Comparative Transcriptome Analysis Revealed the New Role of Hormones in Flower Bud Differentiation of Peach Trees Under Different Chilling Hours
<p>Internal development state of flower buds under different chilling hours.</p> "> Figure 2
<p>Contents of IAA (<b>a</b>), ABA (<b>b</b>), and GA (<b>c</b>) at different chilling hours. Different uppercase and lowercase letters indicate significant differences between treatments at a <span class="html-italic">p</span> < 0.05 level. Different * indicates significant differences between samples of different varieties (*, <span class="html-italic">p</span> < 0.05; **, <span class="html-italic">p</span> < 0.01, <span class="html-italic">t</span> test).</p> "> Figure 3
<p>Principal component analysis (PCA) (<b>a</b>) and Venn diagram of differential gene set (<b>b</b>). The numbers on each region in (<b>b</b>) represent the number of genes under the corresponding classification, where overlapping regions represent the number of differential genes shared among related combinations in the region.</p> "> Figure 4
<p>Clustering heatmap of differentially expressed genes in L12 and N1 at 0 (<b>a</b>), 200 (<b>b</b>), 400 (<b>c</b>), and 800 (<b>d</b>) chilling hours. The horizontal coordinate represents the name of the sample and the clustering result of the sample, and the vertical coordinate represents the differential gene and the clustering result of the gene. Different columns in the diagram represent different samples, and different rows represent different genes. The colors represent the level of gene expression in the sample log10 (FPKM + 0.000001).</p> "> Figure 5
<p>GO mapping of differentially expressed genes of L12 and N1 at 0 (<b>a</b>), 200 (<b>b</b>), 400 (<b>c</b>), and 800 h (<b>d</b>). The horizontal coordinate is the GO classification, the vertical coordinate is the number of genes, and different colors represent different primary classification.</p> "> Figure 6
<p>KEGG classification map of differentially expressed genes. The left ordinate represents the name of the KEGG metabolic pathway, the right ordinate represents the first-class classification name corresponding to the annotated pathway, and the horizontal coordinate represents the number of genes annotated to the pathway and their proportion to the total number of annotated genes. Figures (<b>a</b>–<b>d</b>) represent L12-0 VS N1-0, L12-2 VS N1-2, L12-4 VS N1-4, and L12-8 VS N1-8, respectively.</p> "> Figure 7
<p>KEGG enrichment network of differentially expressed genes. Network diagram of differentially expressed genes and KEGG pathway. The colors of the edges represent different pathways, and the colors of gene nodes represent multiples of difference. The larger the pathway nodes are, the more genes are enriched in the pathway. Figures (<b>a</b>−<b>d</b>) represent L12-0 VS N1-0, L12-2 VS N1-2, L12-4 VS N1-4, and L12-8 VS N1-8, respectively.</p> "> Figure 8
<p>Analysis of differential genes of L12 and N1 hormone pathways.</p> "> Figure 9
<p>KEGG classification annotation for L12-8 and N1-2.</p> "> Figure 10
<p>Analysis of differential genes of L12-8 and N1-2 hormone pathways.</p> "> Figure 11
<p>Transcription factor analysis of differentially expressed genes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Test Site
2.2. Plant Materials
2.3. Test Methods
2.4. Statistical Analysis
3. Results
3.1. Determination of Flower Bud State Under Different Chilling Hours
3.2. Characteristics of Changes of Hormone Content in Flower Buds with Chilling Requirement
3.3. Transcriptome Sequencing Analysis of L12 and N1
3.3.1. Differential Expression Analysis of L12 and N1 Genes
3.3.2. Enrichment Analysis of L12 and N1 Differential Genes
- (1)
- GO classification enrichment analysis
- (2)
- KEGG classification notes
