. Sipil 2007, XVII, 594–603. [Google Scholar]
- Tsuji, T.; Yamamoto, K.; Matsuoka, T.; Yamada, Y.; Onishi, K.; Bahar, A.; Meilano, I.; Abidin, H.Z. Earthquake Fault of the 26 May 2006 Yogyakarta Earthquake Observed by SAR Interferometry. Earth Planets Space 2009, 61, e29–e32. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Meilano, I.; Gamal, M.; Gumilar, I.; Abdullah, C.I. Deformasi Koseismik Dan Pascaseismik Gempa Yogyakarta 2006 Dari Hasil Survei GPS. Indones. J. Geosci. 2009, 4, 275–284. [Google Scholar] [CrossRef]
- Selvaggi, I.; Dellapasqua, M.; Franci, F.; Spangher, A.; Visintini, D.; Bitelli, G. 3D Comparison Towards a Comprehensive Analysis of a Building in Cultural Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–2, 1061–1066. [Google Scholar] [CrossRef]
- Dore, C.; Murphy, M. Current State of the Art Historic Building Information Modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 185–192. [Google Scholar] [CrossRef]
- Barontini, A.; Alarcon, C.; Sousa, H.S.; Oliveira, D.V.; Masciotta, M.G.; Azenha, M. Development and Demonstration of an HBIM Framework for the Preventive Conservation of Cultural Heritage. Int. J. Archit. Herit. 2021, 16, 1451–1473. [Google Scholar] [CrossRef]
- Bruno, N.; Roncella, R. HBIM for Conservation: A New Proposal for Information Modeling. Remote Sens. 2019, 11, 1751. [Google Scholar] [CrossRef]
- Oreni, D.; Brumana, R.; Della Torre, S.; Banfi, F.; Barazzetti, L.; Previtali, M. Survey Turned into HBIM: The Restoration and the Work Involved Concerning the Basilica Di Collemaggio after the Earthquake (L’Aquila). ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II–5, 267–273. [Google Scholar] [CrossRef]
- Jouan, P.; Hallot, P. Digital Twin: A HBIM-Based Methodology to Support Preventive Conservation of Historic Assets through Heritage Significance Awareness. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 609–615. [Google Scholar] [CrossRef]
- López, F.; Lerones, P.; Llamas, J.; Gómez-García-Bermejo, J.; Zalama, E. A Review of Heritage Building Information Modeling (H-BIM). Multimodal Technol. Interact. 2018, 2, 21. [Google Scholar] [CrossRef]
- Murtiyoso, A.; Grussenmeyer, P.; Suwardhi, D.; Awalludin, R. Multi-Scale and Multi-Sensor 3D Documentation of Heritage Complexes in Urban Areas. ISPRS Int. J. Geo Inf. 2018, 7, 483. [Google Scholar] [CrossRef]
- Del Pozo, S.; Rodríguez-Gonzálvez, P.; Sánchez-Aparicio, L.J.; Muñoz-Nieto, A.; Hernández-López, D.; Felipe-García, B.; González-Aguilera, D. Multispectral Imaging in Cultural Heritage Conservation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 155–162. [Google Scholar] [CrossRef]
- Chekole, S.D. Surveying with GPS, Total Station, and Terresterial Laser Scanner: A Comparative Study. Master’s Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2014. [Google Scholar]
- Jacobs, G. High Definition Surveying and Laser Scanning. GeoInformatics 2011, 14, 28–34. Available online: https://www.proquest.com/openview/4f01b6101ef02e065c811f759be022d2/1?pq-origsite=gscholar&cbl=178200 (accessed on 3 March 2022).
