Development and Validation of the Attitudes towards Social Robots Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments
2.1.1. Attitudes towards Social Robots Scale (ASRS)
- I would appreciate an intelligent robot as a friend and helper at my side (ASRS 01);
- A nurse–robot that takes care of me and looks after me in my old age would be fine (ASRS 02);
- A human-like robot would be allowed to look after my parents when they get old (ASRS 03);
- I would let a robot take care of my children (ASRS 04);
- I believe robots could one day develop a consciousness comparable to humans (ASRS 05);
- If robots develop a consciousness, then there should be rights for them comparable to human rights (ASRS 06);
- If there were robots that were indistinguishable from humans, I would consider marrying a robot (ASRS 07);
- I could also imagine sexual contact with robots (ASRS 08).
2.1.2. Sociodemographic Questions
2.1.3. SWOP-K9 Questionnaire Measuring Self-Efficacy, Optimism, and Pessimism
2.1.4. Big Five Inventory-10 (BFI-10)
2.2. Data Collection and Inclusion and Exclusion Criteria
2.3. Ethical Considerations
2.4. Statistical Analysis
2.5. Sample Size
3. Results
3.1. Sample
3.2. PCA, Reliability, and Validity
3.3. Relationship with Other Constructs
3.4. Relationship with Other Constructs
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iavazzo, C.; GkegkE, X.E.D.; Iavazzo, P.E.; Gkegkes, I.D. Evolution of robots throughout history from Hephaestus to Da Vinci Robot. Acta Med. -Hist. Adriat. 2014, 12, 247–258. [Google Scholar]
- Capek, K. RUR (Rossum’s Universal Robots); Penguin: New York, NY, USA, 2004. [Google Scholar]
- Hockstein, N.G.; Gourin, C.G.; Faust, R.A.; Terris, D.J. A history of robots: From science fiction to surgical robotics. J. Robot. Surg. 2007, 1, 113–118. [Google Scholar] [CrossRef]
- Yanco, H.A.; Drury, J. Classifying human-robot interaction: An updated taxonomy. In Proceedings of the Systems, Man and Cybernetics IEEE International Conference, The Hague, The Netherlands, 10–13 October 2004; Volume 3, pp. 2841–2846. [Google Scholar]
- Cote Dumphy, B.M.; Lee, J.; Cassidy, R.P.; Mitchell-Evans, W.O. Why Do Humans Imagine Robots? 2010. Available online: https://digitalcommons.wpi.edu/iqp-all/2469 (accessed on 28 June 2023).
- Falcone, T.; Goldberg, J.; Garcia-Ruiz, A.; Margossian, H.; Stevens, L. Full robotic assistance for laparoscopic tubal anastomosis: A case report. J. Laparoendosc. Adv. Surg. Tech. 1999, 9, 107–113. [Google Scholar] [CrossRef]
- Al-Razgan, M.; Alfallaj, L.F.; Alsarhani, N.S.; Alomair, H.W. Systematic review of robotics use since 2005. Int. J. Mech. Eng. Robot. Res. 2016, 5, 129–132. [Google Scholar] [CrossRef]
- Moglia, A.; Ferrari, V.; Morelli, L.; Ferrari, M.; Mosca, F.; Cuschieri, A. A systematic review of virtual reality simulators for robot-assisted surgery. Eur. Urol. 2016, 69, 1065–1080. [Google Scholar] [CrossRef]
- Scoglio, A.A.; Reilly, E.D.; Gorman, J.A.; Drebing, C.E. Use of Social Robots in Mental Health and Well-Being Research: Systematic Review. J. Med. Internet Res. 2019, 21, e13322. [Google Scholar] [CrossRef]
- Dawe, J.; Sutherland, C.; Barco, A.; Broadbent, E. Can social robots help children in healthcare contexts? A scoping review. BMJ Paediatr. Open 2019, 3, e000371. [Google Scholar] [CrossRef]
