Leveraging Machine Learning to Predict and Assess Disparities in Severe Maternal Morbidity in Maryland
<p>Severe maternal morbidity predicting performance for the Logit models with 75 features and the Logit and LASSO models with 18 features. Notes: Reduction from 75 to 18 features based on literature reviews, exploratory correlation analysis, statistical significance, and computational resource constraints. The 18 features include year, maternal age, primary language, insurance status, homeless status, median household income quartile for the patient zip code, level of maternal care, teaching status of the hospital, hospital contracts with payors being tied to performance on quality/safety measures, hospital has patient/family advisory, hospital encounter in the past 30 days before delivery hospitalization, obesity, multiple gestations, supervision of high-risk pregnancy, hypertensive disease, comorbidities, annual delivery volume for the hospital, and % of deliveries to minority (non-White non-Hispanic) women in the hospital.</p> "> Figure 2
<p>Efforts to predict maternal morbidity and severe outcomes over time.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. SMM Rates
3.2. Logit Modeling
3.3. Comparison Between Predicting Performance with LASSO vs. Logit Modeling
3.4. Comparison with Previous Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- CDC. Severe Maternal Morbidity. Available online: https://www.cdc.gov/maternal-infant-health/php/severe-maternal-morbidity/index.html (accessed on 13 January 2024).
- Callaghan, W.M.; Creanga, A.A.; Kuklina, E.V. Severe maternal morbidity among delivery and postpartum hospitaliza-tions in the United States. Obstet. Gynecol. 2012, 120, 1029–1036. [Google Scholar] [CrossRef]
- Zeitlin, J.; Egorova, N.N.; Janevic, T.; Hebert, P.L.; Lebreton, E.; Balbierz, A.; Howell, E.A. The Impact of Severe Maternal Morbidity on Very Preterm Infant Outcomes. J. Pediatr. 2019, 215, 56–63.e1. [Google Scholar] [CrossRef]
- Fink, D.A.; Kilday, D.; Cao, Z.; Larson, K.; Smith, A.; Lipkin, C.; Perigard, R.; Marshall, R.; Deirmenjian, T.; Finke, A.; et al. Trends in Maternal Mortality and Severe Maternal Morbidity During Delivery-Related Hospitalizations in the United States, 2008 to 2021. JAMA Netw. Open 2023, 6, e2317641. [Google Scholar] [CrossRef]
- Wolfson, C.; Qian, J.; Chin, P.; Downey, C.; Mattingly, K.J.; Jones-Beatty, K.; Olaku, J.; Qureshi, S.; Rhule, J.; Silldorff, D.; et al. Findings From Severe Maternal Morbidity Surveillance and Review in Maryland. JAMA Netw. Open 2022, 5, e2244077. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kilpatrick, S.J.; Crabtree, K.E.; Kemp, A.; Geller, S. Preventability of maternal deaths: Comparison between Zambian and American referral hospitals. Obstet. Gynecol. 2002, 100, 321–326. [Google Scholar] [CrossRef]
- Nannini, A.; Weiss, J.; Goldstein, R.; Fogerty, S. Pregnancy-associated mortality at the end of the twentieth century: Massachusetts, 1990–1999. J. Am. Med. Womens Assoc. 2002, 57, 140–143. [Google Scholar]
