Meat-Processing Wastewater Treatment Using an Anaerobic Membrane Bioreactor (AnMBR)
<p>Experimental setup of the AnMBR used in the continuous experiment; composed of an (I) external ceramic ultrafiltration unit, (II) recirculation pump and a stirred tank reactor, (III) automated valve for permeate release, (IV) balance for feed and permeate, (V) peristaltic pump for feed application, (VI) heating jacket and TIC for constant reactor temperature (37 °C), (VII) stirrer (25 rpm) to avoid dead spots, and (VIII) Ritter Gas clock.</p> "> Figure 2
<p>Wastewater-feeding rate and corresponding HRT over the course of the continuous experiment. Feeding rate illustrated as trend line (black line), calculated with R geom_smooth function.</p> "> Figure 3
<p>Daily methane production rate related to the reactors working volume corresponding to the increasing OLR. Methane production illustrated as trendline (black line), calculated with R geom_smooth function.</p> "> Figure 4
<p>Biogas composition produced in the AnMBR during the continuous experiment.</p> "> Figure 5
<p>Methane yield at increasing organic loading rates for COD and VS. Phase 1 corresponds to an OLR of 0.71 gCOD/(L*d), 0.65 gVS/(L*d), and HRT of 3.4 days; phase 2 to 1.15 gCOD/(L*d), 1.67 gVS/(L*d), and HRT of 2.0 days; and phase 3 to 2.25 gCOD/(L*d), 1.85 gVS/(L*d), and HRT of 1.4 days. (<b>a</b>) Methane yield calculated per loaded organics. (<b>b</b>) Methane yield calculated per organics removed.</p> "> Figure 6
<p>COD removal for each average OLR (COD). Phase 1 corresponds to an OLR of 0.71 gCOD/(L*d) and HRT of 3.4 days; phase 2 to 1.15 gCOD/(L*d) and HRT of 2.0 days; and phase 3 to 2.25 gCOD/(L*d) and HRT of 1.4 days.</p> "> Figure 7
<p>Dissolved methane and methane loss: (<b>a</b>) measured and calculated theoretical methane concentration in the permeate sorted by three different OLR and corresponding HRT and additionally the corresponding methane production per day; (<b>b</b>) calculated total methane loss from the theoretical and measured methane concentrations and the daily permeate volume sorted by three different OLRs, corresponding HRTs, and, additionally, the corresponding permeate production per day. Phase 1: OLR 0.71 gCOD/(L*d), 0.65 gVS/(L*d), and HRT of 3.4 days; phase 2: 1.15 gCOD/(L*d), 1.67 gVS/(L*d), and HRT of 2.0 days; phase 3: 2.25 gCOD/(L*d), 1.85 gVS/(L*d), and HRT of 1.4 days.</p> "> Figure 8
<p>Microbial community composition in the AnMBR. Confidence threshold was set at 70%; at a lower confidence, the taxa are labelled ‘n.d.’. (<b>a</b>) Bacteria at phylum and class level. Only classes with an abundance of at least 2% are shown; (<b>b</b>) archaea at phylum, class, and order level. Only orders with an abundance of at least 0.2% are shown.</p> "> Figure A1
<p>Graphical representation of the batch test results of wastewater as the substrate and standard inoculum (SIR = 0.4).</p> "> Figure A2
<p>Graphical representation of the batch test results of wastewater and AnMBR inoculum (SIR = 0.4).</p> "> Figure A3
<p>Graphical representation of the fed-batch results of the standard inoculum and sucrose as the substrate (SIR = 0.18).</p> "> Figure A4
<p>Graphical representation of the fed-batch with the AnMBR inoculum batch and sucrose as the substrate (SIR = 0.18).</p> "> Figure A5
<p>Graphical representation of the results of the second batch test with wastewater and the standard inoculum (SIR = 0.4).</p> "> Figure A6
<p>Graphical representation of the results of the second batch test with wastewater and the AnMBR inoculum. (SIR = 0.4).</p> "> Figure A7
