Pasteurization and the Potential Anti-Obesity Function of Fermented Beverages: A Significant Increase in Nitrogen-Containing Aromatic Heterocyclic Compound Content
<p>Analysis of compounds before and after pasteurization of FH08F: (<b>a</b>) Partial least squares discriminant analysis (PLS-DA) score plot of the FH08FS group versus the FH08F group. Component 1 (X-axis) represents the predicted score of the first principal component, showing the difference between the sample groups. Component 2 (Y-axis) represents the orthogonal principal component score, displaying the differences within the sample groups. Each scatter point represents a sample, and the green scatter points and red scatter points represent the FH08F and FH08FS groups, respectively. The region marked by the ellipse is the 95% confidence interval of the sample point. (<b>b</b>) Volcano plot. Red dots, blue dots, and gray dots represent significantly upregulated, significantly downregulated, and nonsignificantly different compounds, respectively. The dot size indicates the variable importance in projection (VIP) of each compound. (<b>c</b>) Results of differential compound category analysis of the FH08FS group vs. the FH08F group. The numbers on the bar chart represent the number of changed compound types. Red indicates significant upregulation, and blue indicates significant downregulation. (<b>d</b>) Terpenoids downregulated after pasteurization. (<b>e</b>) Proportion of each compound among the upregulated compounds (URCs). (<b>f</b>) The structure of nitrogen-containing aromatic heterocyclic compounds (NAHCs).</p> "> Figure 1 Cont.
<p>Analysis of compounds before and after pasteurization of FH08F: (<b>a</b>) Partial least squares discriminant analysis (PLS-DA) score plot of the FH08FS group versus the FH08F group. Component 1 (X-axis) represents the predicted score of the first principal component, showing the difference between the sample groups. Component 2 (Y-axis) represents the orthogonal principal component score, displaying the differences within the sample groups. Each scatter point represents a sample, and the green scatter points and red scatter points represent the FH08F and FH08FS groups, respectively. The region marked by the ellipse is the 95% confidence interval of the sample point. (<b>b</b>) Volcano plot. Red dots, blue dots, and gray dots represent significantly upregulated, significantly downregulated, and nonsignificantly different compounds, respectively. The dot size indicates the variable importance in projection (VIP) of each compound. (<b>c</b>) Results of differential compound category analysis of the FH08FS group vs. the FH08F group. The numbers on the bar chart represent the number of changed compound types. Red indicates significant upregulation, and blue indicates significant downregulation. (<b>d</b>) Terpenoids downregulated after pasteurization. (<b>e</b>) Proportion of each compound among the upregulated compounds (URCs). (<b>f</b>) The structure of nitrogen-containing aromatic heterocyclic compounds (NAHCs).</p> "> Figure 2
<p>Analysis of the targets associated with URCs and obesity: (<b>a</b>) Venn diagram of URCs and obesity-associated targets. This dataset included 193 URC-related targets (left), 1793 obesity-related targets (right), and 69 URCs and obesity-related targets. (<b>b</b>) URC anti-obesity PPI network. A larger area indicates larger nodes, a purple color indicates a stronger association and a lighter color indicates a weaker association. (<b>c</b>) The active ingredients of the URC–target–obesity interaction network. The active ingredients are sedanolide (Mol 3), ethyl-4-amino-2-(methylsulfanyl)-1,3-thiazole-5-carboxylate (Mol 10), nicotinamide (Mol 11), ethyl 2-{2-[(phenylsulfonyl)amino]-1,3-thiazol-4-yl}acetate (Mol 12), fumaric acid (Mol 14), theophylline (Mol 15), and 2-aminoethylphosphonate (Mol 17). (<b>d</b>) Degree values of the 7 active ingredients from <a href="#fermentation-10-00646-f002" class="html-fig">Figure 2</a>c. (<b>e</b>) Nineteen genes screened from the PPI network with BC, CC, DC, EC, LAC, and NC scores above the median value of 66 genes. (<b>f</b>) Seven core targets screened from the 19 targets with BC, CC, DC, EC, LAC, and NC scores above the median value.</p> "> Figure 2 Cont.