- Berg, C.J.; Harper, M.A.; Atkinson, S.M.; Bell, E.A.; Brown, H.L.; Hage, M.L.; Mitra, A.G.; Moise, K.J., Jr.; Callaghan, W.M. Preventability of pregnancy-related deaths: Results of a state-wide review. Obstet. Gynecol. 2005, 106, 1228–1234. [Google Scholar] [CrossRef]
- Geller, S.E.; Cox, S.M.; Kilpatrick, S.J. A descriptive model of preventability in maternal morbidity and mortality. J. Perinatol. 2006, 26, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Geller, S.E.; Koch, A.R.; Martin, N.J.; Rosenberg, D.; Bigger, H.R. Assessing preventability of maternal mortality in Illinois: 2002-2012. Am. J. Obstet. Gynecol. 2014, 211, 698.e1–698.e11. [Google Scholar] [CrossRef]
- Ranjbar, A.; Montazeri, F.; Farashah, M.V.; Mehrnoush, V.; Darsareh, F.; Roozbeh, N. Machine learning-based approach for predicting low birth weight. BMC Pregnancy Childbirth 2023, 23, 803. [Google Scholar] [CrossRef] [PubMed]
- Lodi, M.; Poterie, A.; Exarchakis, G.; Brien, C.; de Micheaux, P.L.; Deruelle, P.; Gallix, B. Prediction of cesarean delivery in class III obese nulliparous women: An externally validated model using machine learning. J. Gynecol. Obstet. Hum. Reprod. 2023, 52, 102624. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 2018, 58, 267–288. [Google Scholar] [CrossRef]
- Ranstam, J.; Cook, J.A. LASSO regression. Br. J. Surg. 2018, 105, 1348. [Google Scholar] [CrossRef]
- Geller, S.E.; Rosenberg, D.; Cox, S.M.; Brown, M.L.; Simonson, L.; Driscoll, C.A.; Kilpatrick, S.J. The continuum of maternal morbidity and mortality: Factors associated with severity. Am. J. Obstet. Gynecol. 2004, 191, 939–944. [Google Scholar] [CrossRef]
- Clark, S.L.; Belfort, M.A.; Dildy, G.A.; Herbst, M.A.; Meyers, J.A.; Hankins, G.D. Maternal death in the 21st century: Causes, prevention, and relationship to cesarean delivery. Am. J. Obstet. Gynecol. 2008, 199, 36.e1-5; discussion 91-2. e7-11. [Google Scholar] [CrossRef] [PubMed]
- Schaudt, D.; von Schwerin, R.; Hafner, A.; Riedel, P.; Reichert, M.; von Schwerin, M.; Beer, M.; Kloth, C. Augmentation strategies for an imbalanced learning problem on a novel COVID-19 severity dataset. Sci. Rep. 2023, 13, 18299. [Google Scholar] [CrossRef]
- Ahmed, J.; Ii, R.C.G. Predicting severely imbalanced data disk drive failures with machine learning models. Mach. Learn. Appl. 2022, 9, 100361. [Google Scholar] [CrossRef]
- Gao, C.; Osmundson, S.; Yan, X.; Edwards, D.V.; Malin, B.A.; Chen, Y. Learning to identify severe maternal morbidity from electronic health records. Stud. Health Technol. Inform. 2019, 264, 143–147. [Google Scholar] [PubMed]
- Rodríguez, E.A.; Estrada, F.E.; Torres, W.C.; Santos, J.C.M. Early Prediction of Severe Maternal Morbidity Using Machine Learning Techniques. In Ibero-American Conference on Artificial Intelligence; Springer: Cham, Switzerland, 2016; pp. 259–270. [Google Scholar] [CrossRef]
- Xu, Z.; Bosschieter, T.M.; Lan, H.; Lengerich, B.; Nori, H.; Sitcov, K.; Painter, I.; Souter, V.; Caruana, R. Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. Am. J. Obstet. Gynecol. 2023, 228, S404–S405. [Google Scholar] [CrossRef]
- Lengerich, B.J.; Caruana, R.; Painter, I.; Weeks, W.B.; Sitcov, K.; Souter, V. Interpretable machine learning predicts postpartum hemorrhage with severe maternal morbidity in a lower-risk laboring obstetric population. Am. J. Obstet. Gynecol. MFM 2024, 6, 101391. [Google Scholar] [CrossRef] [PubMed]