- Monego, M.; Fabris, M.; Menin, A.; Achilli, V. 3-D Survey Applied to Industrial Archaeology by TLS Methodology. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-5/W1, 449–455. [Google Scholar] [CrossRef]
- Pocobelli, D.P.; Boehm, J.; Bryan, P.; Still, J.; Grau-Bové, J. BIM for Heritage Science: A Review. Herit Sci 2018, 6, 30. [Google Scholar] [CrossRef]
- Petrie, G.; Toth, C.K. Terrestrial Laser Scanners. In Topographic Laser Ranging and Scanning: Principles and Processing; Taylor & Francis, CRC Press: Boca Raton, FL, USA, 2018; pp. 29–88. ISBN 978-1-4987-7227-3. [Google Scholar]
- Quintero, M.S.; Genechten, B.V.; Bruyne, M.D.; Ronald, P.; Hankar, M.; Barnes, S. Theory and Practice on Terrestrial Laser Scanning: Training Material Based on Practical Applications; Learning Tools for Advanced Three-Fimensional Surveying in Risk Awareness Project (3DRiskMapping); Universidad Politecnica de Valencia: Valencia, Spain, 2008. [Google Scholar]
- Jo, Y.; Hong, S. Three-Dimensional Digital Documentation of Cultural Heritage Site Based on the Convergence of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry. ISPRS Int. J. Geo Inf. 2019, 8, 53. [Google Scholar] [CrossRef]
- Baik, A.; Alitany, A.; Boehm, J.; Robson, S. Jeddah Historical Building Information Modelling “JHBIM”–Object Library. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II–5, 41–47. [Google Scholar] [CrossRef]
- Murtiyoso, A.; Grussenmeyer, P.; Freville, T. Close Range UAV Accurate Recording and Modeling of St-Pierre-Le-Jeune Neo-Romanesque Church in Strasbourg (France). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 519–526. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, Y.; Zhang, Y.; Guo, H.; Sun, Z. High-Definition Survey of Architectural Heritage Fusing Multisensors—The Case of Beamless Hall at Linggu Temple in Nanjing, China. Sensors 2022, 22, 3369. [Google Scholar] [CrossRef]
- Khalloufi, H.; Azough, A.; Ennahnahi, N.; Kaghat, F.Z. Low-Cost Terrestrial Photogrammetry for 3D Modeling of Historic Sites: A Case Study of The Marinids’ Royal Necropolis City of Fez, Morocco. Mediterr. Archaeol. Archaeom. 2020, 20, 257–272. [Google Scholar] [CrossRef]
- Teppati Losè, L.; Chiabrando, F.; Giulio Tonolo, F. Documentation of Complex Environments Using 360° Cameras. The Santa Marta Belltower in Montanaro. Remote Sens. 2021, 13, 3633. [Google Scholar] [CrossRef]
- Andaru, R.; Cahyono, B.K.; Riyadi, G.; Istarno; Djurdjani; Ramadhan, G.R.; Tuntas, S. The Combination of Terrestrial LiDAR and UAV Photogrammetry for Interactive Architectural Heritage Visualization Using Unity 3D Game Engine. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W17, 39–44. [Google Scholar] [CrossRef]
- Guarnieri, A.; Fissore, F.; Masiero, A.; Vettore, A. From TLS Survey to 3D Solid Modeling for Documentation of Built Heritage: The Case Study of Porta Savonarola in Padua. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 303–308. [Google Scholar] [CrossRef]
- Stanga, C.; Banfi, F.; Roascio, S. Enhancing Building Archaeology: Drawing, UAV Photogrammetry and Scan-to-BIM-to-VR Process of Ancient Roman Ruins. Drones 2023, 7, 521. [Google Scholar] [CrossRef]
- Abate, D.; Sturdy-Colls, C. A Multi-Level and Multi-Sensor Documentation Approach of the Treblinka Extermination and Labor Camps. J. Cult. Herit. 2018, 34, 129–135. [Google Scholar] [CrossRef]
- Murtiyoso, A.; Suwardhi, D.; Grussenmeyer, P.; Fadilah, W.A.; Fauzan, K.N.; Trisyanti, S.W.; Brahmantara; Macher, H. Heritage Documentation and Knowledge Transfer: A Report on the CIPA Tropical School in Candi Sewu (Indonesia). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLVI-M-1–2021, 493–497. [Google Scholar] [CrossRef]