- Khosravi, P.; Ghapanchi, A.H. Investigating the effectiveness of technologies applied to assist seniors: A systematic literature review. Int. J. Med. Inform. 2016, 85, 17–26. [Google Scholar] [CrossRef]
- Schofield, D. Digital Emotion: How Audiences React to Robot on Screen. Int. J. Comput. Appl. 2018, 5, 1–20. [Google Scholar] [CrossRef]
- Strait, M.K.; Aguillon, C.; Contreras, V.; Garcia, N. The public’s perception of humanlike robots: Online social commentary reflects an appearance-based uncanny valley, a general fear of a “Technology Takeover”, and the unabashed sexualization of female-gendered robots. In Proceedings of the Robot and Human Interactive Communication (RO-MAN), 26th IEEE International Symposium, Lisbon, Portugal, 28–31 August 2017; pp. 1418–1423. [Google Scholar]
- Szollosy, M. Freud, Frankenstein and our fear of robots: Projection in our cultural perception of technology. AI Soc. 2017, 32, 433–439. [Google Scholar] [CrossRef]
- Papadopoulos, I.; Koulouglioti, C. The influence of culture on attitudes towards humanoid and animal-like robots: An integrative review. J. Nurs. Scholarsh. 2018, 50, 653–665. [Google Scholar] [CrossRef]
- Levy, D. Why not marry a robot? In International Conference on Love and Sex with Robots; Springer International Publishing: Cham, Germany, 2016; pp. 3–13. [Google Scholar]
- Walter, N.J. You may kiss the AI: An analysis of whether rationales for legalizing some nontraditional marriages also justify legalizing human-robot marriage. Jurimetrics 2019, 60, 353. [Google Scholar]
- Montag, C.; Diefenbach, S. Towards homo digitalis: Important research issues for psychology and the neurosciences at the dawn of the internet of things and the digital society. Sustainability 2018, 10, 415. [Google Scholar] [CrossRef]
- Bösl, D.B.O.; Bode, M. Generation ‘R’: Why our grandchildren will grow up as the first generation of ‘robotic natives’. In Proceedings of the 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies, Online, 3–6 August 2016; pp. 417–420. [Google Scholar]
- Opfer, J.E.; Gelman, S.A. Development of the animate–inanimate distinction. In The Wiley-Blackwell Handbook of Childhood Cognitive Development; Goswami, U., Ed.; Wiley-Blackwell: Oxford, UK, 2011; pp. 213–238. [Google Scholar]
- New, J.; Cosmides, L.; Tooby, J. Category-specific attention for animals reflects ancestral priorities, not expertise. Proc. Natl. Acad. Sci. USA 2007, 104, 16598–16603. [Google Scholar] [CrossRef]
- Scholl, B.J.; Tremoulet, P.D. Perceptual causality and animacy. Trends Cogn. Sci. 2000, 4, 299–309. [Google Scholar] [CrossRef]
- Nairne, J.S.; VanArsdall, J.E.; Pandeirada, J.N.S.; Cogdill, M.; LeBreton, J.M. Adaptive memory: The mnemonic value of animacy. Psychol. Sci. 2013, 24, 2099–2105. [Google Scholar] [CrossRef]
- Bonin, P.; Gelin, M.; Bugaiska, A. Animates are better remembered than inanimates: Further evidence from word and picture stimuli. Mem. Cogn. 2014, 42, 370–382. [Google Scholar] [CrossRef]
- Leding, J.K. The animacy advantage in memory: Manipulations of levels of processing and survival processing. Am. J. Psychol. 2018, 131, 273–281. [Google Scholar] [CrossRef]
- Meinhardt, M.J.; Bell, R.; Buchner, A.; Röer, J.P. Adaptive memory: Is the animacy effect on memory due to richness of encoding? J. Exp. Psychol. Learn. Mem. Cogn. 2020, 46, 416–426. [Google Scholar] [CrossRef]