- Arrieta Rodríguez, E.; López-Martínez, F.; Santos, J.C.M. A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Clapp, M.A.; Kim, E.; James, K.E.; Perlis, R.H.; Kaimal, A.J.; McCoy, T.H. Natural language processing of admission notes to predict severe maternal morbidity during the delivery encounter. Am. J. Obstet. Gynecol. 2022, 227, 511.e1–511.e8. [Google Scholar] [CrossRef] [PubMed]
- Clapp, M.A.; Kim, E.; James, K.E.; Perlis, R.H.; Kaimal, A.J.; McCoy, T.H.; Easter, S.R. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity. JAMA Netw. Open 2022, 5, e2234924. [Google Scholar] [CrossRef] [PubMed]
- Clapp, M.A.; McCoy, T.H., Jr.; James, K.E.; Kaimal, A.J.; Perlis, R.H. Derivation and external validation of risk stratification models for severe maternal morbidity using pre-natal encounter diagnosis codes. J Perinatol. 2021, 41, 2590–2596. [Google Scholar] [CrossRef]
- Leonard, S.A.; Main, E.K.; Lyell, D.J.; Carmichael, S.L.; Kennedy, C.J.; Johnson, C.; Mujahid, M.S. Obstetric comorbidity scores and disparities in severe maternal morbidity across marginalized groups. Am. J. Obstet. Gynecol. MFM 2022, 4, 100530. [Google Scholar] [CrossRef] [PubMed]
- Betts, K.S.; Kisely, S.; Alati, R. Predicting common maternal postpartum complications: Leveraging health administrative data and machine learning. BJOG Int. J. Obstet. Gynaecol. 2019, 126, 702–709. [Google Scholar] [CrossRef]
- Wang, S.; Pathak, J.; Zhang, Y. Using Electronic Health Records and Machine Learning to Predict Postpartum Depression. Stud. Health Technol. Inform. 2019, 264, 888–892. [Google Scholar] [PubMed]
- Sun, Q.; Zou, X.; Yan, Y.; Zhang, H.; Wang, S.; Gao, Y.; Liu, H.; Liu, S.; Lu, J.; Yang, Y.; et al. Machine Learning-Based Prediction Model of Preterm Birth Using Electronic Health Record. J. Health Eng. 2022, 2022, 9635526. [Google Scholar] [CrossRef] [PubMed]
- Gray, K.E.; Wallace, E.R.; Nelson, K.R.; Reed, S.D.; Schiff, M.A. Population-Based Study of Risk Factors for Severe Maternal Morbidity. Paediatr. Périnat. Epidemiol. 2012, 26, 506–514. [Google Scholar] [CrossRef]
- Madeiro, A.P.; Rufino, A.C.; Lacerda, É.Z.G.; Brasil, L.G. Incidence and determinants of severe maternal morbidity: A transversal study in a referral hospital in Teresina, Piaui, Brazil. BMC Pregnancy Childbirth 2015, 15, 210. [Google Scholar] [CrossRef] [PubMed]
- Himes, K.P.; Bodnar, L.M. Validation of criteria to identify severe maternal morbidity. Paediatr. Périnat. Epidemiol. 2020, 34, 408–415. [Google Scholar] [CrossRef]
- Friedman, E.A.; Neff, R.K. Hypertension-Hypotension in Pregnancy: Correlation with Fetal Outcome. JAMA J. Am. Med. Assoc. 1978, 239, 2249–2251. [Google Scholar] [CrossRef]
- Chesley, L.C.; Sibai, B.M. Clinical significance of elevated mean arterial pressure in the second trimester. Am. J. Obstet. Gynecol. 1988, 159, 275–279. [Google Scholar] [CrossRef]
