A GIS-Based Hot and Cold Spots Detection Method by Extracting Emotions from Social Streams
<p>Example of Pleasant/Unpleasant ER fuzzy partition.</p> "> Figure 2
<p>Schema of the proposed GIS-based framework.</p> "> Figure 3
<p>Schema of the social messages emotion classification framework proposed in [<a href="#B6-futureinternet-15-00023" class="html-bibr">6</a>].</p> "> Figure 4
<p>FESC: logical overview.</p> "> Figure 5
<p>The study area—the 18 municipalities of the northeastern area of the province of Naples (Italy).</p> "> Figure 6
<p>Pleasant and unpleasant emotion relevance thematic maps in the year 2020. (<b>a</b>) Pleasant emotion relevance. (<b>b</b>) Unpleasant emotion relevance.</p> "> Figure 7
<p>Pleasant and unpleasant emotion relevance thematic maps in the year 2021. (<b>a</b>) Pleasant emotion relevance. (<b>b</b>) Unpleasant emotion relevance.</p> "> Figure 8
<p>Pleasant and unpleasant emotion relevance thematic maps in 2022. (<b>a</b>) Pleasant emotion relevance. (<b>b</b>) Unpleasant emotion relevance.</p> "> Figure 9
<p>Map of Hot and Cold spots in the study area.</p> ">
Abstract
:1. Introduction
- -
- The number of clusters must match the number of emotional categories, and there can be no a priori one-to-one mapping between clusters and emotional categories;
- -
- The centers of the initial clusters are set randomly. This produces an average increase in execution times and allows the algorithm to converge toward a local minimum;
- -
- the document is assigned to a single emotional category, not considering emotional categories corresponding to clusters to which the document belongs with a non-negligible membership degree.
- -
- Unlike other hot and cold spot detection methods, which take into consideration only localized events, FESC recognizes hot and cold spots by analyzing the moods of citizens extracted from social networks; this makes it possible to use hidden knowledge to evaluate, on the basis of citizens’ emotions, which subzones of the study area are more critical and which, on the other hand, are less affected by the phenomenon being investigated;
- -
- FESC is computationally faster than cluster-based hot and cold spot detection methods; in fact, FESC does not need to detect the exact geometric shape of a spot but evaluates the prevailing emotional states of citizens to determine which subzones can be classified as hot or cold spots; this mode significantly reduces the CPU times of the algorithm;
- -
- to overcome the critical issues of the cluster-based approaches adopted for the classification of documents based on the prevailing emotional category, which needs to fix the number of clusters equal to the number of emotional categories and to establish a one-to-one correspondence between clusters and emotional categories, FESC adopts an approach based on the construction of a fuzzy partition of the relevance of pleasant and unpleasant emotional categories.
2. Preliminaries
2.1. Hot and Cold Spots in Spatial Analysis
2.2. Lightwise to Classify Social Messages Emotion Classification Methods
3. The FESC Framework
Algorithm 1: Fuzzy Emotion-based hot and cold Spots Classification (FESC). |
|
4. Test and Results
- -
- The presence of an urban area of greater comfort felt by the citizen, which includes the neighboring municipalities of Brusciano and Castello di Cisterna:
- -
- A larger urban area that includes municipalities in the central strip where a greater discomfort felt by the citizens prevails;
- -