3.3.3. Identification of DEG, a Hormone Pathway Involved in Flower Bud Differentiation
3.4. Transcriptome Analysis of L12-8 and N1-2
3.4.1. KEGG Classification Annotations of L12-8 and N1-2
3.4.2. Identification of DEGs in the L12-8 and N1-2 Hormone Pathways
3.5. Transcription Factor Analysis of L12 and N1
4. Discussion
4.1. The Differentiation of Flower Buds Was Influenced by Hormonal Levels, with Significant Impacts from the Concentrations of IAA, ABA, and GA Observed Under Different Chilling Hours
4.2. Transcriptome Analysis Revealed That the Differentiation of Flower Buds Under Varying Chilling Hours Is Governed by the Gene Balance Across Multiple Hormonal Pathways
4.3. The Transcription Factor Gene Families AP2_ERF-ERF, bHLH, C2H2, MYB, NAC, and RLK Play a Crucial Role in Regulating Low-Temperature Tolerance and Flower Bud Differentiation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, X.; Yuan, S.; Shen, S.; Geng, H.; Liu, J.; Cui, Z.; Liu, J.; Wang, F.; Wei, G.; Liu, D. First Report of Rust Caused by Tranzschelia discolor on Peach Leaves in Shenzhou, China. Plant Dis. 2022. [Google Scholar] [CrossRef]
- Kwon, J.H.; Nam, E.Y.; Yun, S.K.; Kim, S.J.; Song, S.Y.; Lee, J.H.; Hwang, K.D. Chilling and heat requirement of peach cultivars and changes in chilling accumulation spectrums based on 100-year records in Republic of Korea. Agric. For. Meteorol. 2020, 288, 108009. [Google Scholar] [CrossRef]
- Weibing, J.; Haozhang, H.; Liangju, W.; Kai, A.M. Advance in Research of chilling requirement and mechanism of Deciduous fruit crops. J. Fruit Sci. 2003, 20, 364–368. [Google Scholar]
- Zhang, Y.J.; Li, A.; Liu, X.Q.; Sun, J.X.; Lyu, Y.M. Changes in the morphology of the bud meristem and the levels of endogenous hormones after low temperature treatment of different Phalaenopsis cultivars. S. Afr. J. Bot. 2019, 125, 499–504. [Google Scholar] [CrossRef]
- Milyaev, A.; Kofler, J.; Moya, Y.A.T.; Lempe, J.; Stefanelli, D.; Hanke, M.V.; Flachowsky, H.; Wirén, N.; Wünsche, J.N. Profiling of phytohormones in apple fruit and buds regarding their role as potential regulators of flower bud formation. Tree Physiol. 2022, 42, 2319–2335. [Google Scholar] [CrossRef]
- Crane, O.; Halaly, T.; Pang, X.; Lavee, S.; Perl, A.; Vankova, R.; Or, E. Cytokinin-induced VvTFL1A expression may be involved in the control of grapevine fruitfulness. Planta 2012, 235, 181–192. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Cao, K.; Fang, W.; Chen, C.; Wang, X.; Wu, J.; Guo, W.; Wang, L. Peculiarity of transcriptional and H3K27me3 dynamics during peach bud dormancy. Hortic. Plant J. 2024, 10, 38–50. [Google Scholar] [CrossRef]
- Yang, F.; Tang, J.; Yang, D.; Yang, T.; Liu, H.; Luo, W.; Wu, J.; Wu, J.; Wang, L. Jasmonoyl-l-isoleucine and allene oxide cyclase-derived jasmonates differently regulate gibberellin metabolism in herbivory-induced inhibition of plant growth. Plant Sci. 2020, 300, 110627. [Google Scholar] [CrossRef]
- Blümel, M.; Dally, N.; Jung, C. Flowering time regulation in crops-what did we learn from Arabidopsis? Curr. Opin. Biotechnol. 2015, 32, 121–129. [Google Scholar] [CrossRef]
- Rehman, M.; Saeed, M.S.; Fan, X.; Salam, A.; Munir, R.; Yasin, M.U.; Khan, A.R.; Muhammad, S.; Ali, B.; Ali, L.; et al. The multifaceted role of jasmonic acid in plant stress mitigation: An overview. Plants 2023, 12, 3982. [Google Scholar] [CrossRef]
- Li, Z.; Ahammed, G.J. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. Plant Physiol. Biochem. 2023, 201, 107835. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Huang, C.; Jiang, X.; Zhu, J.; Gao, X.; Yu, C. Impact of cold stress on leaf structure, photosynthesis, and metabolites in Camellia weiningensis and C. oleifera seedlings. Horticulturae 2022, 8, 494. [Google Scholar] [CrossRef]