- Thangaratinam, S.; Koopmans, C.M.; Iyengar, S.; Zamora, J.; Ismail, K.M.; Mol, B.W.; Khan, K.S. Accuracy of liver function tests for predicting adverse maternal and fetal outcomes in women with preeclampsia: A systematic review. Acta Obstet. Gynecol. Scand. 2011, 90, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Von Dadelszen, P.; Payne, B.; Li, J.; Ansermino, J.M.; Pipkin, F.B.; Côté, A.-M.; Douglas, M.J.; Gruslin, A.; A Hutcheon, J.; Joseph, K.; et al. Prediction of adverse maternal outcomes in preeclampsia: Development and validation of the fullPIERS model. Lancet 2011, 377, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Payne, B.A.; Hutcheon, J.A.; Ansermino, J.M.; Hall, D.R.; Bhutta, Z.A.; Bhutta, S.Z.; Biryabarema, C.; Grobman, W.A.; Groen, H.; Haniff, F.; et al. A Risk Prediction Model for the Assessment and Triage of Women with Hypertensive Disorders of Pregnancy in Low-Resourced Settings: The miniPIERS (Preeclampsia Integrated Estimate of RiSk) Multi-country Prospective Cohort Study. PLoS Med. 2014, 11, e1001589. [Google Scholar] [CrossRef]
- Agarwal, R.; Chaudhary, S.; Kar, R.; Radhakrishnan, G.; Tandon, A. Prediction of preeclampsia in primigravida in late first trimester using serum placental growth factor alone and by combination model. J. Obstet. Gynaecol. 2017, 37, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Marić, I.; Tsur, A.; Aghaeepour, N.; Montanari, A.; Stevenson, D.K.; Shaw, G.M.; Winn, V.D. Early Prediction of Preeclampsia via Machine Learning. Am. J. Obstet. Gynecol. MFM 2020, 2, 100100. [Google Scholar] [CrossRef]
- Liu, M.; Yang, X.; Chen, G.; Ding, Y.; Shi, M.; Sun, L.; Huang, Z.; Liu, J.; Liu, T.; Yan, R.; et al. Development of a prediction model on preeclampsia using machine learning-based method: A retrospective cohort study in China. Front. Physiol. 2022, 13, 896969. [Google Scholar] [CrossRef]
- Rasmussen, M.; Reddy, M.; Nolan, R.; Camunas-Soler, J.; Khodursky, A.; Scheller, N.M.; Cantonwine, D.E.; Engelbrechtsen, L.; Mi, J.D.; Dutta, A.; et al. RNA profiles reveal signatures of future health and disease in pregnancy. Nature 2022, 601, 422–427. [Google Scholar] [CrossRef]
- Schmidt, L.J.; Rieger, O.; Neznansky, M.; Hackelöer, M.; Dröge, L.A.; Henrich, W.; Higgins, D.; Verlohren, S. A machine-learning–based algorithm improves prediction of preeclampsia-associated adverse outcomes. Am. J. Obstet. Gynecol. 2022, 227, 77.e1–77.e30. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, A.; Montazeri, F.; Ghamsari, S.R.; Mehrnoush, V.; Roozbeh, N.; Darsareh, F. Machine learning models for predicting preeclampsia: A systematic review. BMC Pregnancy Childbirth 2024, 24, 6. [Google Scholar] [CrossRef] [PubMed]
- Kovacheva, V.P.; Eberhard, B.W.; Cohen, R.Y.; Maher, M.; Saxena, R.; Gray, K.J. Preeclampsia Prediction Using Machine Learning and Polygenic Risk Scores from Clinical and Genetic Risk Factors in Early and Late Pregnancies. Hypertension 2024, 81, 264–272. [Google Scholar] [CrossRef]
- Shinar, S.; Melamed, N.; Abdulaziz, K.E.; Ray, J.G.; Riddell, C.; Barrett, J.; Murray-Davis, B.; Mawjee, K.; Mcdonald, S.D.; Geary, M.; et al. Changes in rate of preterm birth and adverse pregnancy outcomes attributed to preeclampsia after introduction of a refined definition of preeclampsia: A population-based study. Acta Obstet. Gynecol. Scand. 2021, 100, 1627–1635. [Google Scholar] [CrossRef]