- MacDorman, K.F.; Ishiguro, H. The uncanny advantage of using androids in cognitive and social science research. Interact. Stud. Soc. Behav. Commun. Biol. Artif. Syst. 2006, 7, 297–337. [Google Scholar] [CrossRef]
- Mori, M. The uncanny valley. (K. F. MacDorman, & T. Minato, Trans.). Energy 2005, 7, 33–35. [Google Scholar]
- Wang, S.; Lilienfeld, S.O.; Rochat, P. The uncanny valley: Existence and explanations. Rev. Gen. Psychol. 2015, 19, 393–407. [Google Scholar] [CrossRef]
- Sheridan, T.B. Human–robot interaction: Status and challenges. Hum. Factors 2016, 58, 525–532. [Google Scholar] [CrossRef]
- Naneva, S.; Sarda Gou, M.; Webb, T.L.; Prescott, T.J. A systematic review of attitudes, anxiety, acceptance, and trust towards social robots. Int. J. Soc. Robot. 2020, 12, 1179–1201. [Google Scholar] [CrossRef]
- Bröhl, C.; Nelles, J.; Brandl, C.; Mertens, A.; Nitsch, V. Human–robot collaboration acceptance model: Development and comparison for Germany, Japan, China and the USA. Int. J. Soc. Robot. 2019, 11, 709–726. [Google Scholar] [CrossRef]
- Leichtmann, B.; Hartung, J.; Wilhelm, O.; Nitsch, V. New short scale to measure workers’ attitudes toward the implementation of cooperative robots in industrial work settings: Instrument development and exploration of attitude structure. Int. J. Soc. Robot. 2023, 15, 909–930. [Google Scholar] [CrossRef]
- Sisman, B.; Gunay, D.; Kucuk, S. Development and validation of an educational robot attitude scale (ERAS) for secondary school students. Interact. Learn. Environ. 2019, 27, 377–388. [Google Scholar] [CrossRef]
- Nomura, T.; Kanda, T.; Suzuki, T. Experimental investigation into influence of negative attitudes toward robots on human–robot interaction. AI Soc. 2006, 20, 138–150. [Google Scholar] [CrossRef]
- Nomura, T.; Kanda, T.; Suzuki, T.; Kato, K. Prediction of human behavior in human--robot interaction using psychological scales for anxiety and negative attitudes toward robots. IEEE Trans. Robot. 2008, 24, 442–451. [Google Scholar] [CrossRef]
- Rantanen, T.; Lehto, P.; Vuorinen, P.; Coco, K. Attitudes towards care robots among Finnish home care personnel—A comparison of two approaches. Scand. J. Caring Sci. 2018, 32, 772–782. [Google Scholar] [CrossRef]
- Koverola, M.; Kunnari, A.; Sundvall, J.; Laakasuo, M. General attitudes towards robots scale (GAToRS): A new instrument for social surveys. Int. J. Soc. Robot. 2022, 14, 1559–1581. [Google Scholar] [CrossRef]
- Flensborg Damholdt, M.; Vestergaard, C.; Nørskov, M.; Hakli, R.; Larsen, S.; Seibt, J. Towards a new scale for assessing attitudes towards social robots: The attitudes towards social robots scale (ASOR). Interact. Stud. 2020, 21, 24–56. [Google Scholar] [CrossRef]
- Deniztoker, Z. Lovotics and the big-five: An exploration of the psychology of human-robot intimacy. In Proceedings of the 7th International Student Research Conference-ISRC, Prague, Czech Republic, 5 April 2019. [Google Scholar]
- Breazeal, C.; Gray, J.; Hoffman, G.; Berlin, M. Social robots: Beyond tools to partners. In Proceedings of the 13th IEEE International Workshop on Robot and Human Interactive Communication, Kurashiki-shi, Japan, 20–22 September 2004; pp. 551–556. [Google Scholar]
- Healy, P. Social robots as partners? In AI & Society; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–8. [Google Scholar]
