Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time
<p>Evolution of the quantities of interest over the time period considered in this study for two principal cryptocurrencies: BTC (red circles) and ETH (blue squares). (<b>a</b>) Price <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of the cryptocurrencies expressed in US dollars; (<b>b</b>) logarithmic returns <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> s; (<b>c</b>) mean volume traded <math display="inline"><semantics> <mrow> <mo>〈</mo> <msub> <mi>V</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>〉</mo> </mrow> </semantics></math> in 10 s intervals; (<b>d</b>) mean number of transactions <math display="inline"><semantics> <mrow> <mo>〈</mo> <msub> <mi>N</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>〉</mo> </mrow> </semantics></math> in <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> s. The averaging was carried out over a rolling window of 1 month with a step of 6 days.</p> "> Figure 2
<p>Pearson’s cross-correlation coefficients calculated for all possible pairs of time series considered in this study. All values are statistically significant.</p> "> Figure 3
<p>Univariate fluctuation functions <math display="inline"><semantics> <mrow> <msubsup> <mi>F</mi> <mi>q</mi> <mi>XX</mi> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> calculated for time series of price returns <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>left column</b>), volume traded <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>middle column</b>), and the number of transactions <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>right column</b>) for two cryptocurrencies expressed in USDT: BTC (<b>top</b>) and ETH (<b>bottom</b>). In each panel, vertical dashed lines denote a range of time scales <span class="html-italic">s</span> for which a power-law model can be fitted to the fluctuation functions. A range of values of <span class="html-italic">q</span> is also shown.</p> "> Figure 4
<p>(<b>Main panels</b>) Fluctuation functions <math display="inline"><semantics> <mrow> <msubsup> <mi>F</mi> <mi>q</mi> <mi>XY</mi> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> calculated for the time series of logarithmic price returns <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for X = BTC and Y = ETH. In each panel, vertical dashed lines denote a range of time scales <span class="html-italic">s</span> for which a power-law model can be fitted to <math display="inline"><semantics> <mrow> <msubsup> <mi>F</mi> <mrow> <mi>XY</mi> </mrow> <mi>q</mi> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. Extreme values of <span class="html-italic">q</span> are also shown. Three cases are considered: both time series are simultaneous (<b>top</b>), time series representing BTC is advanced by <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> min (<b>middle</b>), and time series representing ETH is advanced by <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> min (<b>bottom</b>). (<b>Insets</b>) The bivariate scaling exponent <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math> vs. the mean univariate scaling exponent <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mi>XY</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> calculated for the same time series. Error bars denote the standard errors.</p> "> Figure 5
<p>(<b>a</b>) The <span class="html-italic">q</span>-dependent detrended cross-correlation coefficient <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> (<b>right</b>) calculated for time series of price returns <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>top</b>), volume traded <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>middle</b>), and the number of transactions <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </semantics></math> (<b>bottom</b>) for X = BTC and Y = ETH. Three cases are considered: both time series are simultaneous (solid blue), time series representing BTC is advanced by <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> min (short-dashed green), and time series representing ETH is advanced by <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> min (long-dashed red). (<b>b</b>) Difference <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>XY</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> between the bivariate scaling exponent <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math> and the mean univariate exponent <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mi>XY</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 6
<p>(<b>Main panels</b>) Fluctuation functions <math display="inline"><semantics> <mrow> <msubsup> <mi>F</mi> <mi>q</mi> <mi>XY</mi> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> calculated for the time series of volume traded <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for X = BTC and Y = ETH. In each panel, vertical dashed lines denote a range of time scales <span class="html-italic">s</span> for which a power-law model can be fitted to <math display="inline"><semantics> <mrow> <msubsup> <mi>F</mi> <mrow> <mi>XY</mi> </mrow> <mi>q</mi> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. Extreme values of <span class="html-italic">q</span> are also shown. Three cases are considered: both time series are simultaneous (<b>top</b>), time series representing BTC is advanced by <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> min (<b>middle</b>), and time series representing ETH is advanced by <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> min (<b>bottom</b>). (<b>Insets</b>) The bivariate scaling exponent <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math> vs. the mean univariate scaling exponent <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mi>XY</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> calculated for the same time series. Error bars denote the standard errors.</p> "> Figure 7
<p>(<b>Main panels</b>) Fluctuation functions <math display="inline"><semantics> <mrow> <msubsup> <mi>F</mi> <mi>q</mi> <mi>XY</mi> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> calculated for time series of the number of transactions <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </semantics></math> for X = BTC and Y = ETH. In each panel, vertical dashed lines denote a range of time scales <span class="html-italic">s</span> for which a power-law model can be fitted to <math display="inline"><semantics> <mrow> <msubsup> <mi>F</mi> <mi>q</mi> <mi>XY</mi> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. Extreme values of <span class="html-italic">q</span> are also shown. Three cases are considered: both time series are simultaneous (<b>top</b>), time series representing BTC is advanced by <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> min (<b>middle</b>), and time series representing ETH is advanced by <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> min (<b>bottom</b>). (<b>Insets</b>) The bivariate scaling exponent <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics></math> vs. the mean univariate scaling exponent <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mi>XY</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> calculated for the same time series. Error bars denote the standard errors.</p> ">
Abstract
:1. Introduction
- Do the price returns, the volume, and the number of transactions in the time unit representing the principal cryptocurrencies show any statistical inter-currency cross-correlations that can be detected with the q-dependent detrended cross-correlation coefficient (defined in Section 2)?