<p>Analysis of the targets associated with URCs and obesity: (<b>a</b>) Venn diagram of URCs and obesity-associated targets. This dataset included 193 URC-related targets (left), 1793 obesity-related targets (right), and 69 URCs and obesity-related targets. (<b>b</b>) URC anti-obesity PPI network. A larger area indicates larger nodes, a purple color indicates a stronger association and a lighter color indicates a weaker association. (<b>c</b>) The active ingredients of the URC–target–obesity interaction network. The active ingredients are sedanolide (Mol 3), ethyl-4-amino-2-(methylsulfanyl)-1,3-thiazole-5-carboxylate (Mol 10), nicotinamide (Mol 11), ethyl 2-{2-[(phenylsulfonyl)amino]-1,3-thiazol-4-yl}acetate (Mol 12), fumaric acid (Mol 14), theophylline (Mol 15), and 2-aminoethylphosphonate (Mol 17). (<b>d</b>) Degree values of the 7 active ingredients from <a href="#fermentation-10-00646-f002" class="html-fig">Figure 2</a>c. (<b>e</b>) Nineteen genes screened from the PPI network with BC, CC, DC, EC, LAC, and NC scores above the median value of 66 genes. (<b>f</b>) Seven core targets screened from the 19 targets with BC, CC, DC, EC, LAC, and NC scores above the median value.</p> "> Figure 3
<p>GO and KEGG pathway enrichment analysis of the targets associated with URCs against obesity: (<b>a</b>) GO enrichment analysis; (<b>b</b>) KEGG pathway enrichment analysis.</p> "> Figure 4
<p>Heatmap of the molecular docking binding energy among 3 core active ingredients of URCs and 7 core targets.</p> "> Figure 5
<p>Molecular docking diagram of theophylline and 7 core targets, the orange represents the theophylline molecule: (<b>a</b>) Theophylline-IL6; (<b>b</b>) theophylline-AKT1; (<b>c</b>) theophylline-PPARG; (<b>d</b>) theophylline-PTGS2; (<b>e</b>) theophylline-ESR1; (<b>f</b>) theophylline-PPARA; (<b>g</b>) theophylline-REN.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Microorganisms, and Chemicals
2.2. Preparation of FH08F and FH08FS
2.3. Untargeted Metabolomics Analysis via UHPLC-MS/MS
2.3.1. Compound Extraction
2.3.2. UHPLC-MS/MS Conditions
2.3.3. Statistical Analysis
2.4. Network Pharmacology Analysis
2.4.1. Obtaining Targets Associated with Upregulated Compounds (URCs) and Obesity
2.4.2. Constructing Protein–Protein Interaction (PPI) Network
2.4.3. Constructing Compound–Target–Disease Network
2.4.4. Screening Core Targets of Anti-Obesity
2.5. GO and KEGG Enrichment Analysis
2.6. Molecular Docking Analysis
3. Results
3.1. UHPLC-MS/MS Metabolic Profile Analysis
3.2. Analysis of Compounds Before and After Pasteurization
3.3. Active Ingredients and Potential Targets Against Obesity
3.4. PPI and the Compound–Target–Disease Network of Common Targets
3.5. Core Targets of Anti-Obesity
3.6. GO and KEGG Enrichment
3.7. Molecular Docking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zhao, L.; Gao, L.; Pan, A.; Xue, H. Health policy and public health implications of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 446–461. [Google Scholar] [CrossRef] [PubMed]
- Steele, C.B.; Thomas, C.C.; Henley, S.J.; Massetti, G.M.; Galuska, D.A.; Agurs-Collins, T.; Puckett, M.; Richardson, L.C. Vital Signs: Trends in Incidence of Cancers Associated with Overweight and Obesity—United States, 2005–2014. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Kos, K. Cardiometabolic Morbidity and Mortality with Smoking Cessation, Review of Recommendations for People with Diabetes and Obesity. Curr. Diab. Rep. 2020, 20, 82. [Google Scholar] [CrossRef]