- Another urban area in the southwest of the study area covers the municipalities of Casandrino, Grumo Nevano, and Melito di Napoli.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, S.; Cao, L.; Zhou, Y.; Ouyang, Z.; Yang, A.; Li, X.; Jia, W.; Shui, Y. A survey on deep learning for textual emotion analysis in social networks. Digit. Commun. Netw. 2021, 8, 745–762. [Google Scholar] [CrossRef]
- Adadi, A. A survey on data-efficient algorithms in big data era. J. Big Data 2021, 8, 54. [Google Scholar] [CrossRef]
- van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef] [Green Version]
- Triguero, I.; García, S.; Herrera, F. Self-labeled techniques for semi-supervised learning: Taxonomy. software and empirical study. Knowl. Inf. Syst. 2013, 42, 245–284. [Google Scholar] [CrossRef]
- Aggarwal, C.C. A Survey of Stream Clustering Algorithms. In Data Clustering. Algorithms and Applications, 1st ed.; Aggarwal, C.C., Reddy, C.K., Eds.; Chapman and Hall/CRC: London, UK, 2014; p. 652. ISBN 9781466558212. [Google Scholar]
- Di Martino, F.; Senatore, S.; Sessa, S. A lightweight clustering-based approach to discover different emotional shades from social message streams. Int. J. Intell. Syst. 2019, 34, 1505–1523. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981; p. 272. ISBN 978-0306406713. [Google Scholar]
- Bezek, J.C.; Ehrlich, R.; Full, W. The fuzzy C-means Clustering Algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Kaymak, U.; Setnes, M. Fuzzy clustering with volume prototype and adaptive cluster merging. IEEE Trans. Fuzzy Syst. 2002, 10, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Cardone, B.; Di Martino, F.; Sessa, S. GIS-based fuzzy sentiment analysis framework to classify urban elements according to the orientations of citizens and tourists expressed in social networks. Evol. Intell. 2022, 15, 1959–1968. [Google Scholar] [CrossRef]
- Cardone, B.; Di Martino, F.; Senatore, S. Improving the emotion-based classification by exploiting the fuzzy entropy in FCM clustering. Int. J. Intell. Syst. 2021, 36, 6944–6967. [Google Scholar] [CrossRef]
- Cardone, B.; Di Martino, F.; Senatore, S. A fuzzy partition-based method to classify social messages assessing their emotional relevance. Inf. Sci. 2022, 594, 60–75. [Google Scholar] [CrossRef]
- Cardone, B.; Di Martino, F. A GIS-Based Fuzzy Multiclassification Framework Applied for Spatiotemporal Analysis of Phenomena in Urban Contexts. Information 2022, 13, 248. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Samiul Islam, S.M.; Ashraful Islam, K.M.; Akter Mullick, M.R. Drought hot spot analysis using local indicators of spatial autocorrelation: An experience from Bangladesh. Environ. Chall. 2022, 6, 100410. [Google Scholar] [CrossRef]
- Chainey, S.; Tompson, L.; Uhlig, S. The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime. Secur. J. 2008, 21, 4–28. [Google Scholar] [CrossRef]
- Devroye, L.; Rugosi, G. Combinatorial Methods in Density Estimation, 2001st ed.; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2001; p. 208. ISBN 978-0387951171. [Google Scholar]
- MacQueen, J.B. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Le Cam, L.M., Neyman, J., Eds.; University of California Press: Oakland, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Agarval, J.; Nagpal, R.; Sehgal, R. Crime Analysis Using K-Means Clustering. Int. J. Comput. Appl. 2013, 83, 4. [Google Scholar]
- Sing, A.K.; Manimannan, G. Detecting Hot Spots on Crime Data Using Data Mining and Geographical Information System. Int. J. Stat. Math. 2013, 8, 5–9. [Google Scholar]