- Broekens, J.; Heerink, M.; Rosendal, H. Assistive social robots in elderly care: A review. Gerontechnology 2009, 8, 94–103. [Google Scholar] [CrossRef]
- Westlund, J.M.K.; Park, H.W.; Williams, R.; Breazeal, C. Measuring young children’s long-term relationships with social robots. In Proceedings of the 17th ACM Conference on Interaction Design and Children, Trondheim, Norway, 19–22 June 2018; pp. 207–218. [Google Scholar]
- Gunkel, D.J. The other question: Can and should robots have rights? Ethics Inf. Technol. 2018, 20, 87–99. [Google Scholar] [CrossRef]
- Edison, S.W.; Geissler, G.L. Measuring attitudes towards general technology: Antecedents, hypotheses and scale development. J. Target. Meas. Anal. Mark. 2003, 12, 137–156. [Google Scholar] [CrossRef]
- Scholler, G.; Fliege, H.; Klapp, B.F. SWOP-K9-Fragebogen zu Selbstwirksamkeit-Optimismus-Pessimismus Kurzform. In Leibniz-Zentrum für Psychologische Information und Dokumentation (ZPID) (Hrsg.), Elektronisches Testarchiv (PSYNDEX Tests-Nr. 9003958); ZPID: Trier, Germany, 1999. [Google Scholar]
- Wegner, M.; Schwarzer, R.; Jerusalem, M. Generalized self-efficacy scale. In Measurement of Perceived Self-Efficacy. Psychometric Scales for Cross Cultural Research; Zentrale Universitats Druckerei der FU Berlin: Berlin, Germany, 1981; pp. 1–25. [Google Scholar]
- Scheier, M.F.; Carver, C.S. Optimism, coping, and health: Assessment and implications of generalized outcome expectancies. Health Psychol. 1985, 4, 219–247. [Google Scholar] [CrossRef]
- Attig, C.; Wessel, D.; Franke, T. Assessing personality differences in human-technology interaction: An overview of key self-report scales to predict successful interaction. In HCI International 2017—Posters’ Extended Abstracts, Part I, CCIS 713; Stephanidis, C., Ed.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 19–29. [Google Scholar]
- Rammstedt, B.; John, O.P. Measuring personality in one minute or less: A 10-item short version of the Big Five Inventory in English and German. J. Res. Personal. 2007, 41, 203–212. [Google Scholar] [CrossRef]
- Rammstedt, B.; Lechner, C.M.; Danner, D. Short forms do not fall short: A comparison of three (extra-)short forms of the Big Five. Eur. J. Psychol. Assess. 2021, 37, 23–32. [Google Scholar] [CrossRef]
- Ricolfi, L.; Testa, S. Factorial invariance and orthogonal rotation. Multivar. Behav. Res. 2021, 56, 787–804. [Google Scholar] [CrossRef]
- Horn, J.L. A rationale and test for the number of factors in factor analysis. Psychometrica 1965, 30, 179–185. [Google Scholar] [CrossRef]
- O’Connor, B.P. SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behav. Res. Methods Instrum. Comput. 2000, 32, 396–402. [Google Scholar] [CrossRef]
- Carpenter, S. Ten steps in scale development and reporting: A guide for researchers. Commun. Methods Meas. 2018, 12, 25–44. [Google Scholar] [CrossRef]
- Yang, Z.R.; Zeng, Z. Outlier analysis in large sample and high dimensional data based on feature weighting. Appl. Mech. Mater. 2014, 571, 650–657. [Google Scholar] [CrossRef]
- Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health Sci. Educ. 2010, 15, 625–632. [Google Scholar] [CrossRef]
- Osborne, J.W.; Costello, A.B. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pan-Pac. Manag. Rev. 2009, 12, 131–146. [Google Scholar]