- Nosaka, N.; Tsujino, S.; Sadamitsu, S.; Ando, N.; Kato, K. Ingestion of triglycerides containing medium- and long-chain fatty acids can increase metabolism of ingested long-chain triglycerides in overweight persons. Front. Nutr. 2023, 10, 1260506. [Google Scholar] [CrossRef]
- Wadood, S.A.; Nie, J.; Song, Y.; Li, C.; Rogers, K.M.; Khan, W.A.; Khan, A.; Xiao, J.; Liu, H.; Yuan, Y. Authentication of edible herbal materials and food products using mass spectrometry based metabolites and inorganic constituents. Food Chem. 2024, 463, 141424. [Google Scholar] [CrossRef]
- You, L.; Wang, T.; Li, W.; Zhang, J.; Zheng, C.; Zheng, Y.; Li, S.; Shang, Z.; Lin, J.; Wang, F.; et al. Xiaozhi formula attenuates non-alcoholic fatty liver disease by regulating lipid metabolism via activation of AMPK and PPAR pathways. J. Ethnopharmacol. 2024, 329, 118165. [Google Scholar] [CrossRef]
- Lim, D.W.; Yu, G.R.; Kim, J.E.; Park, W.H. Network pharmacology predicts combinational effect of novel herbal pair consist of Ephedrae herba and Coicis semen on adipogenesis in 3T3-L1 cells. PLoS ONE 2023, 18, e0282875. [Google Scholar] [CrossRef]
- Tian, M.; Gao, H.; Jiao, H.; Tian, H.; Han, L.; Lin, X.; Cheng, G.; Sun, F.; Feng, B. Mechanisms of the Jian Pi Tiao Gan Yin in the treatment of simple obesity revealed by network pharmacology. Ann. Transl. Med. 2022, 10, 335. [Google Scholar] [CrossRef]
- Meng, X.; Yan, J.; Ma, J.; Kang, A.N.; Kang, S.Y.; Zhang, Q.; Lyu, C.; Park, Y.K.; Jung, H.W.; Zhang, S. Effects of Jowiseungki-tang on high fat diet-induced obesity in mice and functional analysis on network pharmacology and metabolomics analysis. J. Ethnopharmacol. 2022, 283, 114700. [Google Scholar] [CrossRef]
- Wang, W.; Yan, Y.; Li, Y.; Huang, Y.; Zhang, Y.; Yang, L.; Xu, X.; Wu, F.; Du, B.; Mao, Z.; et al. Nutritional Value, Volatile Components, Functional Metabolites, and Antibacterial and Cytotoxic Activities of Different Parts of Millettia speciosa Champ., a Medicinal and Edible Plant with Potential for Development. Plants 2023, 12, 3900. [Google Scholar] [CrossRef]
- Hwang, J.E.; Kim, K.T.; Paik, H.D. Improved Antioxidant, Anti-inflammatory, and Anti-adipogenic Properties of Hydroponic Ginseng Fermented by Leuconostoc mesenteroides KCCM 12010P. Molecules 2019, 24, 3359. [Google Scholar] [CrossRef] [PubMed]
- Song, M.W.; Park, J.Y.; Lee, H.S.; Kim, K.T.; Paik, H.D. Co-Fermentation by Lactobacillus brevis B7 Improves the Antioxidant and Immunomodulatory Activities of Hydroponic Ginseng-Fortified Yogurt. Antioxid. 2021, 10, 1447. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Liu, M.; Guo, C.; Lian, X.; Shen, Y.; Liu, Y.; Qian, Y.; Zhang, L.; Wang, W.; Chen, D.; et al. Analysis of Metabolic Differences in the Water Extract of Shenheling Fermented by Lactobacillus fermentum Based on Nontargeted Metabolomics. Fermentation 2023, 9, 44. [Google Scholar] [CrossRef]
- Yan, X.T.; Zhang, W.; Zhang, Y.; Zhang, Z.; Chen, D.; Wang, W.; Ma, W.; Qu, H.; Qian, J.Y.; Gu, R. In Vitro Anti-Obesity Effect of Shenheling Extract (SHLE) Fermented with Lactobacillus fermentum grx08. Foods 2022, 11, 1221. [Google Scholar] [CrossRef]
- Wang, H.; Wang, T.; Wang, J.; Liu, R.; Cui, Y.; Wu, X.; Dai, R.; Wu, Y.; Nie, X.; Yan, X.; et al. Exploring the Potential Lipid-Lowering and Weight-Reducing Mechanisms of FH06 Fermented Beverages Based on Non-Targeted Metabolomics and Network Pharmacology. Fermentation 2024, 10, 294. [Google Scholar] [CrossRef]