- Donato, E.; Giuffrida, D. Combined Methodologies for the Survey and Documentation of Historical Buildings: The Castle of Scalea (CS, Italy). Heritage 2019, 2, 2384–2397. [Google Scholar] [CrossRef]
- Cahyandaru, N.; Brahmantara, B. Development of Digital Monitoring Methodology. J. Konserv. Cagar Budaya 2007, 1, 24–26. [Google Scholar] [CrossRef]
- Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R. Digital 3D Borobudur–Integration of 3D Surveying and Modeling Techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W7, 417–423. [Google Scholar] [CrossRef]
- Fitri, A.; Sapta Widartono, B. Utilization of Aerial Photograph for Spasial Data Using Quadcopter (Ijo Temple Complex, District Prambanan, Yogyakarta). In Proceedings of the lst International Cohference on Geography and Education (ICGE 2016), Malang, Indonesia, 29 October 2016. [Google Scholar]
- Murtiyoso, A.; Grussenmeyer, P.; Suwardhi, D. Technical Considerations in Low-Cost Heritage Documentation (Candi Sari-Case Study). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W17, 225–232. [Google Scholar] [CrossRef]
- Santosa, H.; Yudono, A.; Adhitama, M.S. The Digital Management System of the Tangible Culture Heritage for Enhancing Historic Building Governance in Malang, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 738, 012056. [Google Scholar] [CrossRef]
- Surpi, N.K. Śivagrha (Prambanan Temple) as an Archetype of Hindu Theology in Nusantara (An Endeavor to Discover Hindu Theological Knowledge through Ancient Temple Heritage). Anal. J. Soc. Sci. Relig. 2020, 5, 107–122. [Google Scholar] [CrossRef]
- BP3-Yogyakarta. Studi Teknis Prambanan; Balai Pelestarian Peninggalan Purbakala (BP3)-Yogyakarta: Yogyakarta, Indonesia, 2007. [Google Scholar]
- Shodiq, A.M.; Widjajanti, N. Deformasi Horisontal Aspek Geometrik Candi Prambanan Sebelum dan Sesudah Gempa Yogyakarta Tahun 2006. Undergraduate Thesis, Universitas Gadjah Mada, Yogyakarta, Indonesia, 2015. [Google Scholar]
- Sari, S.P.I. Penentuan Tinggi Titik Pantau Candi Prambanan dengan Metode Sipat Datar Menggunakan Hitung Perataan Metode Parameter Dengan Variasi Nilai Bobot. Undergraduate Thesis, Program Studi Sarjana Teknik Geodesi, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta, Indonesia, 2019. [Google Scholar]
- Widyaningsih, L. Penentuan Koordinat 3D pada Titik Pantau Deformasi Badan Candi Prambanan Dengan Hitung Perataan. Undergraduate Thesis, Program Studi Sarjana Teknik Geodesi, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta, Indonesia, 2019. [Google Scholar]
- Arrofiqoh, E.N.; Muryamto, R.; Afiyanti, D.; Azizah, S.C.; Kresnawan, D.S.; Fabiola, A.N. Pemanfaatan UAV Dengan Sensor Kamera Dan Lidar Untuk Pemetaan Situs Cagar Budaya Kawasan Candi Prambanan. Geoid 2022, 17, 176. [Google Scholar] [CrossRef]
- Alidoost, F.; Arefi, H. An Image-Based Technique for 3D Building Reconstruction Using Multi-View UAV Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W5, 43–46. [Google Scholar] [CrossRef]
- Altman, S.; Xiao, W.; Grayson, B. Evaluation of Low-Cost Terrestrial Photogrammetry for 3D Reconstruction of Complex Buildings. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-2/W4, 199–206. [Google Scholar] [CrossRef]
- Elkhrachy, I. Modeling and Visualization of Three Dimensional Objects Using Low-Cost Terrestrial Photogrammetry. Int. J. Archit. Herit. 2020, 14, 1456–1467. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, S.; Xia, P.; Zhao, Q. Research on Fine 3D Modeling Technology of Tall Buildings Based on UAV Photogrammetry. In Proceedings of the 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS), Zhoushan, China, 22–24 April 2022; pp. 349–353. [Google Scholar]
- Barazzetti, L.; Previtali, M.; Roncoroni, F. 3D Modeling with 5k 360° Videos. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLVI-2/W1-2022, 65–71. [Google Scholar] [CrossRef]
