Rheological Characterization of a Thixotropic Semisolid Slurry by Means of Numerical Simulations of Squeeze-Flow Experiments
<p>Experimental data on an A356 alloy at 582 °C (semisolid stage): (<b>a</b>) applied load; (<b>b</b>) evolution of the sample height.</p> "> Figure 2
<p>Geometry and boundary conditions of squeeze flow when a load is applied on the top plate.</p> "> Figure 3
<p>Load distributions employed in the numerical simulations: (<b>a</b>) distribution following the experimental data; (<b>b</b>) two-step load with a high value for the first 0.01 s and a lower constant value afterwards equal to nominal maximum experimental load.</p> "> Figure 4
<p>Effect of the Bingham number for different power-law indices when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>. The experimental load distribution is imposed.</p> "> Figure 5
<p>Effect of the Bingham number for different power-law indices when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>. The experimental load distribution is imposed.</p> "> Figure 6
<p>Effect of the Bingham number for different power-law indices when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. The experimental load distribution is imposed.</p> "> Figure 7
<p>Effect of the Reynolds number for different power-law indices when <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>. The experimental load distribution is imposed.</p> "> Figure 8
<p>Effect of the power-law index when <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.0015</mn> </mrow> </semantics></math>. The experimental load distribution is imposed.</p> "> Figure 9
<p>Results with variable power-law index for <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.00025</mn> </mrow> </semantics></math>. The experimental load distribution is imposed.</p> "> Figure 10
<p>Results for <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.001</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and various Reynolds numbers when the power-law index varies from 0.6 to 1.4. The experimental load distribution is imposed.</p> "> Figure 11
<p>Results for <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.00025</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and various Reynolds numbers when the power-law index varies from 0.2 to 1.4. The experimental load distribution is imposed.</p> "> Figure 12
<p>Effect of the kinetic parameters <math display="inline"><semantics> <mi>a</mi> </semantics></math> and <math display="inline"><semantics> <mi>b</mi> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.00025</mn> </mrow> </semantics></math>, and the power-law index varies from 0.2 to 1.4. The experimental load distribution is imposed.</p> "> Figure 13
<p>Experimental data are reproduced when the load in the initial 0.01 s of the experiment is 10 times the nominal maximum experimental load <math display="inline"><semantics> <mrow> <msubsup> <mi>F</mi> <mo>∞</mo> <mo>*</mo> </msubsup> <mrow> <mo>=</mo> <mn>9</mn> <mo> </mo> <mi>kN</mi> </mrow> </mrow> </semantics></math> and the power-law index varies from 0.2 to 1.4. The optimal values of the other parameters are <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.000235</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>.</p> "> Figure 14
<p>Effects of (<b>a</b>) the load ratio when <math display="inline"><semantics> <mrow> <msubsup> <mi>t</mi> <mi>c</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mn>0.01</mn> <mrow> <mo> </mo> <mi mathvariant="normal">s</mi> </mrow> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>t</mi> <mi>c</mi> <mo>*</mo> </msubsup> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> and the other parameters are optimal: <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.000235</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, and the power-law index varies from 0.2 to 1.4.</p> "> Figure 15
<p>Effects of (<b>a</b>) the Bingham number when <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math> and (<b>b</b>) the Reynolds number when <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.000235</mn> </mrow> </semantics></math> and the other parameters are optimal: <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, the initial load for the first 0.01 s is 90 kN, and the power-law index varies from 0.2 to 1.4.</p> "> Figure 16