- Want, E.J.; O’Maille, G.; Smith, C.A.; Brandon, T.R.; Uritboonthai, W.; Qin, C.; Trauger, S.A.; Siuzdak, G. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal. Chem. 2006, 78, 743–752. [Google Scholar] [CrossRef]
- Barri, T.; Dragsted, L.O. UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: Effect of experimental artefacts and anticoagulant. Anal. Chim. Acta 2013, 768, 118–128. [Google Scholar] [CrossRef]
- Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant analysis—A marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23. [Google Scholar] [CrossRef]
- Fan, Q.; Zhou, J.; Wang, Y.; Xi, T.; Ma, H.; Wang, Z.; Xiao, W.; Liu, Q. Chip-based serum proteomics approach to reveal the potential protein markers in the sub-acute stroke patients receiving the treatment of Ginkgo Diterpene Lactone Meglumine Injection. J. Ethnopharmacol. 2020, 260, 112964. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Li, J.; Wang, J.; Liu, W.; Zhang, Z.; Yu, H. Label-free quantitative proteomics reveals the potential mechanisms of insoluble dietary fiber from okara in improving hepatic lipid metabolism of high-fat diet-induced mice. J. Proteom. 2023, 287, 104980. [Google Scholar] [CrossRef]
- Cha, M.G.; Lee, S.B.; Yoon, S.J.; Lee, S.Y.; Gupta, H.; Ganesan, R.; Sharma, S.P.; Won, S.M.; Jeong, J.J.; Kim, D.J.; et al. New insight of chemical constituents in Persea americana fruit against obesity via integrated pharmacology. Clin. Transl. Sci. 2024, 17, e13778. [Google Scholar] [CrossRef] [PubMed]
- Soltani Rad, M.N.; Behrouz, S.; Charbaghi, M.; Behrouz, M.; Zarenezhad, E.; Ghanbariasad, A. Design, synthesis, anticancer and in silico assessment of 8-caffeinyl chalcone hybrid conjugates. RSC Adv. 2024, 14, 26674–26693. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lai, C.; Shen, B.; Li, B.; Chen, J.; Shen, X.; Huang, Z.; Yang, C.; Gao, Y. Effects of Evodiamine on Behavior and Hippocampal Neurons through Inhibition of Angiotensin-Converting Enzyme and Modulation of the Renin Angiotensin Pathway in a Mouse Model of Post-Traumatic Stress Disorder. Nutrients 2024, 16, 1957. [Google Scholar] [CrossRef] [PubMed]
- Zdrazil, B.; Felix, E.; Hunter, F.; Manners, E.J.; Blackshaw, J.; Corbett, S.; de Veij, M.; Ioannidis, H.; Lopez, D.M.; Mosquera, J.F.; et al. The ChEMBL Database in 2023: A drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 2024, 52, D1180–D1192. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30–31. [Google Scholar] [CrossRef]
- Amberger, J.S.; Hamosh, A. Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes. Curr. Protoc. Bioinform. 2017, 58, 1.2.1–1.2.12. [Google Scholar] [CrossRef]
- Yang, P.H.; Wei, Y.N.; Xiao, B.J.; Li, S.Y.; Li, X.L.; Yang, L.J.; Pan, H.F.; Chen, G.X. Curcumin for gastric cancer: Mechanism prediction via network pharmacology, docking, and in vitro experiments. World J. Gastrointest. Oncol. 2024, 16, 3635–3650. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Zhao, D.; Yu, X.; Shen, X.; Zhou, Y.; Wang, S.; Qiu, Y.; Chen, Y.; Zhu, F. TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024, 52, D1465–D1477. [Google Scholar] [CrossRef]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Cen, J.; Wang, L.; Zhang, H.; Ji, L.; Guo, Y. Differential Gene Analysis of Ferroptosis in the Treatment of Allergic Rhinitis with Bu-Zhong-Yi-Qi-Decoction Based on GEO Using Network Pharmacology and Molecular Docking. Altern. Ther. Health Med. 2024, 30, 366–373. [Google Scholar] [PubMed]