- Herban, S.; Costantino, D.; Alfio, V.S.; Pepe, M. Use of Low-Cost Spherical Cameras for the Digitisation of Cultural Heritage Structures into 3D Point Clouds. J. Imaging 2022, 8, 13. [Google Scholar] [CrossRef]
- Marcos-González, D.; Álvaro-Tordesillas, A.; López-Bragado, D.; Martínez-Vera, M. Fast and Accurate Documentation of Architectural Heritage with Low-Cost Spherical Panoramic Photographs from 360 Cameras. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-2–2023, 1007–1011. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Y. Accuracy Evaluation of Videogrammetry Using a Low-Cost Spherical Camera for Narrow Architectural Heritage: An Observational Study with Variable Baselines and Blur Filters. Sensors 2019, 19, 496. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr For. Rep 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Pfeifer, N.; Briese, C. Laser Scanning-Principles and Applications. In Proceedings of the GeoSiberia 2007-International Exhibition and Scientific Congress; European Association of Geoscientists & Engineers, Novosibirsk, Russia, 25 April 2007; p. cp-59. [Google Scholar]
- Reshetyuk, Y. Self-Calibration and Direct Georeferencing in Terrestrial Laser Scanning. Ph.D. Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2009. [Google Scholar]
- Wujanz, D. Construction Site Monitoring Based on Laser Scanning Data. In Laser Scanning: An Emerging Technology in Structural Engineering; International society for photogrammetry and remote sensing (ISPRS) book series; CRC Press/Balkema: Leiden, The Netherlands, 2020; pp. 231–246. ISBN 978-1-138-49604-0. [Google Scholar]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D Comparison of Complex Topography with Terrestrial Laser Scanner: Application to the Rangitikei Canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef]
- DiFrancesco, P.-M.; Bonneau, D.; Hutchinson, D.J. The Implications of M3C2 Projection Diameter on 3D Semi-Automated Rockfall Extraction from Sequential Terrestrial Laser Scanning Point Clouds. Remote Sens. 2020, 12, 1885. [Google Scholar] [CrossRef]
- Georgantas, A.; Brédif, M.; Pierrot-Desseilligny, M. An Accuracy Assessment of Automated Photogrammetric Techniques for 3D Modeling of Complex Interiors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B3, 23–28. [Google Scholar] [CrossRef]
- Koutsoudis, A.; Vidmar, B.; Ioannakis, G.; Arnaoutoglou, F.; Pavlidis, G.; Chamzas, C. Multi-Image 3D Reconstruction Data Evaluation. J. Cult. Herit. 2014, 15, 73–79. [Google Scholar] [CrossRef]
- Morgan, J.A.; Brogan, D.J.; Nelson, P.A. Application of Structure-from-Motion Photogrammetry in Laboratory Flumes. Geomorphology 2017, 276, 125–143. [Google Scholar] [CrossRef]
- Moyano, J.; Nieto-Julián, J.E.; Bienvenido-Huertas, D.; Marín-García, D. Validation of Close-Range Photogrammetry for Architectural and Archaeological Heritage: Analysis of Point Density and 3D Mesh Geometry. Remote Sens. 2020, 12, 3571. [Google Scholar] [CrossRef]
- Kazhdan, M.; Hoppe, H. Screened Poisson Surface Reconstruction. ACM Trans. Graph. 2013, 32, 1–13. [Google Scholar] [CrossRef]
- Alshawabkeh, Y.; Baik, A. Integration of Photogrammetry and Laser Scanning for Enhancing Scan-to-HBIM Modeling of Al Ula Heritage Site. Herit. Sci. 2023, 11, 147. [Google Scholar] [CrossRef]
- Rocha, G.; Mateus, L.; Fernández, J.; Ferreira, V. A Scan-to-BIM Methodology Applied to Heritage Buildings. Heritage 2020, 3, 47–67. [Google Scholar] [CrossRef]
- Nursyahirah, A.F.; Yusoff, A.R.; Ismail, Z.; Majid, Z. Comparing the Performance of Point Cloud Registration Methods for Landslide Monitoring Using Mobile Laser Scanning Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-4/W9, 11–21. [Google Scholar] [CrossRef]