<p>Graphical representation of the results of the control batch test with the cellulose standard and standard inoculum.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Experimental Set-Up
2.2.1. Set-Up of the Lab-Scale AnMBR
2.2.2. Continuous Feeding Experiment
2.3. Analytical Methods
2.3.1. Biomethane Potential (BMP) Tests and Inhibition Tests
2.3.2. Chemical Parameters
2.3.3. Fat Content
2.3.4. Theoretical Methane Yield from Substrate Composition
2.3.5. Anions
2.3.6. Dissolved Methane
2.3.7. Microbial Community
2.3.8. Data Processing and Visualisation
3. Results and Discussion
3.1. Wastewater Composition
3.2. Continuous Experiment
3.2.1. Feeding Strategy
3.2.2. Biogas Production
3.2.3. Contaminant Removal and Water Recovery
3.2.4. Dissolved Methane
3.3. Microbial Community
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Batch Tests (BMP Tests)—Implementation and Execution in Detail
Appendix A.2. Results of the Batch Tests and Inhibition Experiments
Average | Minimum | Maximum | |
---|---|---|---|
Y(CH4) in Nm3/t(FM) | 1.0 | 0.8 | 1.1 |
Y(CH4) in Nm3/t (COD) | 272 | 227.9 | 317.0 |
Y(CH4) in Nm3/t (VS) | 635 | 532.6 | 738.7 |
Average | Minimum | Maximum | |
---|---|---|---|
Y(CH4) in Nm3/t(FM) | 0.3 | 0.3 | 0.4 |
Y(CH4) in Nm3/t (COD) | 146 | 122.4 | 170.3 |
Y(CH4) in Nm3/t (VS) | 216 | 180.6 | 250.5 |
Average | Minimum | Maximum | |
---|---|---|---|
Y(CH4) in Nm3/t(FM) | 344.0 | 288.9 | 399.2 |
Y(CH4) in Nm3/t (COD) | 313 | 261.8 | 364.1 |
Y(CH4) in Nm3/t (VS) | 382 | 320.4 | 444.3 |
Average | Minimum | Maximum | |
---|---|---|---|
Y(CH4) in Nm3/t(FM) | 330.9 | 277.8 | 383.9 |
Y(CH4) in Nm3/t (COD) | 301 | 251.8 | 350.2 |
Y(CH4) in Nm3/t (VS) | 368 | 308.1 | 427.4 |
Average | Minimum | Maximum | |
---|---|---|---|
Y(CH4) in Nm3/t(FM) | 0.5 | 0.5 | 0.6 |
Y(CH4) in Nm3/t (COD) | 274 | 229.2 | 318.8 |
Y(CH4) in Nm3/t (VS) | 421 | 353.2 | 489.8 |
Average | Minimum | Maximum | |
---|---|---|---|
Y(CH4) in Nm3/t(FM) | 0.6 | 0.5 | 0.8 |
Y(CH4) in Nm3/t (COD) | 324 | 270.8 | 376.6 |
Y(CH4) in Nm3/t (VS) | 498 | 417.2 | 578.6 |
Average | Minimum | Maximum | |
---|---|---|---|
Y(CH4) in Nm3/t(FM) | 356.1 | 299.1 | 413.2 |
Y(CH4) in Nm3/t (COD) | 323.8 | 271.0 | 376.9 |
Y(CH4) in Nm3/t (VS) | 374.9 | 314.2 | 435.8 |
References
- Parihar, R.K.; Chaurasia, S.P.; Midda, M.O. An overview of anaerobic membrane bioreactors’ evolving research statistics for treating wastewater. Mater. Today Proc. 2023, 102, 52–58. [Google Scholar] [CrossRef]
- Lin, H.; Peng, W.; Zhang, M.; Chen, J.; Hong, H.; Zhang, Y. A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination 2013, 314, 169–188. [Google Scholar] [CrossRef]
- McCarty, P.L.; Bae, J.; Kim, J. Domestic wastewater treatment as a net energy producer--can this be achieved? Environ. Sci. Technol. 2011, 45, 7100–7106. [Google Scholar] [CrossRef] [PubMed]
- Inaba, T.; Aoyagi, T.; Hori, T.; Charfi, A.; Suh, C.; Lee, J.H.; Sato, Y.; Ogata, A.; Aizawa, H.; Habe, H. Clarifying prokaryotic and eukaryotic biofilm microbiomes in anaerobic membrane bioreactor by non-destructive microscopy and high-throughput sequencing. Chemosphere 2020, 254, 126810. [Google Scholar] [CrossRef]
- Angelidaki, I.; Karakashev, D.; Batstone, D.J.; Plugge, C.M.; Stams, A.J.M. Methods Enzymol: Biomethanation and Its Potential; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Rodell, M.; Barnoud, A.; Robertson, F.R.; Allan, R.P.; Bellas-Manley, A.; Bosilovich, M.G.; Chambers, D.; Landerer, F.; Loomis, B.; Nerem, R.S.; et al. An Abrupt Decline in Global Terrestrial Water Storage and Its Relationship with Sea Level Change. Surv. Geophys. 2024, 45, 1875–1902. [Google Scholar] [CrossRef]