- Dong, Y.; Zheng, Y.; Zhu, L.; Li, T.; Guan, Y.; Zhao, S.; Wang, Q.; Wang, J.; Li, L. Hua-Tan-Sheng-Jing Decoction Treats Obesity With Oligoasthenozoospermia by Up-Regulating the PI3K-AKT and Down-Regulating the JNK MAPK Signaling Pathways: At the Crossroad of Obesity and Oligoasthenozoospermia. Front. Pharmacol. 2022, 13, 896434. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013, 29, 1830–1831. [Google Scholar] [CrossRef]
- Chu, Y.; Pang, B.; Yang, M.; Wang, S.; Meng, Q.; Gong, H.; Kong, Y.; Leng, Y. Exploring the possible therapeutic mechanism of Danzhixiaoyao pills in depression and MAFLD based on “Homotherapy for heteropathy”: A network pharmacology and molecular docking. Heliyon 2024, 10, e35309. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef]
- Ng, C.H.; Yang, K.L. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media. Enzym. Microb. Technol. 2016, 82, 173–179. [Google Scholar] [CrossRef]
- Tabei, Y.; Abe, H.; Suzuki, S.; Takeda, N.; Arai, J.I.; Nakajima, Y. Sedanolide Activates KEAP1-NRF2 Pathway and Ameliorates Hydrogen Peroxide-Induced Apoptotic Cell Death. Int. J. Mol. Sci. 2023, 24, 6532. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Copple, I.M. Advances and challenges in therapeutic targeting of NRF2. Trends Pharmacol. Sci. 2023, 44, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, J.; Yan, L.; Wu, Y.; Zhang, L.; Li, B.; Tong, H.; Lin, X. Molecular Mechanisms of Fucoxanthin in Alleviating Lipid Deposition in Metabolic Associated Fatty Liver Disease. J. Agric. Food Chem. 2024, 72, 10391–10405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, J.; Zhong, H.; Xu, Y. The mechanism of nicotinamide on reducing acute lung injury by inhibiting MAPK and NF-κB signal pathway. Mol. Med. 2021, 27, 115. [Google Scholar] [CrossRef] [PubMed]
- Roh, K.B.; Jung, E.; Park, D.; Lee, J. Fumaric acid attenuates the eotaxin-1 expression in TNF-α-stimulated fibroblasts by suppressing p38 MAPK-dependent NF-κB signaling. Food Chem. Toxicol. 2013, 58, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Whelan, D.T.; Hill, R.E.; McClorry, S. Fumaric aciduria: A new organic aciduria, associated with mental retardation and speech impairment. Clin. Chim. Acta 1983, 132, 301–308. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, F.; Jiang, H.; Xu, D.; Deng, D. Fumaric acid and succinic acid treat gestational hypertension by downregulating the expression of KCNMB1 and TET1. Exp. Ther. Med. 2021, 22, 1072. [Google Scholar] [CrossRef]
- Rabe, K.F.; Magnussen, H.; Dent, G. Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. Eur. Respir. J. 1995, 8, 637–642. [Google Scholar] [CrossRef]
- Liu, C.P.; Chau, P.C.; Chang, C.T.; An, L.M.; Yeh, J.L.; Chen, I.J.; Wu, B.N. KMUP-1, a GPCR Modulator, Attenuates Triglyceride Accumulation Involved MAPKs/Akt/PPARγ and PKA/PKG/HSL Signaling in 3T3-L1 Preadipocytes. Molecules 2018, 23, 2433. [Google Scholar] [CrossRef]
- Jing, N.; Liu, X.; Jin, M.; Yang, X.; Hu, X.; Li, C.; Zhao, K. Fubrick tea attenuates high-fat diet induced fat deposition and metabolic disorder by regulating gut microbiota and caffeine metabolism. Food Funct. 2020, 11, 6971–6986. [Google Scholar] [CrossRef]
- Gross, B.; Pawlak, M.; Lefebvre, P.; Staels, B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 2017, 13, 36–49. [Google Scholar] [CrossRef]