- Are those cross-correlations, if present, fractal? That is, does the covariance of the fluctuations of these quantities reveal multiscaling/multifractality over a range of scales?
- Do the cross-correlations, if present, survive if the studied signals have been shifted in time with respect to each other?
- If so, is it possible to observe any asymmetry between the results with respect to a shift direction (BTC→ETH and ETH→BTC)?
- What is a proposed explanation for the outcomes?
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gerlach, J.-C.; Demos, G.; Sornette, D. Dissection of Bitcoin’s multiscale bubble history from January 2012 to February 2018. R. Soc. Open Sci. 2019, 6, 180643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, E. COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. Phys. Rep. 2020, 869, 1–51. [Google Scholar] [CrossRef] [PubMed]
- James, N.; Menzies, M.; Radchenko, P. COVID-19 second wave mortality in Europe and the United States. Chaos 2021, 31, 031105. [Google Scholar] [CrossRef] [PubMed]
- James, N.; Menzies, M. Trends in COVID-19 prevalence and mortality: A year in review. Phys. D Nonlinear Phenom. 2021, 425, 132968. [Google Scholar] [CrossRef]
- Kurrey, R.; Saha, A. An overview of SARS-CoV-2 and technologies for detection and ongoing treatments: A human safety initiative. COVID 2022, 2, 731–751. [Google Scholar] [CrossRef]
- Thakur, N.; Han, C.Y. An exploratory study of tweets about the SARS-CoV-2 omicron variant: Insights from sentiment analysis, language interpretation, source tracking, type classification, and embedded URL detection. Preprints 2022, 2022050238. [Google Scholar] [CrossRef]
- Mnif, E.; Jarboui, A.; Mouakhar, M. How the cryptocurrency market has performed during COVID 19? A multifractal analysis. Financ. Res. Lett. 2020, 36, 101647. [Google Scholar] [CrossRef]
- Corbet, S.; Hou, Y.G.; Hu, Y.; Larkin, C.; Oxley, L. Any port in a storm: Cryptocurrency safe-havens during the COVID-19 pandemic. Econ. Lett. 2020, 194, 109377. [Google Scholar] [CrossRef]
- Kwapień, J.; Wątorek, M.; Drożdż, J. Cryptocurrency market consolidation in 2020–2021. Entropy 2021, 23, 1674. [Google Scholar] [CrossRef]
- Allen, D.E. Cryptocurrencies, diversification and the COVID-19 pandemic. J. Risk Financ. Manag. 2022, 15, 103. [Google Scholar] [CrossRef]
- Corbet, S.; Hou, Y.G.; Hu, Y.; Larkin, C.; Lucey, B.; Oxley, L. Cryptocurrency liquidity and volatility interrelationships during the COVID-19 pandemic. Econ. Lett. 2022, 45, 102137. [Google Scholar]
- Foroutan, P.; Lahmir, S. Effect of COVID-19 pandemic on return-volume and return-volatility relationships in cryptocurrency market. Chaos Solitons Fractals 2022, 112443. [Google Scholar] [CrossRef]
- Mandaci, P.R.; Cagli, E.C. Herding intensity and volatility in cryptocurrency markets during the COVID-19. Financ. Res. Lett. 2022, 46, 102382. [Google Scholar] [CrossRef]
- Drożdż, S.; Gębarowski, R.; Minati, L.; Oświęcimka, P.; Wątorek, M. Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects. Chaos 2018, 28, 071101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drożdż, S.; Minati, L.; Oświęcimka, P.; Stanuszek, M.; Wątorek, M. Signatures of crypto-currency market decoupling from the Forex. Future Internet 2019, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 20 June 2022).