- BP3-Yogyakarta. Membangun Kembali Prambanan; Balai Pelestarian Peninggalan Purbakala (BP3)-Yogyakarta: Yogyakarta, Indonesia, 2009; p. 124. [Google Scholar]
- Grussenmeyer, P.; Hanke, K.; Streilein, A. Architectural Photogrammetry: Basic Theory, Procedures, Tools. In Digital Photogrammetry; Klasser, M., Egels, Y., Eds.; Taylor & Francis: Abingdon, UK, 2002; pp. 300–339. [Google Scholar]
- Adamopoulos, E.; Rinaudo, F. Combining Multiband Imaging, Photogrammetric Techniques, and FOSS GIS for Affordable Degradation Mapping of Stone Monuments. Buildings 2021, 11, 304. [Google Scholar] [CrossRef]
- Huang, X.; Mei, G.; Zhang, J. Cross-Source Point Cloud Registration: Challenges, Progress and Prospects. Neurocomputing 2023, 548, 126383. [Google Scholar] [CrossRef]
- Luhmann, T.; Robson, S.; Kyle, S.; Boehm, J. Close-Range Photogrammetry and 3D Imaging; de Gruyter: Berlin, Germany, 2019. [Google Scholar]
Main Temple Coverage * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No | Data Types | Year | Instrument/Sensor | Specification | Measurement Target | H | B | G | N | S | V |
1 | Nadiral aerial photographs | 2020 | 42.4 MP camera installed on UAV-copter Microdrones md1000DG | Image resolution: 42.4 Mega pixel | The 1st and 2nd courtyard landscapes | ✓ | ✓ | ✓ | ✓ | ✓ | # |
2 | Aerial Lidar point clouds | 2020 | Lidar sensor embedded on UAV-copter Microdrones mdLiDAR-1000DG | Density: 47 points/m2, System accuracy of Lidar pointcloud: 6 cm vertical and 6 cm horizontal | The 1st and 2nd courtyard landscapes | ✓ | ✓ | ✓ | ✓ | ✓ | # |
3 | TLS point clouds #1 | 2020 | Terrestrial Laser Scanner Topcon GLS-2000 | Density: 6.3 mm/10 m of distance (detail mode) or 12.5 mm/10 m of distance (standard mode); Measuring range modes: 130 m (short)/350 m (medium)/500 m (long); Direct-georeferencing capabilities; Integrated camera available | General façade and detailed façade of the 1st courtyard | ✓ | ✓ | ✓ | ✓ | ✓ | # |
4 | TLS point clouds #2 | 2023 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
5 | CR-UAVP photographs #1 | 2020 | 20 MP camera installed on UAV-Copter DJI Phantom 4 | Image resolution: 20 Mega pixel | Detailed façade of Shiva and Garuda Temples (upper and middle part) | ✓ | |||||
7 | Terrestrial photographs | 2023 | Mirrorless frame camera (Sony A6000 24 MP) | Image resolution: 24.3 Mega pixel; sensor type: CMOS APS-C HD | Detailed bas-relief at temple base of Hamsa, Brahma, Nandhi, and Vishnu Temples | ✓ | ✓ | ✓ | ✓ | ||
8 | CR-UAVP photographs #2 | 2023 | 20 MP camera installed on UAV-copter DJI Air S | Image resolution: 24 Mega pixel | Detailed façade of Hamsa, Brahma, Nandhi, and Vishnu Temples (upper and middle part) | ✓ | ✓ | ✓ | ✓ | ||
9 | Spherical 360° photographs | 2023 | Ricoh Theta S spherical camera | 1/2.3” 12MP CMOS sensor; F2.0 360° lens | Detailed bas-relief at temple base | ✓ | ✓ | ✓ | ✓ | ✓ | |
10 | Low-cost Lidar point clouds | 2023 | Ipad Pro 2020 Lidar | Solid state lidar (not confidentially mentioned) | ✓ | ✓ | ✓ | ✓ | ✓ | ||
11 | Ground and Façade Deformation Control Point (GDCP and FDCP) | 2020 and 2022 | Geodetic GNSS static mode of 3 D.O.Y and 8 h observation | Signal capabilities: Double/multi-frequency signals, multi-constellation satellites tracking (GPS, BeiDou GLONASS, GALILEO, QZSS), RINEX v2 v3 logging | Establishment of geometric control at façade and ground in the 1st courtyard | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
12 | Dimension and points for independent checking | 2021 and 2023 | RTK GNSS (Base at S001) ComNav T300 receiver, measuring tape, and as-built drawing | RTCM2x/3x/CMR/CMR+ real-time correction, WiFi/UHF/4G modem connection, RTK horizontal accuracy: 8 mm + 1 ppm, vertical accuracy: 15mm + 1 ppm | Provides geometric quality check data | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