- Hajela, G.; Chawla, M.; Rasool, A. A Clustering Based Hot Spot Identification Approach for Crime Prediction. Procedia Comput. Sci. 2020, 167, 1462–1470. [Google Scholar] [CrossRef]
- Vadrevu, K.V.; Csiszar, I.; Ellicott, E.; Giglio, L.; Badarinath, K.V.S.; Vermote, E.; Justice, C. Hot Spot Analysis of Vegetation Fires and Intensity in the Indian Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 224–228. [Google Scholar] [CrossRef]
- Khairani, N.A.; Sutoyo, E. Application of K-Means Clustering Algorithm for Determination of Fire-Prone Areas Utilizing Hot Spots in West Kalimantan Province. Int. J. Adv. Data Inf. Syst. 2020, 1, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; p. 342. ISBN 978-0471735786. [Google Scholar]
- Hardika, E.; Atmaja, S. Implementation of k-Medoids Clustering Algorithm to Cluster Crime Patterns in Yogyakarta. Int. J. Appl. Sci. Smart Technol. 2019, 1, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Tabarej, M.S.; Minz, S. Rough-Set Based Hot Spot Detection in Spatial Data. In Advances in Computing and Data Sciences; ICACDS 2019: Communications in Computer and Information Science; Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Kashyap, R., Eds.; Springer: Singapore, 2019; Volume 1046, pp. 356–368. [Google Scholar] [CrossRef]
- Havens, T.C.; Bezdek, J.C.; Leckie, C.; Hall, L.O.; Palaniswami, M. Fuzzy c-Means Algorithms for Very Large Data. IEEE Trans. Fuzzy Syst. 2012, 20, 1130–1146. [Google Scholar] [CrossRef]
- Ansari, M.Y.; Prakash, A. Application of Spatio-Temporal Fuzzy C-Means Clustering for Crime Spot Detection. Def. Sci. J. 2018, 68, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Win, K.N.; Chen, J.; Chen, Y.; Fournier-Viger, P. PCPD: A Parallel Crime Pattern Discovery System for Large-Scale Spatio-temporal Data Based on Fuzzy Clustering. Int. J. Fuzzy Syst. 2019, 21, 1961–1974. [Google Scholar] [CrossRef]
- Bandyopadhyaya, R.; Mitra, S. Fuzzy Cluster–Based Method of Hot Spot Detection with Limited Information. J. Transp. Saf. Secur. 2015, 7, 307–323. [Google Scholar] [CrossRef]
- Huang, Z.; Gao, S.; Cai, C.; Zheng, H.; Pan, Z.; Li, W. A rapid density method for taxi passengers hot spot recognition and visualization based on DBSCAN. Sci. Rep. 2021, 11, 9420. [Google Scholar] [CrossRef]
- Kumar, K.M.; Reddy, A.R.M. A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method. Pattern Recognit. 2016, 58, 39–48. [Google Scholar] [CrossRef]
- Das, A.K.; Bhuyan, P.K. Self-Organizing Tree Algorithm (SOTA) Clustering for Defining Level of Service (LOS) Criteria of Urban Streets. Period. Polytech. Transp. Eng. 2019, 47, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Cardone, B.; Di Martino, F. Fuzzy-Based Spatiotemporal Hot Spot Intensity and Propagation—An Application in Crime Analysis. Electronics 2022, 11, 370. [Google Scholar] [CrossRef]
- Di Martino, F.; Sessa, S.; Barillari, E.S.; Barillari, M.S. Spatio-temporal hot spots and Application on a Disease Analysis Case via GIS. Soft Comput. 2014, 18, 2377–2384. [Google Scholar] [CrossRef]
- Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988, 24, 513–523. [Google Scholar] [CrossRef]
- Chakravorty, S. Identifying crime clusters: The spatial principles. Middle States Geogr. 1995, 28, 53–58. [Google Scholar]
- Plutchik, R. A General Psychoevolutionary Theory of Emotion; Theories of Emotion; Plutchik, R., Kellerman, H., Eds.; Academic Press: Cambridge, MA, USA, 1980; pp. 3–33. [Google Scholar] [CrossRef]