- Smakman, M.H.; Konijn, E.A.; Vogt, P.; Pankowska, P. Attitudes towards social robots in education: Enthusiast, practical, troubled, sceptic, and mindfully positive. Robotics 2021, 10, 24. [Google Scholar] [CrossRef]
- Carradore, M. People’s attitudes towards the use of robots in the social services: A multilevel analysis using eurobarometer data. Int. J. Soc. Robot. 2022, 14, 845–858. [Google Scholar] [CrossRef]
- David, D.; Thérouanne, P.; Milhabet, I. The acceptability of social robots: A scoping review of the recent literature. Comput. Hum. Behav. 2022, 137, 107419. [Google Scholar] [CrossRef]
- Krägeloh, C.U.; Bharatharaj, J.; Sasthan Kutty, S.K.; Nirmala, P.R.; Huang, L. Questionnaires to measure acceptability of social robots: A critical review. Robotics 2019, 8, 88. [Google Scholar] [CrossRef]
- Esterwood, C.; Robert, L.P. Personality in Healthcare Human Robot Interaction (H-HRI): A Literature Review and Brief Critique. In Proceedings of the 8th International Conference on Human-Agent Interaction, Virtual Event, Australia, 10–13 November 2020; pp. 87–95. [Google Scholar]
- Müller, S.L.; Richert, A. The big-five personality dimensions and attitudes to-wards robots: A cross sectional study. In Proceedings of the ACM International Conference Proceeding Series, Corfu, Greece, 1 June 2018; pp. 405–408. [Google Scholar]
- Morsunbul, U. Human-robot interaction: How do personality traits affect attitudes towards robot? J. Hum. Sci. 2019, 16, 499–504. [Google Scholar] [CrossRef]
- Arras, K.O.; Cerqui, D. Do We Want to Share Our Lives and Bodies with Robots? A 2000 People Survey; Technical Report 0605-001; ETH-Zürich: Zürich, Switzerland, 2005. [Google Scholar] [CrossRef]
- Kuo, I.H.; Rabindran, J.M.; Broadbent, E.; Lee, Y.I.; Kerse, N.; Stafford, R.M.; MacDonald, B.A. Age and gender factors in user acceptance of healthcare robots. In Proceedings of the RO-MAN 2009-the 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, 27 September–2 October 2009; pp. 214–219. [Google Scholar]
- Meyer, S. Mein Freund der Roboter: Servicerobotik für Ältere Menschen; eine Antwort auf den Demografischen Wandel? VDE-Verlag: Berlin und Offenbach, Germany, 2011. [Google Scholar]
- Broadbent, E.; Kuo, I.H.; Lee, Y.I.; Rabindran, J.; Kerse, N.; Stafford, R.; MacDonald, B.A. Attitudes and reactions to a healthcare robot. Telemed. e-Health 2010, 16, 608–613. [Google Scholar] [CrossRef]
- Esterwood, C.; Essenmacher, K.; Yang, H.; Zeng, F.; Robert, L. A Meta-Analysis of Human Personality and Robot Acceptance in Human-Robot Interaction. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 7 May 2021; pp. 1–18. [Google Scholar]
- Ober, T.M.; Cheng, Y.; Coggins, M.R.; Brenner, P.; Zdankus, J.; Gonsalves, P.; Curated Pathways to Innovation (Group). Charting a path for growth in middle school students’ attitudes toward computer programming. In Computer Science Education; Taylor & Francis: Abingdon, UK, 2023; pp. 1–33. [Google Scholar]
- Schreiber, J.B. Issues and recommendations for exploratory factor analysis and principal component analysis. Res. Soc. Adm. Pharm. 2021, 17, 1004–1011. [Google Scholar] [CrossRef]
- Suhr, D. Exploratory or Confirmatory Factor Analysis. In SAS Users Group International Conference; SAS Institute, Inc.: Cary, NC, USA, 2006; pp. 1–17. [Google Scholar]