No | Architectural Design Attributes | Literature | Detail Level Categorization | Detail Level Requirement | Selected Suitable Sensor |
---|---|---|---|---|---|
1 | Virtual embedded axis | [2,7,13,16] | Landscape level | Map scale of 1:1000 | Nadiral UAV photogrammetry and Lidar |
2 | Hierarchical concept | [7,8] | Landscape level | Map scale of 1:1000 | Nadiral UAV photogrammetry and Lidar |
3 | Clustered solid–void arrangement | [7,8] | Landscape level | Map scale of 1:1000 | Nadiral UAV photogrammetry and Lidar |
4 | Multiple zoning of concentric courtyard | [4,9,10,18] | Landscape level | Map scale of 1:1000 | Nadiral UAV photogrammetry and Lidar |
5 | Symmetrical arrangement | [7] | General and detailed façade | 0.1 m of object details | Terrestrial Lidar scanner (TLS), close-range UAV photogrammetry |
6 | Rhythm and repetition | [7] | General and detailed façade | 0.1 m of object details | Terrestrial Lidar scanner (TLS), close-range UAV photogrammetry |
7 | Scale and proportion | [7,12] | General and detailed façade | 0.1 m of object details | Terrestrial Lidar scanner (TLS), close-range UAV photogrammetry |
8 | Tripartite concept | [7] | General and detailed façade | 0.1 m of object details | Terrestrial Lidar scanner (TLS), close-range UAV photogrammetry |
9 | Mimesis concept | [7] | Detailed bas-relief | 0.05 m | Terrestrial photogrammetry (frame) |
10 | Texture aspect | [7] | Detailed bas-relief | 0.05 m | Terrestrial photogrammetry (frame) |
11 | Balanced ornament | [7] | Detailed bas-relief | 0.05 m | Terrestrial photogrammetry (frame) |
12 | Decorated corridor | Authors’ observation | Detailed bas-relief | 0.05 m | Terrestrial photogrammetry (spherical) |
No | Temple | Σ Images | Σ FDCP | Σ Coded Target | Σ Image Error (Pixel) | Total Error (cm) | Σ Tie Points | Tie Points Limit per Photo | Σ IOP Included | Camera ID |
---|---|---|---|---|---|---|---|---|---|---|
1 | Shiva | 595 | 4 | n/a | 0.601 | 4.19 | 458,875 | 4000 | 8 | FC330 |
2 | Garuda | 229 | 3 | n/a | 0.758 | 0.817 | 93,874 | 4000 | 8 | FC330 |
3 | Vishnu | 542 | 3 | 10 | 0.854 | 4.6 | 92,113 | 4000 | 9 | Test_Pro |
4 | Nandhi | 277 | 3 | 13 | 1.52 | 2.289 | 23,882 | 1000 | 7 | Test_Pro |
5 | Brahma | 475 | 3 | 6 | 1.15 | 3.97 | 35,754 | 1000 | 8 | Test_Pro |
6 | Hamsha | 295 | 3 | 19 | 1.14 | 3.18 | 20,581 | 1000 | 8 | Test_Pro |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasidya, A.S.; Gumilar, I.; Meilano, I.; Ikaputra, I.; Muryamto, R.; Arrofiqoh, E.N. Three-Dimensional Digital Documentation for the Conservation of the Prambanan Temple Cluster Using Guided Multi-Sensor Techniques. Heritage 2025, 8, 32. https://doi.org/10.3390/heritage8010032
Prasidya AS, Gumilar I, Meilano I, Ikaputra I, Muryamto R, Arrofiqoh EN. Three-Dimensional Digital Documentation for the Conservation of the Prambanan Temple Cluster Using Guided Multi-Sensor Techniques. Heritage. 2025; 8(1):32. https://doi.org/10.3390/heritage8010032
Chicago/Turabian StylePrasidya, Anindya Sricandra, Irwan Gumilar, Irwan Meilano, Ikaputra Ikaputra, Rochmad Muryamto, and Erlyna Nour Arrofiqoh. 2025. "Three-Dimensional Digital Documentation for the Conservation of the Prambanan Temple Cluster Using Guided Multi-Sensor Techniques" Heritage 8, no. 1: 32. https://doi.org/10.3390/heritage8010032
APA StylePrasidya, A. S., Gumilar, I., Meilano, I., Ikaputra, I., Muryamto, R., & Arrofiqoh, E. N. (2025). Three-Dimensional Digital Documentation for the Conservation of the Prambanan Temple Cluster Using Guided Multi-Sensor Techniques. Heritage, 8(1), 32. https://doi.org/10.3390/heritage8010032