- Souza, C.L.; Chernicharo, C.A.L.; Aquino, S.F. Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions. Water Sci. Technol. 2011, 64, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Balcıoğlu, G.; Yilmaz, G.; Gönder, Z.B. Evaluation of anaerobic membrane bioreactor (AnMBR) treating confectionery wastewater at long-term operation under different organic loading rates: Performance and membrane fouling. Chem. Eng. J. 2021, 404, 126261. [Google Scholar] [CrossRef]
- Chang, S. Anaerobic Membrane Bioreactors (AnMBR) for Wastewater Treatment. ACES 2014, 4, 56–61. [Google Scholar] [CrossRef]
- Lin, H.; Gao, W.; Meng, F.; Liao, B.-Q.; Leung, K.-T.; Zhao, L.; Chen, J.; Hong, H. Membrane Bioreactors for Industrial Wastewater Treatment: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 677–740. [Google Scholar] [CrossRef]
- Johns, M.R. Developments in Wastewater Treatment in the Meat Processing Industry: A Review. Bioresour. Technol. 1995, 54, 203–216. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. J. Environ. Manag. 2015, 161, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Basheer, F.; Sengar, A.; Irfanullah; Khan, S.U.; Farooqi, I.H. Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater. Sci. Total Environ. 2019, 686, 681–708. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.R.; Mohamed, R.; Al-Gheethi, A.; Aziz, H.A. Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review. J. Dispers. Sci. Technol. 2021, 42, 880–899. [Google Scholar] [CrossRef]
- Yapıcıoğlu, P.; Yeşilnacar, M.İ. Investigating energy costs for a wastewater treatment plant in a meat processing industry regarding water-energy nexus. Environ. Sci. Pollut. Res. 2021, 29, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.D.; Yap, S.D.; Boyle-Gotla, A.; Janoschka, J.; Carney, C.; Pidou, M.; Batstone, D.J. Anaerobic membrane bioreactors enable high rate treatment of slaughterhouse wastewater. Biochem. Eng. J. 2015, 97, 132–141. [Google Scholar] [CrossRef]
- Kumar Gautam, R.; Olubukola, A.; More, N.; Jegatheesan, V.; Muthukumaran, S.; Navaratna, D. Evaluation of long-term operational and treatment performance of a high-biomass submerged anaerobic membrane bioreactor treating abattoir wastewater. Chem. Eng. J. 2023, 463, 142145. [Google Scholar] [CrossRef]
- Tran Thi Viet, N.; Vu, D.C.; Duong, T.H. Effect of Hydraulic retention time on performance of anaerobic membrane bioreactor treating slaughterhouse wastewater. Environ. Res. 2023, 233, 116522. [Google Scholar] [CrossRef]
- Rouland, G.; Safferman, S.I.; Schweihofer, J.P.; Garmyn, A.J. Characterization of Low-Volume Meat Processing Wastewater and Impact of Facility Factors. Water 2024, 16, 540. [Google Scholar] [CrossRef]
- Ortner, M.; Leitzinger, K.; Skupien, S.; Bochmann, G.; Fuchs, W. Efficient anaerobic mono-digestion of N-rich slaughterhouse waste: Influence of ammonia, temperature and trace elements. Bioresour. Technol. 2014, 174, 222–232. [Google Scholar] [CrossRef]
- DIN. DIN 38 414 Part 4, German Standard Methods for the Examination of Water, Waste Water and Sludge; DIN: Berlin, Germany, 1984. [Google Scholar]
- DIN 38409-41:1980-12; Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Summarische Wirkungs- und Stoffkenngrößen (Gruppe H); Bestimmung des Chemischen Sauerstoffbedarfs (CSB) im Bereich über 15 mg/L (H 41). DIN Media GmbH: Berlin, Germany, 1980.
- DIN EN 16169:2012-11; Schlamm, behandelter Bioabfall und Boden—Bestimmung des Kjeldahl-Stickstoffs; Deutsche Fassung EN_16169:2012. DIN Media GmbH: Berlin, Germany.