- Worthington, R.L.; Whittaker, T.A. Scale development research: A content analysis and recommendations for best practices. Couns. Psychol. 2006, 34, 806–838. [Google Scholar] [CrossRef]
- Ostermann, T.; Büssing, A.; Beer, A.M.; Matthiessen, P.F. The Herdecke Questionnaire on Quality of Life (HLQ): Validation of factorial structure and development of a short form within a naturopathy treated in-patient collective. Health Qual. Life Outcomes 2005, 3, 1–10. [Google Scholar] [CrossRef]
- Kim, H.J. Common factor analysis versus principal component analysis: Choice for symptom cluster research. Asian Nurs. Res. 2008, 2, 17–24. [Google Scholar] [CrossRef]
- Beavers, A.S.; Lounsbury, J.W.; Richards, J.K.; Huck, S.W.; Skolits, G.J.; Esquivel, S.L. Practical Considerations for Using Exploratory Factor Analysis in Educational Research. Pract. Assess. Res. Eval. 2013, 18, 6. [Google Scholar]
- De Winter, J.C.; Dodou, D. Common factor analysis versus principal component analysis: A comparison of loadings by means of simulations. Commun. Stat.-Simul. Comput. 2016, 45, 299–321. [Google Scholar] [CrossRef]
- Fokkema, M.; Greiff, S. How performing PCA and CFA on the same data equals trouble. Eur. J. Psychol. Assess. 2017, 33, 399–402. [Google Scholar] [CrossRef]
- Taherdoost, H.A.M.E.D.; Sahibuddin, S.H.A.M.S.U.L.; Jalaliyoon, N.E.D.A. Exploratory factor analysis; concepts and theory. Adv. Appl. Pure Math. 2022, 27, 375–382. [Google Scholar]
- Rouquette, A.; Falissard, B. Sample size requirements for the internal validation of psychiatric scales. Int. J. Methods Psychiatr. Res. 2011, 20, 235–249. [Google Scholar] [CrossRef]
Male (n = 94; 43.9%) | Female (n = 120; 56.1%) | Total (N = 214) | |
---|---|---|---|
Age | |||
| 31.2 ± 13.8 | 30.6 ± 14.8 | 30.8 ± 14.4 |
| 24.5 | 23.0 | 24.0 |
| 18 | 18 | 18 |
| 92 | 91 | 92 |
Relationship status | |||
| 29 (30.9%) | 52 (43.3%) | 81 (37.9%) |
| 44 (46.8%) | 37 (30.8%) | 81 (37.9%) |
| 20 (21.3%) | 28 (23.3%) | 48 (22.4%) |
| 1 (1.1%) | 3 (2.5%) | 4 (1.9%) |
| 0 (0.0%) | 1 (0.8%) | 1 (0.5%) |
| 0 (0.0%) | 1 (0.8%) | 1 (0.5%) |
Education (School) | |||
| 5 (5.3%) | 5 (4.2%) | 10 (4.7%) |
| 12 (12.8%) | 12 (10.0%) | 24 (11.2%) |
| 74 (78.2%) | 99 (82.5%) | 173 (80.8%) |
| 0 (0.0%) | 1 (0.8%) | 1 (0.5%) |
| 3 (3.2%) | 3 (2.5%) | 6 (2.8%) |
Higher Education | |||
| 54 (57.4%) | 77 (64.2%) | 131 (61.2%) |
| 9 (9.6%) | 11 (9.2%) | 20 (9.3%) |
| 12 (12.8%) | 22 (18.3%) | 34 (15.9%) |
| 7 (7.4%) | 0 (0.0%) | 7 (3.3%) |
| 5 (5.3%) | 2 (1.7%) | 7 (3.3%) |
| 7 (7.4%) | 8 (6.7%) | 15 (7.0%) |
Monthly income | |||
| 23 (24.5%) | 52 (43.3%) | 75 (35.0%) |
| 21 (22.3%) | 23 (19.2%) | 44 (20.6%) |
| 14 (14.9%) | 15 (12.5%) | 29 (13.6%) |
| 17 (18.1%) | 14 (11.7%) | 31 (14.5%) |
| 10 (10.6%) | 7 (5.8%) | 17 (7.9%) |
| 9 (9.6%) | 9 (7.5%) | 18 (8.4%) |
Raised in (inhabitants) | |||
| 42 (44.7%) | 42 (35.0%) | 84 (39.2%) |
| 27 (28.7%) | 35 (29.2%) | 62 (29.0%) |
| 25 (26.6%) | 43 (35.8%) | 68 (31.8%) |
Job area | |||
| 40 (42.6%) | 43 (35.8%) | 83 (38.8%) |
| 4 (4.3%) | 19 (15.8%) | 23 (10.7%) |
| 8 (8.5%) | 13 (10.8%) | 21 (9.8%) |
| 7 (7.4%) | 10 (8.3%) | 17 (7.9%) |
| 6 (6.4%) | 1 (0.8%) | 7 (3.3%) |
| 3 (3.2%) | 9 (7.5%) | 12 (5.6%) |
| 2 (2.1%) | 5 (4.2%) | 7 (3.3%) |
| 24 (25.5%) | 20 (16.7%) | 44 (20.6%) |
Item Codes | Components | Corrected Item–Scale Correlation | Items’ Reliability | Item Parameters | |||