- Shu, K.; Chen, F.; Zhou, W.; Luo, X.; Dai, Y.; Shuai, H.; Yang, W. ABI4 regulates the floral transition independently of ABI5 and ABI3. Mol. Biol. Rep. 2018, 45, 2727–2731. [Google Scholar] [CrossRef] [PubMed]
- Shu, W.; Shi, M.; Zhang, Q.; Xie, W.; Chu, L.; Qiu, M.; Li, L.; Zeng, Z.; Han, L.; Sun, Z. Transcriptomic and metabolomic analyses reveal differences in flavonoid pathway gene expression profiles between two Dendrobium varieties during vernalization. Int. J. Mol. Sci. 2023, 24, 11039. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Wang, X.; Zhang, J.; Qi, X.; Ping, A.; Hou, L.; Xing, G.; Li, G.; Li, M. Genetic regulation of GA metabolism during vernalization, floral bud initiation and development in Pak Choi (Brassica rapa ssp. chinensis Makino). Front. Plant Sci. 2017, 8, 1533. [Google Scholar] [CrossRef]
- Deng, J.; Deng, X.; Yao, H.; Ji, S.; Dong, L. Gibberellins Play an Essential Role in the Bud Growth of Petunia hybrida. Curr. Issues Mol. Biol. 2024, 46, 9906–9915. [Google Scholar] [CrossRef]
- Barker, R.; Fernandez Garcia, M.N.; Powers, S.J.; Vaughan, S.; Bennett, M.J.; Phillips, A.L.; Thomas, S.G.; Hedden, P. Mapping sites of gibberellin biosynthesis in the Arabidopsis root tip. New Phytol. 2021, 229, 1521–1534. [Google Scholar] [CrossRef]
- Chiam, N.C.; Fujimura, T.; Sano, R.; Akiyoshi, N.; Hiroyama, R.; Watanabe, Y.; Motose, H.; Demura, T.; Ohtani, M. Nonsense-mediated mRNA decay deficiency affects the auxin response and shoot regeneration in Arabidopsis. Plant Cell Physiol. 2019, 60, 2000–2014. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, S.; Bai, P.; Ge, S.; Yan, P.; Li, Z.; Zhang, L.; Han, W.; Li, X. Genome-Wide Analysis and Expression Profiling of YUCCA Gene Family in Developmental and Environmental Stress Conditions in Tea Plant (Camellia sinensis). Forests 2023, 14, 2185. [Google Scholar] [CrossRef]
- Meng, S.; Xiang, H.; Yang, X.; Ye, Y.; Han, L.; Xu, T.; Liu, Y.; Wang, F.; Tan, C.; Qi, M.; et al. Effects of low temperature on pedicel abscission and auxin synthesis key genes of tomato. Int. J. Mol. Sci. 2023, 24, 9186. [Google Scholar] [CrossRef]
- Wang, L.; Zhu G., R.; Fang, W.; Zuo, Q. Estimating Models of the Chilling Requirement for Peach. Acta Hortic. Sin. 2003, 30, 379–383. [Google Scholar]
- Zhao, W.; Zhao, H.; Wang, H.; He, Y. Research progress on the relationship between leaf senescence and quality, yield and stress resistance in horticultural plants. Front. Plant Sci. 2022, 13, 1044500. [Google Scholar] [CrossRef] [PubMed]
- Vaitkevičiūtė, G.; Aleliūnas, A.; Gibon, Y.; Armonienė, R. The effect of cold acclimation, deacclimation and reacclimation on metabolite profiles and freezing tolerance in winter wheat. Front. Plant Sci. 2022, 13, 959118. [Google Scholar] [CrossRef] [PubMed]
- Guillamón, J.G.; Dicenta, F.; Sánchez-Pérez, R. Advancing endodormancy release in temperate fruit trees using agrochemical treatments. Front. Plant Sci. 2022, 12, 812621. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Li, X.; Qi, X.; Wang, X.; Feng, X.; Chen, Y.; Hou, L.; Li, M. Analysis of cytokinin content and associated genes at different developmental stages in pak choi (Brassicarapa ssp. chinensis Makino). Biotechnol. Biotechnol. Equip. 2022, 36, 788–797. [Google Scholar] [CrossRef]
- He, W.; Chen, Y.; Gao, M.; Zhao, Y.; Wang, Y. Transcriptome analysis of Litsea cubeba floral buds reveals the role of hormones and transcription factors in the differentiation process. G3 Genes Genomes Genet. 2018, 8, 1103–1114. [Google Scholar] [CrossRef]
- Peeters, A.; Gerards, W.; Barendse, G.; Wullems, G. In vitro flower bud formation in tobacco: Interaction of hormones. Plant Physiol. 1991, 97, 402–408. [Google Scholar] [CrossRef]
- Anderson, J.V. Advances in Plant Dormancy; Springer International: Fargo, ND, USA, 2015. [Google Scholar]