- Sriperm, N.; Pesti, G.M.; Tillman, P.B. Evaluation of the fixed nitrogen-to-protein (N:P) conversion factor (6.25) versus ingredient specific N:P conversion factors in feedstuffs. J. Sci. Food Agric. 2011, 91, 1182–1186. [Google Scholar] [CrossRef]
- DIN 38414-19:1999-12; Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung—Schlamm und Sedimente (Gruppe S)—Teil 19: Bestimmung der wasserdampfflüchtigen organischen Säuren (S 19). DIN Media GmbH: Berlin, Germany, 1999.
- Rutzmoser, K.; Spann, B. Zielwert-Futteroptimierung. Available online: https://www.lfl.bayern.de/iba/energie/031560/ (accessed on 30 January 2024).
- Baserga, U. Landwirtschaftliche Co-Vergärungs-Biogasanlagen: Biogas aus organischen Reststoffen und Energiegras: FAT-Berichte Nr. 512; FAT: Bern, Switzerland, 1998. [Google Scholar]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. BioProject PRJNA1198955. Available online: https://www.ncbi.nlm.nih.gov/sra/PRJNA1198955 (accessed on 30 January 2024).
- Babraham Bioinformatics. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 30 January 2024).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 2016. [Google Scholar] [CrossRef]
- Edgar, R.C. UNCROSS2: Identification of Cross-Talk in 16S rRNA OTU Tables. BioRxiv 2018. [Google Scholar] [CrossRef]
- Edgar, R.C. SINTAX: A Simple non-Bayesian Taxonomy Classifier for 16S and ITS Sequences. BioRxiv 2016. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan (Community Ecology Package). Available online: https://CRAN.R-project.org/package=vegan (accessed on 30 January 2024).
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org (accessed on 30 January 2024).
- Latiffi, N.A.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Tajuddin, R.M.; Al-Shaibani, M.M.; Vo, D.-V.N.; Rupani, P.F. Nutrients elimination from meat processing wastewater using Scenedesmus sp.; optimizations; artificial neural network and kinetics models. Environ. Technol. Innov. 2022, 26, 102535. [Google Scholar] [CrossRef]
- Galib, M.; Elbeshbishy, E.; Reid, R.; Hussain, A.; Lee, H.-S. Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR). J. Environ. Manag. 2016, 182, 477–485. [Google Scholar] [CrossRef]
- Handous, N. Two-Stage Anaerobic Digestion of Meat Processing Solid Wastes: Methane Potential Improvement with Wastewater Addition and Solid Substrate Fermentation. Waste Biomass Valor. 2019, 10, 131–142. [Google Scholar] [CrossRef]
- Atlas Scientific. The Importance Of Electrical Conductivity of Wastewater. Available online: https://atlas-scientific.com/blog/electrical-conductivity-of-wastewater/ (accessed on 20 December 2024).
- Malmberg, C.G. Electrical Conductivity of Dilute Solutions of "Sea Water" From 5 to 120 °C. J. Res. Natl. Bur. Stand. A Phys. Chem. 1965, 69A, 39–43. [Google Scholar] [CrossRef]
- Vinogradova, O.I.; Silkina, E.F. Conductivity of concentrated salt solutions. arXiv 2023, arXiv:2312.02624. [Google Scholar] [CrossRef]
- Painter, T. How To Convert Conductivity To Concentration. Available online: https://www.sciencing.com/convert-conductivity-concentration-6925703/ (accessed on 20 December 2024).