---|---|---|---|---|---|---|---|
1 | 2 | Cronbach’s Alpha, If Item Is Deleted | Communalities | M | SD | ||
ASRS 01 | 0.826 | 0.170 | 0.726 | 0.917 | 0.711 | 2.33 | 1.50 |
ASRS 02 | 0.929 | 0.190 | 0.895 | 0.843 | 0.900 | 2.47 | 1.59 |
ASRS 03 | 0.905 | 0.262 | 0.888 | 0.842 | 0.888 | 2.27 | 1.54 |
ASRS 04 | 0.785 | 0.308 | 0.733 | 0.915 | 0.711 | 1.76 | 1.25 |
ASRS 05 | 0.183 | 0.680 | 0.509 | 0.748 | 0.496 | 2.92 | 1.57 |
ASRS 06 | 0.189 | 0.758 | 0.592 | 0.710 | 0.611 | 2.55 | 1.74 |
ASRS 07 | 0.185 | 0.843 | 0.694 | 0.674 | 0.744 | 1.56 | 1.12 |
ASRS 08 | 0.236 | 0.736 | 0.554 | 0.722 | 0.597 | 1.60 | 1.32 |
Cronbach’s Alpha | 0.915 | 0.768 | |||||
McDonalds Omega | 0.925 | 0.770 |
RoHeA | RoEqP | |
---|---|---|
Gender | ||
| 2.61 ± 1.48 | 2.44 ± 1.31 |
| 1.88 ± 1.07 | 1.93 ± 0.88 |
| F = 17.329; p < 0.001 | F = 11.514; p < 0.001 |
| H = 12.939; p < 0.001 | H = 6.141; p = 0.013 |
Age | ||
| 2.17 ± 1.27 | 2.27 ± 1.17 |
| 2.28 ± 1.41 | 1.92 ± 0.98 |
| F = 0.602; p = 0.557 | F = 5.95; p = 0.029 |
Relationship status | ||
| 2.12 ± 1.25 | 2.00 ± 0.94 |
| 2.33 ± 1.40 | 2.38 ± 1.31 |
| F = 1.35; p = 0.246 | F = 6.32; p = 0.013 |
| H = 3.426; p = 0.064 | |
Higher education | ||
| 2.14 ± 1.18 | 2.10 ± 1.06 |
| 2.30 ± 1.51 | 2.31 ± 1.22 |
| F = 0.70; p = 0.405 | F = 1.66; p = 0.199 |
Monthly income | ||
| 2.31 ± 1.42 | 2.23 ± 1.14 |
| 1.95 ± 1.11 | 2.22 ± 1.17 |
| 1.88 ± 1.15 | 1.77 ± 0.91 |
| 2.14 ± 1.14 | 2.20 ± 1.04 |
| 2.90 ± 1.75 | 2.24 ± 1.19 |
| 2.40 ± 1.20 | 2.19 ± 1.30 |
| F = 1.86; p = 0.103 | F = 0.82; p = 0.539 |
| H = 7.524; p = 0.184 | |
Context of socialization (inhabitants) | ||
| 2.34 ± 1.41 | 2.15 ± 1.25 |
| 2.14 ± 1.20 | 2.06 ± 1.00 |
| 2.11 ± 1.30 | 2.25 ± 1.06 |
| F = 0.68; p = 0.510 | F = 0.45; p = 0.642 |
Job area | ||
| 2.19 ± 1.29 | 2.10 ± 1.11 |
| 1.91 ± 1.12 | 1.95 ± 1.02 |
| 2.37 ± 1.42 | 2.32 ± 1.17 |
| F = 1.81; p = 0.167 | F = 1.76; p = 0.174 |
ASRS Subscales | ||
---|---|---|
RoHeA r [95%CI] | RoEqP r [95%CI] | |
BFI-E (Extraversion) | −0.186 [−0.312; −0.053] | −0.043 [−0.177; 0.091] |
BFI-N (Neuroticism) | 0.057 [−0.078; 0.189] | 0.027 [−0.108; 0.160] |
BFI-O (Openness) | −0.071 [−0.203; 0.064] | 0.042 [−0.092; 0.175] |
BFI-G (Conscientiousness) | −0.210 [−0.335; −0.078] | −0.206 [−0.331; −0.074] |
BFI_V Agreeableness | 0.073 [−0.061; 0.205] | 0.007 [−0.127; 0.141] |
SWOP-K9 Optimism | −0.046 [−0.179; 0.089] | −0.018 [−0.152; 0.116] |
SWOP-K9 Pessimism | 0.051 [−0.083; 0.184] | 0.040 [−0.095; 0.173] |
SWOP-K9 Self-efficacy | 0.049 [−0.086; 0.182] | 0.073 [−0.062; 0.205] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niewrzol, D.B.; Ostermann, T. Development and Validation of the Attitudes towards Social Robots Scale. Healthcare 2024, 12, 286. https://doi.org/10.3390/healthcare12030286
Niewrzol DB, Ostermann T. Development and Validation of the Attitudes towards Social Robots Scale. Healthcare. 2024; 12(3):286. https://doi.org/10.3390/healthcare12030286
Chicago/Turabian StyleNiewrzol, Daniel B., and Thomas Ostermann. 2024. "Development and Validation of the Attitudes towards Social Robots Scale" Healthcare 12, no. 3: 286. https://doi.org/10.3390/healthcare12030286
APA StyleNiewrzol, D. B., & Ostermann, T. (2024). Development and Validation of the Attitudes towards Social Robots Scale. Healthcare, 12(3), 286. https://doi.org/10.3390/healthcare12030286