Basic Emotions | Secondary Emotions | |
---|---|---|
Pleasant | Expectation | Awe |
Joy | Love | |
Surprise | Optimism | |
Trust | Content | |
Unpleasant | Anger | Aggression |
Sadness | Disapproval | |
Disgust | Remorse | |
Fear | Submission |
Municipality | Very Low | Low | Medium Low | Medium | Medium High | High | Very High | Relevance |
---|---|---|---|---|---|---|---|---|
Acerra | 0.00 | 0.00 | 0.00 | 0.90 | 0.10 | 0.00 | 0.00 | Medium |
Afragola | 0.00 | 0.40 | 0.60 | 0.00 | 0.00 | 0.00 | 0.00 | Medium low |
Arzano | 0.00 | 0.00 | 0.20 | 0.80 | 0.00 | 0.00 | 0.00 | Medium |
Brusciano | 0.00 | 0.00 | 0.00 | 0.30 | 0.70 | 0.00 | 0.00 | Medium high |
Caivano | 0.00 | 0.30 | 0.70 | 0.00 | 0.00 | 0.00 | 0.00 | Medium low |
Cardito | 0.00 | 0.00 | 0.10 | 0.90 | 0.00 | 0.00 | 0.00 | Medium |
Casalnuovo di Napoli | 0.00 | 0.00 | 0.00 | 0.70 | 0.30 | 0.00 | 0.00 | Medium |
Casandrino | 0.00 | 0.00 | 0.60 | 0.40 | 0.00 | 0.00 | 0.00 | Medium low |
Casavatore | 0.00 | 0.00 | 0.30 | 0.70 | 0.00 | 0.00 | 0.00 | Medium |
Casoria | 0.00 | 0.00 | 0.95 | 0.05 | 0.00 | 0.00 | 0.00 | Medium low |
Castello di Cisterna | 0.00 | 0.00 | 0.00 | 0.00 | 0.70 | 0.30 | 0.00 | Medium high |
Crispano | 0.00 | 0.00 | 0.00 | 0.60 | 0.40 | 0.00 | 0.00 | Medium |
Frattamaggiore | 0.00 | 0.00 | 0.15 | 0.85 | 0.00 | 0.00 | 0.00 | Medium |
Frattaminore | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | Medium high |
Grumo Nevano | 0.00 | 0.15 | 0.15 | 0.85 | 0.00 | 0.00 | 0.00 | Medium |
Melito di Napoli | 0.00 | 0.30 | 0.30 | 0.70 | 0.00 | 0.00 | 0.00 | Medium |
Pomigliano d’Arco | 0.00 | 0.20 | 0.20 | 0.80 | 0.00 | 0.00 | 0.00 | Medium |
Sant’Antimo | 0.00 | 0.00 | 0.00 | 0.80 | 0.20 | 0.00 | 0.00 | Medium |
Municipality | Very Low | Low | Medium Low | Medium | Medium High | High | Very High | Relevance |
---|---|---|---|---|---|---|---|---|
Acerra | 0.00 | 0.00 | 0.05 | 0.95 | 0.00 | 0.00 | 0.00 | Medium |
Afragola | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.40 | High |
Arzano | 0.00 | 0.00 | 0.00 | 0.60 | 0.40 | 0.00 | 0.00 | Medium |
Brusciano | 0.00 | 0.00 | 0.35 | 0.65 | 0.00 | 0.00 | 0.00 | Medium |
Caivano | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.30 | High |
Cardito | 0.00 | 0.00 | 0.00 | 0.80 | 0.20 | 0.00 | 0.00 | Medium |
Casalnuovo di Napoli | 0.00 | 0.00 | 0.15 | 0.85 | 0.00 | 0.00 | 0.00 | Medium |
Casandrino | 0.00 | 0.00 | 0.00 | 0.00 | 0.80 | 0.20 | 0.00 | Medium high |
Casavatore | 0.00 | 0.00 | 0.00 | 0.40 | 0.60 | 0.00 | 0.00 | Medium high |
Casoria | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.90 | 0.00 | High |
Castello di Cisterna | 0.00 | 0.00 | 0.65 | 0.35 | 0.00 | 0.00 | 0.00 | Medium low |
Crispano | 0.00 | 0.00 | 0.20 | 0.80 | 0.00 | 0.00 | 0.00 | Medium |
Frattamaggiore | 0.00 | 0.00 | 0.00 | 0.70 | 0.30 | 0.00 | 0.00 | Medium |
Frattaminore | 0.00 | 0.00 | 0.25 | 0.75 | 0.00 | 0.00 | 0.00 | Medium |
Grumo Nevano | 0.00 | 0.00 | 0.00 | 0.70 | 0.30 | 0.00 | 0.00 | Medium |
Melito di Napoli | 0.00 | 0.00 | 0.00 | 0.40 | 0.60 | 0.00 | 0.00 | Medium high |
Pomigliano d’Arco | 0.00 | 0.00 | 0.00 | 0.60 | 0.40 | 0.00 | 0.00 | Medium |
Sant’Antimo | 0.00 | 0.00 | 0.10 | 0.90 | 0.00 | 0.00 | 0.00 | Medium |
Municipality | Very Low | Low | Medium Low | Medium | Medium High | High | Very High | Relevance |
---|---|---|---|---|---|---|---|---|
Acerra | 0.00 | 0.00 | 0.10 | 0.90 | 0.00 | 0.00 | 0.00 | Medium |
Afragola | 0.00 | 0.70 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | Low |