- Morieri, M.L.; Shah, H.S.; Sjaarda, J.; Lenzini, P.A.; Campbell, H.; Motsinger-Reif, A.A.; Gao, H.; Lovato, L.; Prudente, S.; Pandolfi, A.; et al. PPARA Polymorphism Influences the Cardiovascular Benefit of Fenofibrate in Type 2 Diabetes: Findings From ACCORD-Lipid. Diabetes 2020, 69, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Fatriani, R.; Pratiwi, F.A.K.; Annisa, A.; Septaningsih, D.A.; Aziz, S.A.; Miladiyah, I.; Kusumastuti, S.A.; Nasution, M.A.F.; Ramadhan, D.; Kusuma, W.A. Unveiling the anti-obesity potential of Kemuning (Murraya paniculata): A network pharmacology approach. PLoS ONE 2024, 19, e0305544. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, X.; Shen, C. Peroxisome proliferator-activated receptor gamma in white and brown adipocyte regulation and differentiation. Physiol. Res. 2020, 69, 759–773. [Google Scholar] [CrossRef]
- Yudkin, J.S.; Kumari, M.; Humphries, S.E.; Mohamed-Ali, V. Inflammation, obesity, stress and coronary heart disease: Is interleukin-6 the link? Atherosclerosis 2000, 148, 209–214. [Google Scholar] [CrossRef]
- Yuan, X.; Wei, G.; You, Y.; Huang, Y.; Lee, H.J.; Dong, M.; Lin, J.; Hu, T.; Zhang, H.; Zhang, C.; et al. Rutin ameliorates obesity through brown fat activation. Faseb J. 2017, 31, 333–345. [Google Scholar] [CrossRef]
- Jiao, W.; Mi, S.; Sang, Y.; Jin, Q.; Chitrakar, B.; Wang, X.; Wang, S. Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol. Food Chem. 2022, 374, 131755. [Google Scholar] [CrossRef]
- Jia, X.; Chang, T.; Wilson, T.W.; Wu, L. Methylglyoxal mediates adipocyte proliferation by increasing phosphorylation of Akt1. PLoS ONE 2012, 7, e36610. [Google Scholar] [CrossRef]
- Mao, J.; Li, M.; Wang, X.; Wang, B.; Luo, P.; Wang, G.; Guo, X. Exploring the mechanism of Pueraria lobata (Willd.) Ohwi in the regulation of obesity. J. Ethnopharmacol. 2024, 335, 118703. [Google Scholar] [CrossRef]
- Clemente-Postigo, M.; Tinahones, A.; El Bekay, R.; Malagón, M.M.; Tinahones, F.J. The Role of Autophagy in White Adipose Tissue Function: Implications for Metabolic Health. Metabolites 2020, 10, 179. [Google Scholar] [CrossRef]
- Jeong, S.I.; Kim, S.H. Obesity and hypertension in children and adolescents. Clin. Hypertens. 2024, 30, 23. [Google Scholar] [CrossRef]
- Pan, Y.; Cao, S.; Tang, J.; Arroyo, J.P.; Terker, A.S.; Wang, Y.; Niu, A.; Fan, X.; Wang, S.; Zhang, Y.; et al. Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice. J. Clin. Investig. 2022, 132, e152391. [Google Scholar] [CrossRef] [PubMed]
- Szerafin, T.; Erdei, N.; Fülöp, T.; Pasztor, E.T.; Edes, I.; Koller, A.; Bagi, Z. Increased cyclooxygenase-2 expression and prostaglandin-mediated dilation in coronary arterioles of patients with diabetes mellitus. Circ. Res. 2006, 99, e12–e17. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.Y.; Zhou, J.; Cai, H. Bone Morphogenic Protein 4 Mediates NOX1-Dependent eNOS Uncoupling, Endothelial Dysfunction, and COX2 Induction in Type 2 Diabetes Mellitus. Mol. Endocrinol. 2015, 29, 1123–1133. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Tong, Y.; Wu, L.; Xie, Y.; He, P.; Lin, S.; Hu, X. Integrating network pharmacology and animal experimental validation to investigate the action mechanism of oleanolic acid in obesity. J. Transl. Med. 2024, 22, 86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Cui, X.Y.; Wang, D.; Jin, Y.; Guan, Y.X. Anti-obesity effect of escin: A study on high-fat diet-induced obese mice. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 7797–7812. [Google Scholar] [CrossRef]
- Khristi, V.; Ratri, A.; Ghosh, S.; Pathak, D.; Borosha, S.; Dai, E.; Roy, R.; Chakravarthi, V.P.; Wolfe, M.W.; Karim Rumi, M.A. Disruption of ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats. Mol. Cell Endocrinol. 2019, 490, 47–56. [Google Scholar] [CrossRef]