- Decker, C.; Wattenhofer, R. Bitcoin transaction malleability and MtGox, European Symposium on Research in Computer Security. In Proceedings of the Computer Security—ESORICS 2014, Wroclaw, Poland, 7–11 September 2014; pp. 313–326. [Google Scholar]
- Corbet, S.; Lucey, B.; Urquhart, A.; Yarovaya, L. Cryptocurrencies as a financial asset: A systematic analysis. Int. Rev. Financ. Anal. 2019, 62, 182–199. [Google Scholar] [CrossRef] [Green Version]
- Makarov, I. Trading and arbitrage in cryptocurrency markets. J. Financ. Econ. 2020, 135, 293–319. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Ventre, C.; Basios, M. Cryptocurrency trading: A comprehensive survey. Financ. Innov. 2022, 8, 13. [Google Scholar] [CrossRef]
- Kwapień, J.; Wątorek, M.; Bezbradica, M.; Crane, M.; Mai, T.T.; Drożdż, S. Analysis of inter-transaction time fluctuations in the cryptocurrency market. arXiv 2022, arXiv:2206.07831. [Google Scholar]
- Ivanov, P.C.; Yuen, A.; Podobnik, B.; Lee, Y. Common scaling patterns in intertrade times of U.S. stocks. Phys. Rev. E 2004, 69, 056107. [Google Scholar] [CrossRef] [Green Version]
- Oświęcimka, P.; Kwapień, J.; Drożdż, S. Price increments versus waiting times. Phys. A Stat. Mech. Its Appl. 2005, 347, 626–638. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Rachev, S.; Fabozzi, F.J.; Kalev, P.S. Fractals in trade duration: Capturing long-range dependence and heavy tailedness in modeling trade duration. Ann. Financ. 2008, 4, 217–241. [Google Scholar] [CrossRef] [Green Version]
- Kwapień, J.; Drożdż, S. Physical approach to complex systems. Phys. Rep. 2012, 515, 115–226. [Google Scholar] [CrossRef]
- Chen, F.; Diebold, F.X.; Schorfheide, F. A Markov switching multifractal intertrade duration model, with application to U.S. equities. J. Econom. 2013, 177, 320–342. [Google Scholar] [CrossRef] [Green Version]
- Žikeš, F.; Baruník, J.; Shenai, N. Modeling and forecasting persistent financial durations. Econ. Rev. 2015, 36, 1081–1110. [Google Scholar] [CrossRef]
- Scalas, E.; Gorenno, R.; Mainardi, F. Fractional calculus and continuous-time finance. Phys. A Stat. Mech. Its Appl. 2000, 284, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Masoliver, J.; Montero, M.; Wells, H.G. Continuous-time random-walk model for financial distributions. Phys. Rev. E 2003, 67, 021112. [Google Scholar] [CrossRef] [Green Version]
- Gubiec, T.; Kutner, R. Backward jump continuous-time random walk: An application to market trading. Phys. Rev. E 2010, 82, 046119. [Google Scholar] [CrossRef] [Green Version]
- Klamut, J.; Gubiec, T. Continuous time random walk with correlated waiting times. the crucial role of inter-trade times in volatility clustering. Entropy 2021, 23, 1576. [Google Scholar] [CrossRef]
- Plerou, V.; Gopikrishnan, P.; Amaral, L.A.N.; Gabaix, X.; Stanley, H.E. Economic fluctuations and anomalous diffusion. Phys. Rev. E 2000, 62, R3023–R3026. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.-P.; Zhou, W.-X. Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant. Phys. A Stat. Mech. Its Appl. 2011, 390, 1646–1654. [Google Scholar] [CrossRef] [Green Version]
- Binance. Available online: http://binance.com (accessed on 20 June 2022).
- CoinMarketCap. Available online: http://coinmarketcap.com (accessed on 20 June 2022).
- Oświęcimka, P.; Kwapień, J.; Drożdż, S. Wavelet versus detrended fluctuation analysis of multifractal structures. Phys. Rev. E 2006, 74, 016103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Oświęcimka, P.; Drożdż, S.; Forczek, M.; Jadach, S.; Kwapień, J. Detrended cross-correlation analysis consistently extended to multifractality. Phys. Rev. E 2014, 89, 023305. [Google Scholar] [CrossRef] [Green Version]
- Podobnik, B.; Stanley, H.E. Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series. Phys. Rev. Lett. 2008, 100, 084102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.-X. Multifractal detrended cross-correlation analysis for two nonstationary signals. Phys. Rev. E 2008, 77, 066211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvatic, D.; Stanley, H.E.; Podobnik, B. Detrended cross-correlation analysis for non-stationary time series with periodic trends. EPL 2011, 94, 18007. [Google Scholar] [CrossRef] [Green Version]
- Kwapień, J.; Oświęcimka, P.; Drożdż, S. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Phys. Rev. E 2015, 92, 052815. [Google Scholar] [CrossRef] [Green Version]
- Tether Project Website. Available online: http://tether.to (accessed on 20 June 2022).