Arzano | 0.00 | 0.00 | 0.20 | 0.80 | 0.00 | 0.00 | 0.00 | Medium |
Brusciano | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | Medium high |
Caivano | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | Low |
Cardito | 0.00 | 0.00 | 0.25 | 0.75 | 0.00 | 0.00 | 0.00 | Medium |
Casalnuovo di Napoli | 0.00 | 0.00 | 0.15 | 0.85 | 0.00 | 0.00 | 0.00 | Medium |
Casandrino | 0.00 | 0.00 | 0.75 | 0.25 | 0.00 | 0.00 | 0.00 | Medium low |
Casavatore | 0.00 | 0.00 | 0.45 | 0.55 | 0.00 | 0.00 | 0.00 | Medium |
Casoria | 0.00 | 0.10 | 0.90 | 0.00 | 0.00 | 0.00 | 0.00 | Medium low |
Castello di Cisterna | 0.00 | 0.00 | 0.00 | 0.00 | 0.90 | 0.10 | 0.00 | Medium high |
Crispano | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | Medium |
Frattamaggiore | 0.00 | 0.00 | 0.30 | 0.70 | 0.00 | 0.00 | 0.00 | Medium |
Frattaminore | 0.00 | 0.00 | 0.00 | 0.70 | 0.30 | 0.00 | 0.00 | Medium |
Grumo Nevano | 0.00 | 0.00 | 0.20 | 0.80 | 0.00 | 0.00 | 0.00 | Medium |
Melito di Napoli | 0.00 | 0.00 | 0.60 | 0.40 | 0.00 | 0.00 | 0.00 | Medium low |
Pomigliano d’Arco | 0.00 | 0.00 | 0.35 | 0.65 | 0.00 | 0.00 | 0.00 | Medium |
Sant’Antimo | 0.00 | 0.00 | 0.25 | 0.75 | 0.00 | 0.00 | 0.00 | Medium |
Municipality | Very Low | Low | Medium Low | Medium | Medium High | High | Very High | Relevance |
---|---|---|---|---|---|---|---|---|
Acerra | 0.00 | 0.00 | 0.00 | 0.80 | 0.20 | 0.00 | 0.00 | Medium |
Afragola | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.70 | High |
Arzano | 0.00 | 0.00 | 0.00 | 0.60 | 0.40 | 0.00 | 0.00 | Medium |
Brusciano | 0.00 | 0.00 | 0.25 | 0.75 | 0.00 | 0.00 | 0.00 | Medium |
Caivano | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.50 | High |
Cardito | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | Medium high |
Casalnuovo di Napoli | 0.00 | 0.00 | 0.00 | 0.70 | 0.30 | 0.00 | 0.00 | Medium |
Casandrino | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | High |
Casavatore | 0.00 | 0.00 | 0.00 | 0.10 | 0.90 | 0.00 | 0.00 | Medium high |
Casoria | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.10 | High |
Castello di Cisterna | 0.00 | 0.00 | 0.55 | 0.45 | 0.00 | 0.00 | 0.00 | Medium low |
Crispano | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | Medium |
Frattamaggiore | 0.00 | 0.00 | 0.00 | 0.40 | 0.60 | 0.00 | 0.00 | Medium high |
Frattaminore | 0.00 | 0.00 | 0.15 | 0.85 | 0.00 | 0.00 | 0.00 | Medium |
Grumo Nevano | 0.00 | 0.00 | 0.00 | 0.60 | 0.40 | 0.00 | 0.00 | Medium |
Melito di Napoli | 0.00 | 0.00 | 0.00 | 0.00 | 0.80 | 0.20 | 0.00 | Medium high |
Pomigliano d’Arco | 0.00 | 0.00 | 0.00 | 0.30 | 0.70 | 0.00 | 0.00 | Medium high |
Sant’Antimo | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | Medium high |
Municipality | Very Low | Low | Medium Low | Medium | Medium High | High | Very High | Relevance |
---|---|---|---|---|---|---|---|---|
Acerra | 0.00 | 0.00 | 0.25 | 0.75 | 0.00 | 0.00 | 0.00 | Medium |
Afragola | 0.00 | 0.80 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | Low |
Arzano | 0.00 | 0.00 | 0.20 | 0.80 | 0.00 | 0.00 | 0.00 | Medium |
Brusciano | 0.00 | 0.00 | 0.00 | 0.40 | 0.60 | 0.00 | 0.00 | Medium high |
Caivano | 0.00 | 0.70 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | Low |
Cardito | 0.00 | 0.00 | 0.40 | 0.60 | 0.00 | 0.00 | 0.00 | Medium |
Casalnuovo di Napoli | 0.00 | 0.00 | 0.10 | 0.90 | 0.00 | 0.00 | 0.00 | Medium |
Casandrino | 0.00 | 0.00 | 0.90 | 0.10 | 0.00 | 0.00 | 0.00 | Medium low |
Casavatore | 0.00 | 0.00 | 0.40 | 0.60 | 0.00 | 0.00 | 0.00 | Medium |