- Khristi, V.; Ratri, A.; Ghosh, S.; Borosha, S.; Dai, E.; Chakravarthi, V.P.; Rumi, M.A.K.; Wolfe, M.W. Liver transcriptome data of Esr1 knockout male rats reveals altered expression of genes involved in carbohydrate and lipid metabolism. Data Brief. 2019, 22, 771–780. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, B.; Wu, B.; Xiao, H.; Li, Z.; Li, R.; Xu, X.; Li, T. Signaling pathways in obesity: Mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022, 7, 298. [Google Scholar] [CrossRef]
- Morigny, P.; Boucher, J.; Arner, P.; Langin, D. Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 2021, 17, 276–295. [Google Scholar] [CrossRef]
- Soto-Pantoja, D.R.; Gaber, M.; Arnone, A.A.; Bronson, S.M.; Cruz-Diaz, N.; Wilson, A.S.; Clear, K.Y.J.; Ramirez, M.U.; Kucera, G.L.; Levine, E.A.; et al. Diet Alters Entero-Mammary Signaling to Regulate the Breast Microbiome and Tumorigenesis. Cancer Res. 2021, 81, 3890–3904. [Google Scholar] [CrossRef]
- Robinzon, B.; Michael, K.K.; Ripp, S.L.; Winters, S.J.; Prough, R.A. Glucocorticoids inhibit interconversion of 7-hydroxy and 7-oxo metabolites of dehydroepiandrosterone: A role for 11beta-hydroxysteroid dehydrogenases? Arch. Biochem. Biophys. 2003, 412, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Rahbani, J.F.; Roesler, A.; Hussain, M.F.; Samborska, B.; Dykstra, C.B.; Tsai, L.; Jedrychowski, M.P.; Vergnes, L.; Reue, K.; Spiegelman, B.M.; et al. Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 2021, 590, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, P.; Liang, Y.; Xia, N.; Li, Y.; Su, H.; Pan, H. Effects of liraglutide on lipolysis and the AC3/PKA/HSL pathway. Diabetes Metab. Syndr. Obes. 2019, 12, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- London, E.; Bloyd, M.; Stratakis, C.A. PKA functions in metabolism and resistance to obesity: Lessons from mouse and human studies. J. Endocrinol. 2020, 246, R51–R64. [Google Scholar] [CrossRef]
Part 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. | Compound | Relative Quantitative Value | FC | log2(FC) | p-Value | −log10(p) | VIP | Class | Content Change | |
FH08F-Mean | FH08FS-Mean | |||||||||
1 | Denin | 0.16 | 0.51 | 3.25 | 1.70 | 0.0017 | 2.78 | 2.23 | steroids | up |
2 | Monolaurin | 0.42 | 1.15 | 2.77 | 1.47 | 0.0042 | 2.37 | 2.17 | esters | up |
3 | Sedanolide | 3.68 | 9.71 | 2.64 | 1.40 | 0.0235 | 1.63 | 2.02 | esters | up |
4 | UDP | 0.02 | 0.04 | 2.32 | 1.22 | 0.0080 | 2.09 | 2.11 | nucleotides | up |
5 | Adenosine 5′-monophosphate | 0.23 | 0.46 | 1.98 | 0.99 | 0.0340 | 1.47 | 2.00 | nucleotides | up |
6 | 1-[6-(Benzyloxy)-3-(tert-butyl)-2-hydroxyphenyl]ethan-1-one | 1.83 | 3.48 | 1.91 | 0.93 | 0.0315 | 1.50 | 1.99 | ketones | up |
7 | D-Glucosamine | 8.16 | 15.40 | 1.89 | 0.92 | 0.0459 | 1.34 | 1.86 | saccharides | up |
8 | 3-[2-(1,3,5-Trimethyl-1H-pyrazol-4-yl)hydrazono]pentane-2,4-dione | 1.20 | 2.20 | 1.83 | 0.87 | 0.0296 | 1.53 | 2.01 | ketones | up |
9 | TG 18:2_18:2_18:3 | 6.95 | 12.61 | 1.81 | 0.86 | 0.0048 | 2.32 | 2.14 | esters | up |
10 | Ethyl 4-amino-2-(methylsulfanyl)-1,3-thiazole-5-carboxylate | 208.52 | 368.25 | 1.77 | 0.82 | 0.0031 | 2.50 | 2.22 | esters | up |
11 | Nicotinamide | 30.50 | 51.54 | 1.69 | 0.76 | 0.0060 | 2.22 | 2.18 | acyl amines | up |
12 | Ethyl 2-{2-[(phenylsulfonyl) amino] -1,3-thiazol-4-yl}acetate | 0.30 | 0.50 | 1.66 | 0.73 | 0.0418 | 1.38 | 1.94 | esters | up |