- Wątorek, M.; Drożdż, S.; Kwapień, J.; Minati, L.; Oświęcimka, P.; Stanuszek, M. Multiscale characteristics of the emerging global cryptocurrency market. Phys. Rep. 2021, 901, 1–82. [Google Scholar] [CrossRef]
- Aslanidis, N.; Bariviera, A.F.; Perez-Laborda, A. Are cryptocurrencies becoming more interconnected? Econ. Lett. 2021, 199, 109725. [Google Scholar] [CrossRef]
- James, N.; Menzies, M.; Chan, J. Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19. Phys. A Stat. Mech. Its Appl. 2021, 565, 125581. [Google Scholar] [CrossRef] [PubMed]
- James, N. Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19. Phys. A Stat. Mech. Its Appl. 2021, 570, 125831. [Google Scholar] [CrossRef]
- Conlon, T.; Corbet, S.; McGee, R.J. Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic. Res. Int. Bus. Financ. 2020, 54, 101248. [Google Scholar] [CrossRef] [PubMed]
- Demir, E.; Bilgin, M.H.; Karabulut, G.; Doker, A.C. The relationship between cryptocurrencies and COVID-19 pandemic. Eurasian Econ. Rev. 2020, 10, 349–360. [Google Scholar] [CrossRef]
- Drożdż, S.; Minati, L.; Oświęcimka, P.; Stanuszek, M.; Wątorek, M. Competition of noise and collectivity in global cryptocurrency trading: Route to a self-contained market. Chaos 2020, 30, 023122. [Google Scholar] [CrossRef] [Green Version]
- Drożdż, S.; Kwapień, J.; Oświęcimka, P.; Stanisz, T.; Wątorek, M. Complexity in economic and social systems: Cryptocurrency market at around COVID-19. Entropy 2020, 22, 1043. [Google Scholar] [CrossRef]
- Kristoufek, L. Grandpa, grandpa, tell me the one about Bitcoin being a safe haven: New evidence from the COVID-19 pandemic. Front. Phys. 2020, 8, 296. [Google Scholar] [CrossRef]
- James, N.; Menzies, M. Collective correlations, dynamics, and behavioural inconsistencies of the cryptocurrency market over time. Nonlinear Dyn. 2022, 107, 4001–4017. [Google Scholar] [CrossRef]
- Peng, C.-K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685. [Google Scholar] [CrossRef] [Green Version]
- Takaishi, T. Statistical properties and multifractality of Bitcoin. Phys. A Stat. Mech. Its Appl. 2018, 506, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Takaishi, T.; Adachi, T. Market efficiency, liquidity, and multifractality of bitcoin: A dynamic study. Asia Pac. Financ. Mark. 2019, 27, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Wu, J.; Zheng, Z. Long-range dependence, multi-fractality and volume-return causality of Ether market. Chaos 2020, 30, 011101. [Google Scholar]
- Kristjanpoller, W.; Bouri, E.; Takaishi, T. Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis. Phys. A Stat. Mech. Its Appl. 2020, 545, 123711. [Google Scholar] [CrossRef]
- Bariviera, A. One model is not enough: Heterogeneity in cryptocurrencies’ multifractal profiles. Financ. Res. Lett. 2021, 39, 101649. [Google Scholar] [CrossRef]
- Grech, D.; Czarnecki, Ł. Multifractal dynamics of stock markets. Acta Phys. Pol. A 2010, 117, 623–629. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wątorek, M.; Kwapień, J.; Drożdż, S. Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time. Future Internet 2022, 14, 215. https://doi.org/10.3390/fi14070215
Wątorek M, Kwapień J, Drożdż S. Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time. Future Internet. 2022; 14(7):215. https://doi.org/10.3390/fi14070215
Chicago/Turabian StyleWątorek, Marcin, Jarosław Kwapień, and Stanisław Drożdż. 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time" Future Internet 14, no. 7: 215. https://doi.org/10.3390/fi14070215
APA StyleWątorek, M., Kwapień, J., & Drożdż, S. (2022). Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time. Future Internet, 14(7), 215. https://doi.org/10.3390/fi14070215