- Hu, M.; Shi, J.; Lu, W. Association between proteinuria and adverse pregnancy outcomes: A retrospective cohort study. J. Obstet. Gynaecol. 2022, 43, 2126299. [Google Scholar] [CrossRef] [PubMed]
- Chaemsaithong, P.; Sahota, D.S.; Poon, L.C. First trimester preeclampsia screening and prediction. Am. J. Obstet. Gynecol. 2022, 226, S1071–S1097.e2. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Klebanoff, M.A.; Roberts, J.M. Prediction of adverse outcomes by common definitions of hypertension in pregnancy. Obstet. Gynecol. 2001, 97, 261–267. [Google Scholar]
- Conti-Ramsden, F.I.; Nathan, H.L.; De Greeff, A.; Hall, D.R.; Seed, P.T.; Chappell, L.C.; Shennan, A.H.; Bramham, K. Pregnancy-related acute kidney injury in preeclampsia: Risk factors and renal outcomes. Hypertension 2019, 74, 1144–1151. [Google Scholar] [CrossRef]
- Irene, K.; Amubuomombe, P.P.; Mogeni, R.; Andrew, C.; Mwangi, A.; Omenge, O.E. Maternal and perinatal outcomes in women with eclampsia by mode of delivery at Riley mother baby hospital: A longitudinal case-series study. BMC Pregnancy Childbirth 2021, 21, 439. [Google Scholar] [CrossRef]
- Kelly, B.S.; Judge, C.; Bollard, S.M.; Clifford, S.M.; Healy, G.M.; Aziz, A.; Mathur, P.; Islam, S.; Yeom, K.W.; Lawlor, A.; et al. Radiology artificial intelligence: A systematic review and evaluation of methods (RAISE). Eur. Radiol. 2022, 32, 7998–8007. [Google Scholar] [CrossRef] [PubMed]
- Giorgione, V.; Quintero Mendez, O.; Pinas, A.; Ansley, W.; Thilaganathan, B. Routine first-trimester preeclampsia screening and risk of preterm birth. Ultrasound Obstet. Gynecol. 2022, 60, 185–191. [Google Scholar] [CrossRef]
- Hackelöer, M.; Schmidt, L.; Verlohren, S. New advances in prediction and surveillance of preeclampsia: Role of machine learning approaches and remote monitoring. Arch. Gynecol. Obstet. 2023, 308, 1663–1677. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, W.; Zhao, P.; Wang, Q.; Woodard, P.K.; Nelson, D.M.; Odibo, A.; Cahill, A.; Wang, Y. Association of intraplacental oxygenation patterns on dual-contrast MRI with placental abnormality and fetal brain oxygenation. Ultrasound Obstet. Gynecol. 2023, 61, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Kenny, L.C.; English, F.; McCarthy, F.P. Risk factors and effective management of preeclampsia. Integr. Blood Press. Control. 2015, 8, 7–12. [Google Scholar] [CrossRef]
- Bawore, S.G.; Adissu, W.; Niguse, B.; Larebo, Y.M.; Ermolo, N.A.; Gedefaw, L. A pattern of platelet indices as a potential marker for prediction of pre-eclampsia among pregnant women attending a Tertiary Hospital, Ethiopia: A case-control study. PLoS ONE 2021, 16, e0259543. [Google Scholar] [CrossRef] [PubMed]
- Aljameel, S.S.; Alzahrani, M.; Almusharraf, R.; Altukhais, M.; Alshaia, S.; Sahlouli, H.; Aslam, N.; Khan, I.U.; Alabbad, D.A.; Alsumayt, A. Prediction of Preeclampsia Using Machine Learning and Deep Learning Models: A Review. Big Data Cogn. Comput. 2023, 7, 32. [Google Scholar] [CrossRef]
- Hennessy, A.; Tran, T.H.; Sasikumar, S.N.; Al-Falahi, Z. Machine learning, advanced data analysis, and a role in pregnancy care? How can we help improve preeclampsia outcomes? Pregnancy Hypertens. 2024, 37, 101137. [Google Scholar] [CrossRef] [PubMed]