- Wang, H.; Wang, X.; Yan, A.; Liu, Z.; Ren, J.; Xu, H.; Sun, L. Metabolomic and transcriptomic integrated analysis revealed the decrease of monoterpenes accumulation in table grapes during long time low temperature storage. Food Res. Int. 2023, 174, 113601. [Google Scholar] [CrossRef]
- Guo, Y.; An, L.; Yu, H.; Yang, M. Endogenous hormones and biochemical changes during flower development and florescence in the buds and leaves of Lycium ruthenicum Murr. Forests 2022, 13, 763. [Google Scholar] [CrossRef]
- Jing, D.; Chen, W.; Hu, R.; Zhang, Y.; Xia, Y.; Wang, S.; He, Q.; Guo, Q.; Liang, G. An integrative analysis of transcriptome, proteome and hormones reveals key differentially expressed genes and metabolic pathways involved in flower development in loquat. Int. J. Mol. Sci. 2020, 21, 5107. [Google Scholar] [CrossRef]
- Kaufman, P.B.; Petering, L.B.; Adams, P.A. Regulation of growth and cellular differentiation in developing Avena internodes by gibberellic acid and indole-3-acetic acid. Am. J. Bot. 1969, 56, 918–927. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, T.; Abbas, F.; Yang, M.; Wang, X.; Deng, H.; Hu, F. Targeted Metabolites and Transcriptome Analysis Uncover the Putative Role of Auxin in Floral Sex Determination in Litchi chinensis Sonn. Plants 2024, 13, 2592. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Tian, J.; Guo, C.; Luo, S.; Li, J. Interaction of gibberellin and other hormones in almond anthers: Phenotypic and physiological changes and transcriptomic reprogramming. Hortic. Res. 2021, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Chen, X.; Chen, Q.; Wei, D.; Hu, X.Y.; Jia, A.Q. Diketopiperazine modulates Arabidopsis thaliana Root System Architecture by promoting interactions of auxin receptor TIR1 and IAA7/17 proteins. Plant Cell Physiol. 2022, 63, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Kemi, U.; Leinonen, P.H.; Savolainen, O.; Kuittinen, H. Inflorescence shoot elongation, but not flower primordia formation, is photoperiodically regulated in Arabidopsis lyrata. Ann. Bot. 2019, 124, 91–102. [Google Scholar] [CrossRef]
- Chiu R., S.; Pan, S.; Zhao, R.; Gazzarrini, S. ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis. Plant J. 2016, 88, 749–761. [Google Scholar] [CrossRef]
- Yi, H.; Jeong, J.; Park, S.; Im, J.H. Genome-wide identification of GH3 genes in Brassica oleracea and identification of a promoter region for anther-specific expression of a GH3 gene. BMC Genom. 2021, 22, 1–14. [Google Scholar]
- Khan, S.; Stone, J.M. Arabidopsis thaliana GH3. 9 influences primary root growth. Planta 2007, 226, 21–34. [Google Scholar] [CrossRef]
- Huang, X.; Lu, Z.; Zhai, L.; Li, N.; Yan, H. The small auxin-up RNA SAUR10 is involved in the promotion of seedling growth in rice. Plants 2023, 12, 3880. [Google Scholar] [CrossRef]
- Yue, C.; Cao, H.; Hao, X.; Zeng, J.; Qian, W.; Guo, Y.; Ye, N.X.; Yang, Y.J.; Wang, X. Differential expression of gibberellin-and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. Plant Cell Rep. 2018, 37, 425–441. [Google Scholar] [CrossRef]
- Huang, X.; Lyu, T.; Li, Z.; Lyu, Y. Hydrangea arborescens ‘Annabelle’ Flower Formation and Flowering in the Current Year. Plants 2023, 12, 4103. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Tanimoto, E.; Hirai, T.; Miyanoiri, Y.; Mitani, R.; Kawamura, M.; Takeda, M.; Takehara, S.; Hirano, K.; Kainosho, M.; et al. Evolution and diversification of the plant gibberellin receptor GID1. Proc. Natl. Acad. Sci. USA 2018, 115, E7844–E7853. [Google Scholar] [CrossRef] [PubMed]