<p>Effects of (<b>a</b>) <math display="inline"><semantics> <mi>a</mi> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mi>b</mi> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math> and the other parameters are optimal: <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.000235</mn> </mrow> </semantics></math>, the power-law index varies from 0.2 to 1.4, and the initial load for the first 0.01 s is 9 kN.</p> "> Figure 17
<p>Evolution of the structure parameter during compression using the optimal parameters. <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.000235</mn> </mrow> </semantics></math>, the power-law index varies from 0.2 to 1.4, and the initial load for the first 0.01 s is 90 kN.</p> "> Figure 18
<p>Evolution of the power-law index <span class="html-italic">n</span> during compression using the optimal parameters. <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>0.95</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.000235</mn> </mrow> </semantics></math>, the power-law index varies from 0.2 to 1.4, and the initial load for the first 0.01 s is 90 kN.</p> "> Figure 19
<p>Evolutions of the mean values of the structure parameter (<math display="inline"><semantics> <mover accent="true"> <mi>λ</mi> <mo>¯</mo> </mover> </semantics></math>) and the power-law index (<math display="inline"><semantics> <mover accent="true"> <mi>n</mi> <mo>¯</mo> </mover> </semantics></math>) during compression using the optimal parameters. <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>n</mi> <mo>=</mo> <mn>0.000235</mn> </mrow> </semantics></math>, the power-law index varies from 0.2 to 1.4, and the initial load for the first 0.01 s is 90 kN.</p> "> Figure 20
<p>Constant structure flow curves for <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (no structure), 0.25, 0.5, 2/3, and 1 (full structure) and equilibrium flow curve (dotted line) with the estimated material parameters: <math display="inline"><semantics> <mrow> <msubsup> <mi>τ</mi> <mn>0</mn> <mo>*</mo> </msubsup> </mrow> </semantics></math> = 2.27 kPa, <math display="inline"><semantics> <mrow> <msup> <mi>k</mi> <mo>*</mo> </msup> </mrow> </semantics></math> = 230 kg/m/s<sup>0.6</sup>, <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mrow> <mi>min</mi> </mrow> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mrow> <mi>max</mi> </mrow> </msub> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>a</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>1.91</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>3</mn> </msup> <msup> <mrow> <mrow> <mo> </mo> <mi mathvariant="normal">s</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mi>b</mi> </semantics></math> = 0.95, and <math display="inline"><semantics> <mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>0.20</mn> <mo> </mo> <mrow> <mo> </mo> <mi mathvariant="normal">s</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 21
<p>Variation in (<b>a</b>) the yield stress and (<b>b</b>) the power-law exponent with the shear rate at equilibrium calculated using the estimated material parameters, i.e., <math display="inline"><semantics> <mrow> <msubsup> <mi>τ</mi> <mn>0</mn> <mo>*</mo> </msubsup> </mrow> </semantics></math> = 2.27 kPa, <math display="inline"><semantics> <mrow> <msup> <mi>k</mi> <mo>*</mo> </msup> </mrow> </semantics></math> = 230 kg/m/s<sup>0.6</sup>, <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mrow> <mi>min</mi> </mrow> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mrow> <mi>max</mi> </mrow> </msub> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>a</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>1.91</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>3</mn> </msup> <msup> <mrow> <mrow> <mo> </mo> <mi mathvariant="normal">s</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mi>b</mi> </semantics></math> = 0.95, and <math display="inline"><semantics> <mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>0.20</mn> <mo> </mo> <mo> </mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Experiments
3. Governing Equations and Numerical Method
4. Numerical Results
- (i)
- The imposed load distribution closely follows the experimental distribution and eventually attains the nominal experimental load , as illustrated in Figure 3a.
- (ii)
- The imposed load is initially set to a constant value for a very short period of time, , which is a small fraction of the duration of the actual experiment (approximately 0.9 s); after this short period, the load is set to the nominal experimental load (Figure 3b). Hence, in this case, the imposed load is