13 | 5,6-Dimethyl-3-[5-(trifluoromethyl)pyridin-2-yl]-1,2,4-triazine | 0.95 | 1.53 | 1.62 | 0.70 | 0.0428 | 1.37 | 1.85 | triazines | up |
14 | Fumaric Acid | 0.71 | 1.14 | 1.61 | 0.69 | 0.0156 | 1.81 | 2.02 | carboxylic acids | up |
15 | Theophylline | 40.44 | 64.74 | 1.60 | 0.68 | 0.0048 | 2.32 | 2.18 | xanthines | up |
16 | Sibirioside A | 0.05 | 0.08 | 1.58 | 0.66 | 0.0325 | 1.49 | 2.01 | esters | up |
17 | 2-Aminoethylphosphonate | 2.11 | 3.31 | 1.57 | 0.65 | 0.0282 | 1.55 | 1.99 | organic phosphonic acids | up |
18 | Pristimerin | 0.10 | 0.15 | 1.55 | 0.63 | 0.0006 | 3.22 | 2.23 | terpenoids | up |
19 | 4-(3,4-Dihydro-2H-1,5-benzodioepin-7-ylamino)-4-oxobutanoic acid | 0.09 | 0.14 | 1.54 | 0.62 | 0.0377 | 1.42 | 1.95 | carboxylic acids | up |
20 | 1,2-Di(3,4-dimethoxyphenyl)diaz-1-ene | 1.07 | 0.22 | 0.20 | −2.32 | 0.0202 | 1.69 | 1.98 | ethers | down |
21 | Miquelianin | 3.73 | 0.79 | 0.21 | −2.25 | 0.0121 | 1.92 | 2.08 | ketones | down |
22 | Betulin | 0.09 | 0.03 | 0.29 | −1.76 | 0.0366 | 1.44 | 1.91 | terpenoids | down |
23 | Chelidonic acid | 0.58 | 0.17 | 0.30 | −1.74 | 0.0118 | 1.93 | 2.07 | carboxylic acids | down |
24 | Quercetin | 0.29 | 0.11 | 0.36 | −1.48 | 0.0112 | 1.95 | 2.07 | ketones | down |
25 | Bisulfurous acid | 0.07 | 0.03 | 0.37 | −1.43 | 0.008 | 2.10 | 2.14 | carboxylic acids | down |
26 | Malic acid | 6.71 | 2.71 | 0.40 | −1.31 | 0.0372 | 1.43 | 1.90 | carboxylic acids | down |
27 | Tigogenin | 0.46 | 0.19 | 0.40 | −1.31 | 0.0434 | 1.36 | 1.95 | terpenoids | down |
28 | Nobiletin | 7.34 | 3.24 | 0.44 | −1.18 | 0.0091 | 2.04 | 2.10 | ketones | down |
29 | TG 16:0_18:2_18:2 | 42.13 | 19.15 | 0.45 | −1.14 | 0.0441 | 1.36 | 1.89 | esters | down |
30 | Methylsuccinic acid | 105.01 | 60.89 | 0.58 | −0.79 | 0.0409 | 1.39 | 1.90 | carboxylic acids | down |
31 | Saikosaponin C | 0.32 | 0.19 | 0.61 | −0.72 | 0.0146 | 1.84 | 1.07 | terpenoids | down |
32 | Nor-9-carboxy-δ9-THC | 4.41 | 2.73 | 0.62 | −0.69 | 0.0468 | 1.33 | 0.05 | phenols | down |
33 | α-D-Glucose-1,6-bisphosphate | 7.05 | 4.66 | 0.66 | −0.60 | 0.0012 | 2.92 | 0.00 | esters | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Wang, T.; Nie, X.; Wu, Y.; Wang, J.; Wang, H.; Dai, R.; Liu, R.; Cui, Y.; Su, M.; et al. Pasteurization and the Potential Anti-Obesity Function of Fermented Beverages: A Significant Increase in Nitrogen-Containing Aromatic Heterocyclic Compound Content. Fermentation 2024, 10, 646. https://doi.org/10.3390/fermentation10120646
Wu X, Wang T, Nie X, Wu Y, Wang J, Wang H, Dai R, Liu R, Cui Y, Su M, et al. Pasteurization and the Potential Anti-Obesity Function of Fermented Beverages: A Significant Increase in Nitrogen-Containing Aromatic Heterocyclic Compound Content. Fermentation. 2024; 10(12):646. https://doi.org/10.3390/fermentation10120646
Chicago/Turabian StyleWu, Xiurong, Ting Wang, Xiangzhen Nie, Yanglin Wu, Jinghan Wang, Haoming Wang, Rui Dai, Ronghan Liu, Yingying Cui, Miaoting Su, and et al. 2024. "Pasteurization and the Potential Anti-Obesity Function of Fermented Beverages: A Significant Increase in Nitrogen-Containing Aromatic Heterocyclic Compound Content" Fermentation 10, no. 12: 646. https://doi.org/10.3390/fermentation10120646
APA StyleWu, X., Wang, T., Nie, X., Wu, Y., Wang, J., Wang, H., Dai, R., Liu, R., Cui, Y., Su, M., Qiu, Y., & Yan, X. (2024). Pasteurization and the Potential Anti-Obesity Function of Fermented Beverages: A Significant Increase in Nitrogen-Containing Aromatic Heterocyclic Compound Content. Fermentation, 10(12), 646. https://doi.org/10.3390/fermentation10120646