Casoria | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | Medium low |
Castello di Cisterna | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | Medium high |
Crispano | 0.00 | 0.00 | 0.15 | 0.85 | 0.00 | 0.00 | 0.00 | Medium |
Frattamaggiore | 0.00 | 0.00 | 0.25 | 0.75 | 0.00 | 0.00 | 0.00 | Medium |
Frattaminore | 0.00 | 0.00 | 0.00 | 0.80 | 0.20 | 0.00 | 0.00 | Medium |
Grumo Nevano | 0.00 | 0.00 | 0.30 | 0.70 | 0.00 | 0.00 | 0.00 | Medium |
Melito di Napoli | 0.00 | 0.00 | 0.55 | 0.45 | 0.00 | 0.00 | 0.00 | Medium low |
Pomigliano d’Arco | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | 0.00 | Medium |
Sant’Antimo | 0.00 | 0.00 | 0.20 | 0.80 | 0.00 | 0.00 | 0.00 | Medium |
Municipality | Very Low | Low | Medium Low | Medium | Medium High | High | Very High | Relevance |
---|---|---|---|---|---|---|---|---|
Acerra | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | Medium high |
Afragola | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.80 | High |
Arzano | 0.00 | 0.00 | 0.00 | 0.60 | 0.40 | 0.00 | 0.00 | Medium |
Brusciano | 0.00 | 0.00 | 0.30 | 0.70 | 0.00 | 0.00 | 0.00 | Medium |
Caivano | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.70 | High |
Cardito | 0.00 | 0.00 | 0.00 | 0.20 | 0.80 | 0.00 | 0.00 | Medium high |
Casalnuovo di Napoli | 0.00 | 0.00 | 0.00 | 0.80 | 0.20 | 0.00 | 0.00 | Medium |
Casandrino | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.80 | 0.00 | High |
Casavatore | 0.00 | 0.00 | 0.00 | 0.20 | 0.80 | 0.00 | 0.00 | Medium high |
Casoria | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | High |
Castello di Cisterna | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | 0.00 | Medium |
Crispano | 0.00 | 0.00 | 0.00 | 0.70 | 0.30 | 0.00 | 0.00 | Medium |
Frattamaggiore | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | Medium high |
Frattaminore | 0.00 | 0.00 | 0.10 | 0.90 | 0.00 | 0.00 | 0.00 | Medium |
Grumo Nevano | 0.00 | 0.00 | 0.00 | 0.40 | 0.60 | 0.00 | 0.00 | Medium high |
Melito di Napoli | 0.00 | 0.00 | 0.00 | 0.00 | 0.90 | 0.10 | 0.00 | Medium high |
Pomigliano d’Arco | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | Medium high |
Sant’Antimo | 0.00 | 0.00 | 0.00 | 0.60 | 0.40 | 0.00 | 0.00 | Medium |
Spot Type | Municipalities | Population | Area (km2) | Mean Population Density |
---|---|---|---|---|
Hot spot | Afragola, Caivano, Casavatore, Casoria | 189,037 | 58.80 | 5664.50 |
Hot spot | Casandrino, Grumo Nevano, Melito di Napoli | 66,454 | 9.86 | 6541.00 |
Cold spot | Brusciano, Castello di Cisterna | 23,443 | 9.54 | 2385.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardone, B.; Di Martino, F.; Miraglia, V. A GIS-Based Hot and Cold Spots Detection Method by Extracting Emotions from Social Streams. Future Internet 2023, 15, 23. https://doi.org/10.3390/fi15010023
Cardone B, Di Martino F, Miraglia V. A GIS-Based Hot and Cold Spots Detection Method by Extracting Emotions from Social Streams. Future Internet. 2023; 15(1):23. https://doi.org/10.3390/fi15010023
Chicago/Turabian StyleCardone, Barbara, Ferdinando Di Martino, and Vittorio Miraglia. 2023. "A GIS-Based Hot and Cold Spots Detection Method by Extracting Emotions from Social Streams" Future Internet 15, no. 1: 23. https://doi.org/10.3390/fi15010023
APA StyleCardone, B., Di Martino, F., & Miraglia, V. (2023). A GIS-Based Hot and Cold Spots Detection Method by Extracting Emotions from Social Streams. Future Internet, 15(1), 23. https://doi.org/10.3390/fi15010023