4.1. Simulations with the Experimental Load Distribution
4.2. Simulations with the Modified Load Distribution
4.3. Results with the Optimal Parameter Values
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Modigell, M.; Pola, A.; Tocci, M. Rheological characterization of semi-solid metals: A review. Metals 2018, 8, 245. [Google Scholar] [CrossRef]
- Spencer, D.B.; Mehrabian, R.; Flemings, M.C. Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall. Trans. 1972, 3, 1925–1932. [Google Scholar] [CrossRef]
- Flemings, M.C. Behaviour of metal alloys in the semisolid state. Metall. Trans. 1991, A22, 957–981. [Google Scholar] [CrossRef]
- Alexandrou, A.N.; Pan, Y.; Apelian, D.; Georgiou, G. Semisolid material characterization using computational rheology. In Proceedings of the 7th International Conference on Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan, 25–27 September 2002; pp. 417–422. [Google Scholar]
- Modigell, M.; Koke, J. Time-dependent rheological properties of semisolid metal alloys. Mech. Time-Dependent Mater. 1999, 3, 15–30. [Google Scholar] [CrossRef]
- Azzi, L.; Ajersch, F. Analytical modelling of the rheological behavior of semisolid metals and composites. Metall. Mater. Trans. B 2006, 37, 1067–1074. [Google Scholar] [CrossRef]
- Atkinson, H.V. Modelling the semisolid processing of metallic alloys. Proc. Mater. Sci. 2005, 50, 341–412. [Google Scholar] [CrossRef]
- Atkinson, H.V.; Favier, V. Does shear thickening occur in semi-solid metals? Metall. Mater. Trans. A 2016, 47, 1740–1750. [Google Scholar] [CrossRef]
- Jarfors, A.E.W.; M Jafari, M.; Aqueel, M.; Liljeqvist, P.; Jansson, P. In-production rheometry of semi-solid metal slurries. Metals 2022, 12, 1221. [Google Scholar] [CrossRef]
- Barnes, H.A. Thixotropy—A review. J. Non-Newton. Fluid Mech. 1997, 70, 1–33. [Google Scholar] [CrossRef]
- Mewis, J.; Wagner, N. Thixotropy. In Colloidal Suspension Rheology (Cambridge Series in Chemical Engineering); Cambridge University Press: Cambridge, UK, 2011; pp. 228–251. [Google Scholar]
- Larson, R.G. Constitutive equations for thixotropic fluids. J. Rheol. 2015, 59, 595–611. [Google Scholar] [CrossRef]
- Larson, R.G.; Wei, Y. A review of thixotropy and its rheological modelling. J. Rheol. 2019, 63, 477–501. [Google Scholar] [CrossRef]
- Coussot, P. Yield stress fluid flows: Are view of experimental data. J. Non-Newton. Fluid Mech. 2014, 211, 31–49. [Google Scholar] [CrossRef]
- de Souza Mendes, P.R.; Thompson, R.L. Time-dependent yield stress materials. Curr. Op. Coll. Inter. Sci. 2019, 43, 15–25. [Google Scholar] [CrossRef]
- Møller, P.C.F.; Mewis, J.; Bonn, D. Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice. Soft Matter 2006, 2, 274–283. [Google Scholar] [CrossRef]
- Dullaert, K.; Mewis, J. Thixotropy: Build-up and breakdown curves during flow. J. Rheol. 2005, 49, 1213–1230. [Google Scholar] [CrossRef]
- Dullaert, K.; Mewis, J. A structural kinetics model for thixotropy. J. Non-Newton. Fluid Mech. 2006, 139, 21–30. [Google Scholar] [CrossRef]
- Toorman, E.A. Modelling the thixotropic behavior of dense cohesive sediment suspensions. Rheol. Acta 1997, 36, 56–65. [Google Scholar] [CrossRef]
- Varchanis, S.; Makrigiorgos, G.; Moschopoulos, P.; Dimakopoulos, Y.; Tsamopoulos, J. Modeling the rheology of thixotropic elasto-visco-plastic materials. J. Rheol. 2019, 63, 609–639. [Google Scholar] [CrossRef]
- Laxmanan, V.; Flemings, M.C. Deformation of semi-solid Sn-15 Pct Pb alloy. Metall. Trans. A 1980, 11, 1927–1937. [Google Scholar] [CrossRef]
- Muravleva, L. Squeeze flow of Bingham, Casson and Herschel-Bulkley fluids with yield slip at the wall by accelerated augmented Lagrangian method. J. Non-Newton. Fluid Mech. 2020, 282, 104320. [Google Scholar] [CrossRef]
- Florides, G.C.; Alexandrou, A.N.; Georgiou, G.C. Flow development in compression of a finite amount of a Herchel-Bulkley fluid. J. Non-Newton. Fluid Mech. 2007, 143, 38–47. [Google Scholar] [CrossRef]
- Alexandrou, A.N.; Florides, G.C.; Georgiou, G.C. Squeeze flow of semi-solid slurries. J. Non-Newton. Fluid Mech. 2013, 193, 103–115. [Google Scholar] [CrossRef]
- Proni, C.T.W.; Zoqui, E.J. The effect of heating rate on the microstructural breakdown required for thixoformability. Int. J. Mater. Res. 2017, 108, 228–236. [Google Scholar] [CrossRef]