- Ali, N.S.; Mo, K.; Kim, M. A case study on the relationship between conductivity and dissolved solids to evaluate the potential for reuse of reclaimed industrial wastewater. KSCE J. Civ. Eng. 2012, 16, 708–713. [Google Scholar] [CrossRef]
- Klein, R.; Slaný, V.; Krčálová, E. Conductivity Measurement for Control of a Biogas Plant. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 1151–1156. [Google Scholar] [CrossRef]
- Rosenberg, E.; DeLong, E.F.; Lory, S.; Stackebrandt, E.; Thompson, F. The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-30140-7. [Google Scholar]
- Silver, S.; Walderhaug, M. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 1992, 56, 195–228. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zhang, Y.; Li, L.; Zhou, H.; Wang, K.; Ding, J.; Jiang, J.; Wei, L.; Zhao, Q. The stress of bioactive compounds on microbes in anaerobic digestion of food waste and mitigation strategies: A critical review. Chem. Eng. J. 2024, 493, 152746. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Chen, Z.; Ye, Z.; Lyu, R. Multi-omics analysis unravels effects of salt and oil on substance transformation, microbial community, and transcriptional activity in food waste anaerobic digestion. Bioresour. Technol. 2023, 387, 129684. [Google Scholar] [CrossRef] [PubMed]
- Basset, N.; Santos, E.; Dosta, J.; Mata-Álvarez, J. Start-up and operation of an AnMBR for winery wastewater treatment. Ecol. Eng. 2016, 86, 279–289. [Google Scholar] [CrossRef]
- Fuchs, W.; Binder, H.; Mavrias, G.; Braun, R. Anaerobic treatment of wastewater with high organic content using a stirred tank reactor coupled with a membrane filtration unit. Water Res. 2003, 37, 902–908. [Google Scholar] [CrossRef]
- Heidrich, E.S.; Curtis, T.P.; Dolfing, J. Determination of the internal chemical energy of wastewater. Environ. Sci. Technol. 2011, 45, 827–832. [Google Scholar] [CrossRef]
- Wahaab, R.A.; El-awady, M.H. Anaerobic/aerobic treatment of meat processing wastewater. Environmentalist 1999, 19, 61–65. [Google Scholar] [CrossRef]
- Bundeskanzleramt der Republik Österreich. BGBl. II Nr. 12/1999 Verordnung des Bundesministers für Land- und Forstwirtschaft über die Begrenzung von Abwasseremissionen aus der Schlachtung und Fleischverarbeitung: AEV Fleischwirtschaft. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10011150&FassungVom=2019-06-24 (accessed on 20 December 2024).
- Li, W.-W.; Yu, H.-Q.; Rittmann, B.E. Chemistry: Reuse water pollutants. Nature 2015, 528, 29–31. [Google Scholar] [CrossRef]
- Ortner, M.; Wöss, D.; Schumergruber, A.; Pröll, T.; Fuchs, W. Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion. Appl. Energy 2015, 143, 460–471. [Google Scholar] [CrossRef]
- Smith, A.L.; Stadler, L.B.; Cao, L.; Love, N.G.; Raskin, L.; Skerlos, S.J. Navigating wastewater energy recovery strategies: A life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ. Sci. Technol. 2014, 48, 5972–5981. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Snyder, S.W.; Packman, A.I.; Lin, Y.J.; Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 2018, 1, 26–41. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, H.; Dang, Z.; Liu, Y. Dissolved methane: A hurdle for anaerobic treatment of municipal wastewater. Environ. Sci. Technol. 2014, 48, 889–890. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA, OAR, Climate Change Division. Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990—2030: EPA 430-R-12-006; U.S. EPA, OAR, Climate Change Division: Washington, DC, USA, 2012.
- Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef]
- Velasco, P.; Jegatheesan, V.; Othman, M. Recovery of Dissolved Methane From Anaerobic Membrane Bioreactor Using Degassing Membrane Contactors. Front. Environ. Sci. 2018, 6, 151. [Google Scholar] [CrossRef]