- Vasilache, I.A.; Scripcariu, I.S.; Doroftei, B.; Bernad, R.L.; Cărăuleanu, A.; Socolov, D.; Melinte-Popescu, A.-S.; Vicoveanu, P.; Harabor, V.; Mihalceanu, E.; et al. Prediction of Intrauterine Growth Restriction and Preeclampsia Using Machine Learning-Based Algorithms: A Prospective Study. Diagnostics 2024, 14, 453. [Google Scholar] [CrossRef] [PubMed]
- Ende, H.B.; Domenico, H.J.; Polic, A.; Wesoloski, A.; Zuckerwise, L.C.; Mccoy, A.B.; Woytash, A.R.D.; Moore, R.P.; Byrne, D.W. Development and Validation of an Automated, Real-Time Predictive Model for Postpartum Hemorrhage. Obstet. Gynecol. 2024, 144, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Edvinsson, C.; Björnsson, O.; Erlandsson, L.; Hansson, S.R. Predicting intensive care need in women with preeclampsia using machine learning—A pilot study. Hypertens. Pregnancy 2024, 43, 2312165. [Google Scholar] [CrossRef] [PubMed]
Algorithm | TP | FP | TN | FN | AUC | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|---|
Logit-75 | 50 | 42 | 10559 | 2419 | 0.71 | 0.81 | 0.54 | 0.02 |
Logit-18 | 44 | 48 | 10979 | 1999 | 0.69 | 0.84 | 0.48 | 0.02 |
LASSO-18 | 45 | 25 | 11454 | 1546 | 0.80 | 0.88 | 0.64 | 0.03 |
Article | Algorithm | Precision | Recall | AUC or F1 |
---|---|---|---|---|
Gao 2019 [19] | Regularized Logit | 0.22 to 0.35 | Sensitivity: 0.614 to 0.765 | AUC: 0.790 to 0.937 |
Rodríguez 2016 [20] | Logit | NA | NA | AUC 0.66 |
Xu 2023 [21] | EBM; Logit | NA | 0.59 | AUC EBM 0.70 AUC Logit 0.69 |
Lengerich 2024 [22] | GAM | 0.0152 | 0.369 | AUC: 0.67 |
Rodríguez 2020 [23] | Logit; SVM | Logit: 0.518; SVM: 0.279 | Logit: 0.977: SVM: 1 | F1: Logit 0.677 vs SVM: 0.436 |
Clapp 2022a [24] | LASSO with BoW | NA | NA | AUC for SMM: 0.67–0.72; AUC for NT SMM: 0.72–0.76 |
Clapp 2022b [25] | NLP with BoW; LASSO with BoW | 0.194 (SMM); 0.084 (NT SMM) | 0.287 (SMM); 0.298 (NT SMM) | AUC for SMM: 0.76; AUC for NT SMM: 0.75 |
Clapp 2021 [26] | LASSO; Elastic Net, Ridge | 0.075 | 0.11 | AUC 0.611 |
Leonard 2022 [27] | Logit | NA | NA | AUC: 0.68–0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Alfonso, Y.N.; Wolfson, C.; Aziz, K.B.; Creanga, A.A. Leveraging Machine Learning to Predict and Assess Disparities in Severe Maternal Morbidity in Maryland. Healthcare 2025, 13, 284. https://doi.org/10.3390/healthcare13030284
Li Q, Alfonso YN, Wolfson C, Aziz KB, Creanga AA. Leveraging Machine Learning to Predict and Assess Disparities in Severe Maternal Morbidity in Maryland. Healthcare. 2025; 13(3):284. https://doi.org/10.3390/healthcare13030284
Chicago/Turabian StyleLi, Qingfeng, Y. Natalia Alfonso, Carrie Wolfson, Khyzer B. Aziz, and Andreea A. Creanga. 2025. "Leveraging Machine Learning to Predict and Assess Disparities in Severe Maternal Morbidity in Maryland" Healthcare 13, no. 3: 284. https://doi.org/10.3390/healthcare13030284
APA StyleLi, Q., Alfonso, Y. N., Wolfson, C., Aziz, K. B., & Creanga, A. A. (2025). Leveraging Machine Learning to Predict and Assess Disparities in Severe Maternal Morbidity in Maryland. Healthcare, 13(3), 284. https://doi.org/10.3390/healthcare13030284