- Shahnejat-Bushehri, S.; Allu, A.D.; Mehterov, N.; Thirumalaikumar, V.P.; Alseekh, S.; Fernie, A.R.; Mueller-Roeber, B.; Balazadeh, S. Arabidopsis NAC transcription factor JUNGBRUNNEN1 exerts conserved control over gibberellin and brassinosteroid metabolism and signaling genes in tomato. Front. Plant Sci. 2017, 8, 214. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yu, R.; Fan, L.M.; Wei, N.; Chen, H.; Deng, X.W. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat. Commun. 2016, 7, 11868. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Li, X.P.; Wu, C.M.; You, L.; Peng, D.; Ahmad, S.; Ren, H.; Liu, Z.J.; Zhai, J.W.; Wu, S.S. Genome-wide transcriptome analysis reveals the gene regulatory network in star fruit flower blooming. Trop. Plant Biol. 2023, 16, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Nie, C.R.; Guo, W.J.; Zhang, J.W.; Lyu, Y.M.; Ding, P.S.; Sun, J.X. Exploring Flowering Genes in Phalaenopsis through Transcriptome Analysis and Critical Gene Validation of Hormone Signal Transduction Pathway. Russ. J. Plant Physiol. 2023, 70, 25. [Google Scholar] [CrossRef]
- Ali, A.; Pardo, J.M.; Yun, D.J. Desensitization of ABA-signaling: The swing from activation to degradation. Front. Plant Sci. 2020, 11, 379. [Google Scholar] [CrossRef]
- Takahashi, Y.; Ebisu, Y.; Shimazaki, K. Reconstitution of abscisic acid signaling from the receptor to DNA via bHLH transcription factors. Plant Physiol. 2017, 174, 815–822. [Google Scholar] [CrossRef]
- Wang, X.; Guo, C.; Peng, J.; Li, C.; Wan, F.; Zhang, S.; Zhou, Y.; Yan, Y.; Qi, L.; Sun, K.; et al. ABRE-BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes. New Phytol. 2019, 221, 341–355. [Google Scholar] [CrossRef]
- Wang, Y.; Du, X.; Liu, M.; Li, Y.; Shang, Z.; Zhao, L.; Yu, X.; Zhang, S.; Li, P.; Liu, X.; et al. Genome-Wide Exploration of the Ethylene-Responsive Element-Binding Factor Gene Family in Sweet Cherry (Prunus avium L.): Preliminarily Unveiling Insights into Normal Development and Fruit Cracking. Horticulturae 2024, 10, 247. [Google Scholar] [CrossRef]
- Wang, J.; Sun, L.; Zhang, H.; Jiao, B.; Wang, H.; Zhou, S. Transcriptome analysis during vernalization in wheat (Triticum aestivum L.). BMC Genom. Data 2023, 24, 43. [Google Scholar] [CrossRef] [PubMed]
DEG Set | DEG Number | Up-Regulated | Down-Regulated |
---|---|---|---|
L12-0_vs._N1-0 | 2618 | 1651 | 967 |
L12-2_vs._N1-2 | 3592 | 2233 | 1359 |
L12-4_vs._N1-4 | 4719 | 2923 | 1796 |
L12-8_vs._N1-8 | 2685 | 1712 | 973 |
DEG Set | Total | COG | GO | KEGG | KOG | NR | Pfam | Swiss-Prot | eggNOG |
---|---|---|---|---|---|---|---|---|---|
L12-0_vs._N1-0 | 2519 | 866 | 2057 | 1736 | 1225 | 2515 | 2007 | 1825 | 2040 |
L12-2_vs._N1-2 | 3466 | 1193 | 2856 | 2362 | 1677 | 3463 | 2795 | 2551 | 2850 |
L12-4_vs._N1-4 | 4557 | 1565 | 3779 | 3141 | 2222 | 4555 | 3691 | 3325 | 3762 |
L12-8_vs._N1-8 | 2569 | 911 | 2080 | 1739 | 1225 | 2566 | 2064 | 1852 | 2051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, R.; Huang, J.; Wang, F.; Zhang, Y.; Wang, C. Comparative Transcriptome Analysis Revealed the New Role of Hormones in Flower Bud Differentiation of Peach Trees Under Different Chilling Hours. Horticulturae 2024, 10, 1292. https://doi.org/10.3390/horticulturae10121292
Niu R, Huang J, Wang F, Zhang Y, Wang C. Comparative Transcriptome Analysis Revealed the New Role of Hormones in Flower Bud Differentiation of Peach Trees Under Different Chilling Hours. Horticulturae. 2024; 10(12):1292. https://doi.org/10.3390/horticulturae10121292
Chicago/Turabian StyleNiu, Ruxuan, Juanjuan Huang, Falin Wang, Yiwen Zhang, and Chenbing Wang. 2024. "Comparative Transcriptome Analysis Revealed the New Role of Hormones in Flower Bud Differentiation of Peach Trees Under Different Chilling Hours" Horticulturae 10, no. 12: 1292. https://doi.org/10.3390/horticulturae10121292
APA StyleNiu, R., Huang, J., Wang, F., Zhang, Y., & Wang, C. (2024). Comparative Transcriptome Analysis Revealed the New Role of Hormones in Flower Bud Differentiation of Peach Trees Under Different Chilling Hours. Horticulturae, 10(12), 1292. https://doi.org/10.3390/horticulturae10121292