- Torres, L.V.; Zoqui, E.J. Microstructural stability and rheological behavior of Al-Si-Cu alloys in the semi-solid state. Metal. Mat. Trans. B 2022, 53B, 3229–3245. [Google Scholar] [CrossRef]
- Herschel, W.; Bulkley, R. Measurement of consistency as applied to rubber-benzene solutions. Proc. Am. Soc. Test Mater. 1926, 26, 621–633. [Google Scholar]
- Huilgol, R.R.; Georgiou, G.C. Fluid Mechanics of Viscoplasticity, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Papanastasiou, T.C. Flow of materials with yield. J. Rheol. 1987, 31, 385–404. [Google Scholar] [CrossRef]
- Balmforth, N.J.; Frigaard, I.A.; Ovarlez, G. Yielding to stress: Recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 2014, 46, 121–146. [Google Scholar] [CrossRef]
- Saramito, P.; Wachs, A. Progress in numerical simulation of yield stress fluid flows. Rheol. Acta 2017, 56, 211–230. [Google Scholar] [CrossRef]
- Houska, M. Engineering Aspects of the Rheology of Thixotropic Liquids. Ph.D. Thesis, Czech Technical University of Prague, Prague, Czech, 1981. [Google Scholar]
- Tiu, C.; Boger, D. Complete rheological characterization of time-dependent food products. J. Texture Stud. 1974, 5, 329–338. [Google Scholar] [CrossRef]
- Yang, L.H.; Wang, H.J.; Wu, A.X.; Xing, P.; Gao, H.W. Thixotropy of unclassified pastes in the processes of stirring and shearing. Chin. J. Eng. 2016, 38, 1343–1349. [Google Scholar]
- Malmir, A.; Piette, J.H.; Derakhshandesh, B.; Sztukowski, D.; Hatzikiriakos, S.G. On the thixotropy of mature fine tailings. Phys. Fluids 2023, 35, 063103. [Google Scholar] [CrossRef]
- Guo, Z.; Qiu, J.; Jiang, H.; Zhu, Q.; Kwek, J.W.; Ke, L.; Qu, Z. Experimental and modeling study on the transient flow and time-dependent yield stress of superfine-tailings cemented paste backfill. Constr. Build. Mat. 2023, 367, 130363. [Google Scholar] [CrossRef]
- Alexandrou, A.N.; Constantinou, N.; Georgiou, G. Shear rejuvenation, aging and shear banding in yield stress fluids. J. Non-Newton. Fluid Mech. 2009, 158, 6–17. [Google Scholar] [CrossRef]
- Favier, V.; Atkinson, H. Analysis of semi-solid response under rapid compression tests using multi-scale modelling and experiments. Trans. Nonferrous Metals Soc. China 2010, 20, 1691–1695. [Google Scholar] [CrossRef]
- Beris, A.N.; Stiakakis, E.; Vlassopoulos, D. A thermodynamically consistent model for the thixotropic behavior of concentrated star polymer suspensions. J. Non-Newton. Fluid Mech. 2008, 152, 76–85. [Google Scholar] [CrossRef]
- McLelland, A.R.A.; Henderson, N.G.; Atkinson, H.V.; Kirkwood, D.H. Anomalous rheological behavior of semi-solid alloy slurries at low shear rates. Mater. Sci. Eng. 1997, A232, 110–118. [Google Scholar] [CrossRef]
- Yerushalmi, J.; Katz, S.; Shinnar, R. The stability of steady shear flows of viscoelastic fluids. Chem. Eng. Sci. 1970, 25, 1891–1902. [Google Scholar] [CrossRef]
- Pitsillou, R.; Georgiou, G.C.; Huilgol, R.R. On the use of the Lambert function in solving non-Newtonian flow problems. Phys. Fluids 2020, 32, 093101. [Google Scholar] [CrossRef]
- Beristain, I.G.; Figueroa-Landeta, M.; López-Aguilar, J.E.; de Cortazar, M.G.; Girot, F.; Ellero, M. Numerical simulations of thixotropic semi-solid aluminium alloys in open-rotor and rotor-stator mixers. J. Non-Newton. Fluid Mech. 2023, 321, 105128. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florides, G.C.; Georgiou, G.C.; Modigell, M.; Zoqui, E.J. Rheological Characterization of a Thixotropic Semisolid Slurry by Means of Numerical Simulations of Squeeze-Flow Experiments. Fluids 2024, 9, 36. https://doi.org/10.3390/fluids9020036
Florides GC, Georgiou GC, Modigell M, Zoqui EJ. Rheological Characterization of a Thixotropic Semisolid Slurry by Means of Numerical Simulations of Squeeze-Flow Experiments. Fluids. 2024; 9(2):36. https://doi.org/10.3390/fluids9020036
Chicago/Turabian StyleFlorides, Georgios C., Georgios C. Georgiou, Michael Modigell, and Eugenio José Zoqui. 2024. "Rheological Characterization of a Thixotropic Semisolid Slurry by Means of Numerical Simulations of Squeeze-Flow Experiments" Fluids 9, no. 2: 36. https://doi.org/10.3390/fluids9020036
APA StyleFlorides, G. C., Georgiou, G. C., Modigell, M., & Zoqui, E. J. (2024). Rheological Characterization of a Thixotropic Semisolid Slurry by Means of Numerical Simulations of Squeeze-Flow Experiments. Fluids, 9(2), 36. https://doi.org/10.3390/fluids9020036