- Yeo, H.; An, J.; Reid, R.; Rittmann, B.E.; Lee, H.-S. Contribution of Liquid/Gas Mass-Transfer Limitations to Dissolved Methane Oversaturation in Anaerobic Treatment of Dilute Wastewater. Environ. Sci. Technol. 2015, 49, 10366–10372. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.L.; Skerlos, S.J.; Raskin, L. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Res. 2013, 47, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Jalalah, M.; Alsareii, S.A.; Harraz, F.A.; Almadiy, A.A.; Su, S.; Salama, E.-S.; Li, X. Anaerobic digestion of fat, oil, and grease (FOG) under combined additives: Enhanced digestibility, biogas production, and microbiome. Renew. Sustain. Energy Rev. 2024, 191, 114155. [Google Scholar] [CrossRef]
- Guo, Z.; Usman, M.; Alsareii, S.A.; Harraz, F.A.; Al-Assiri, M.S.; Jalalah, M.; Li, X.; Salama, E.-S. Synergistic ammonia and fatty acids inhibition of microbial communities during slaughterhouse waste digestion for biogas production. Bioresour. Technol. 2021, 337, 125383. [Google Scholar] [CrossRef] [PubMed]
Wastewater | Feed | Reactor | Permeate | ||
---|---|---|---|---|---|
pH (-) | Min. | 6.32 | 6.46 | 6.71 | 6.61 |
Avg. | 7.42 ± 1.09 | 7.28 ± 0.47 | 7.15 ± 0.21 | 7.17 ± 0.27 | |
Max | 9.05 | 7.89 | 7.44 | 7.50 | |
VFA (mg/L) | Min. | 48.16 | 14.85 | 0.00 | 13.84 |
Avg. | 129.34 ± 82.91 | 632.79 ± 504.56 | 148.05 ± 154.11 | 139.00 ± 148.17 | |
Max | 411.45 | 1204.99 | 371.31 | 368.49 | |
COD (g/kg) | Min. | 2.67 | 0.68 | 1.84 | 0.00 |
Avg. | 4.52 ± 1.29 | 2.83 ± 1.13 | 19.66± 20.28 | 0.90 ± 1.23 | |
Max | 6.98 | 4.46 | 69.94 | 4.44 | |
TS (%) | Min. | 0.54 | 0.53 | 0.80 | 0.43 |
Avg. | 0.87 ± 0.22 | 0.79 ± 0.23 | 1.61± 0.65 | 0.64 ± 0.18 | |
Max | 1.40 | 1.21 | 2.68 | 1.00 | |
VS (%) | Min. | 0.18 | 0.06 | 0.18 | 0.01 |
Avg. | 0.27 ± 0.05 | 0.18 ± 0.08 | 0.66± 0.35 | 0.05 ± 0.03 | |
Max | 0.34 | 0.29 | 1.21 | 0.11 | |
TKN (g/kg) | Min. | 0.14 | 0.18 | 0.31 | 0.15 |
Avg. | 0.26 ± 0.06 | 0.28 ± 0.15 | 0.71± 0.27 | 0.21 ± 0.06 | |
Max | 0.33 | 0.69 | 1.15 | 0.33 | |
NH4-N (g/kg) | Min. | 0.01 | 0.02 | 0.17 | 0.15 |
Avg. | 0.02 ± 0.01 | 0.21 ± 0.35 | 0.25± 0.07 | 0.21 ± 0.05 | |
Max | 0.03 | 1.27 | 0.39 | 0.32 | |
PO4-P (mg/L) | Min. | 205.03 | 156.90 | ||
Avg. | 245.07 ± 22.56 | 211.79 ± 42.50 | |||
Max | 265.00 | 276.13 |
Content of Anions in Ash [%] | ||||||
---|---|---|---|---|---|---|
Ash Content in TS [%] | Chloride | Nitrate | Phosphate | Sulphate | % Anions in Ash | |
Min. | 57.4 | 44.9 | - | 3.4 | 1.0 | 49.8 |
Avg. | 64.9 ± 5.7 | 58.7 ± 12.2 | - | 4.8 ± 2.1 | 1.1 ± 0.1 | 63.1 ± 11.7 |
Max. | 70.7 | 71.2 | - | 7.2 | 1.1 | 74.7 |
VS Composition | % Extractable Fats | % Protein | % Carbohydrates | Sum |
---|---|---|---|---|
Average [%] | 25.6 ± 11.6 | 60.8 ± 7.2 | 13.6 | 100 |
Max [%] | 43.5 | 71.6 | - | - |
Min [%] | 10.3 | 53.5 | - | - |
Th. biogas yield [m3/t (VS)] | 320 ± 145 | 426 ± 50 | 107 | 853 ± 195 |
Th. methane yield [Nm3/t (VS)] | 218 ± 99 | 302 ± 36 | 54 | 573 ± 135 |
Th. methane concentration [%] | 68 | 71 | 50 | 67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hummel, F.; Bauer, L.; Gabauer, W.; Fuchs, W. Meat-Processing Wastewater Treatment Using an Anaerobic Membrane Bioreactor (AnMBR). Fermentation 2025, 11, 68. https://doi.org/10.3390/fermentation11020068
Hummel F, Bauer L, Gabauer W, Fuchs W. Meat-Processing Wastewater Treatment Using an Anaerobic Membrane Bioreactor (AnMBR). Fermentation. 2025; 11(2):68. https://doi.org/10.3390/fermentation11020068
Chicago/Turabian StyleHummel, Ferdinand, Lisa Bauer, Wolfgang Gabauer, and Werner Fuchs. 2025. "Meat-Processing Wastewater Treatment Using an Anaerobic Membrane Bioreactor (AnMBR)" Fermentation 11, no. 2: 68. https://doi.org/10.3390/fermentation11020068
APA StyleHummel, F., Bauer, L., Gabauer, W., & Fuchs, W. (2025). Meat-Processing Wastewater Treatment Using an Anaerobic Membrane Bioreactor (AnMBR). Fermentation, 11(2), 68. https://doi.org/10.3390/fermentation11020068