Analysis of Nutritional Composition and Flavor Patterns by Variety (Porphyra dentata and Porphyra yezoensis) in Dried Laver from Jeonnam, Korea
<p>Analysis of mineral content of P-dent and P-yezo. Data values are expressed as means ± S.E. The values are significantly different between groups according to Student’s <span class="html-italic">t</span>-test: *** <span class="html-italic">p</span> < 0.001 by Student’s <span class="html-italic">t</span>-test, P-dent vs. P-yezo. Zinc: Zn, Sodium: Na, Potassium: K, Magnesium: Mg, Calcium: Ca, Iron: Fe, P-dent: <span class="html-italic">Porphyra dentata</span> groups, P-yezo: <span class="html-italic">Porphyra yesoensis</span> groups.</p> "> Figure 2
<p>Analysis of color parameters in P-dent and P-yezo. Data values are expressed as means ± S.E. The values are significantly different between groups according to Student’s <span class="html-italic">t</span>-test: ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 by Student’s <span class="html-italic">t</span>-test, P-dent vs. P-yezo. (<b>A</b>) Color parameters of P-dent and P-yezo, and (<b>B</b>) image of P-dent and P-yezo. L*: lightness, a*: redness/greenness, b*: yellowness/blueness, P-dent: <span class="html-italic">Porphyra dentata</span> groups, P-yezo: <span class="html-italic">Porphyra yesoensis</span> groups.</p> "> Figure 3
<p>The analysis of sensory property taste (sourness, sweetness, saltiness, umami, and bitterness) in P-dent and P-yezo. P-dent: <span class="html-italic">Porphyra dentata</span> groups, P-yezo: <span class="html-italic">Porphyra yesoensis</span> groups.</p> "> Figure 4
<p>The comparative analysis in P-dent and P-yezo. (<b>A</b>) Principal component analysis of P-dent and P-yezo, and (<b>B</b>) correlation analysis of P-dent and P-yezo. The color intensity of (<b>B</b>) indicates the degree of correlation. Red represents a positive correlation, whereas blue represents a negative correlation. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01. P-dent: <span class="html-italic">Porphyra dentata</span> groups, P-yezo: <span class="html-italic">Porphyra yesoensis</span> groups.</p> "> Figure 5
<p>Analysis of shinorine and porphyra-334 content in P-dent and P-yezo. Data values are expressed as means ± S.E. The values are significantly different between groups according to Student’s <span class="html-italic">t</span>-test: *** <span class="html-italic">p</span> < 0.001 by Student’s <span class="html-italic">t</span>-test, P-dent vs. P-yezo. P-dent: <span class="html-italic">Porphyra dentata</span> groups, P-yezo: <span class="html-italic">Porphyra yesoensis</span> groups.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Laver Samples
2.2. Determination of Moisture, Protein, and Weight Composition
2.3. Determination of Minerals
2.4. Determination of Fatty Acid Composition
2.5. Determination of Color Parameter
2.6. Determination of Pigments
2.7. Determination of Sensory Evaluation
2.8. Determination of Shinorine and Porphyra-334
2.9. Statistical Analysis
3. Results and Discussion
3.1. Content of Moisture, Protein, Weight, and Pigments
3.2. Mineral Composition
3.3. Fatty Acid Composition
3.4. Color Parameters and Sensory Properties
3.5. Principal Component Analysis (PCA) and Correlation Anaylsis
3.6. Content of Shinorine and Porphyra-334
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed]
- Costello, C.; Cao, L.; Gelcich, S.; Cisneros-Mata, M.Á.; Free, C.M.; Froehlich, H.E.; Golden, C.D.; Ishimura, G.; Maier, J.; Macadam-Somer, I. The future of food from the sea. Nature 2020, 588, 95–100. [Google Scholar] [CrossRef]
- Amaro, H.M.; Pagels, F.; Tavares, T.G.; Costa, I.; Sousa-Pinto, I.; Guedes, A.C. Antioxidant and anti-inflammatory potential of seaweed extracts as functional ingredients. Hydrobiology 2022, 1, 469–482. [Google Scholar] [CrossRef]
- Lee, H.; Lu, Y.A.; Li, X.; Hyun, J.; Kim, H.; Lee, J.J.; Kim, T.H.; Kim, H.M.; Kang, M.; Jeon, Y. Anti-Obesity effects of Grateloupia elliptica, a red seaweed, in mice with high-fat diet-induced obesity via suppression of adipogenic factors in white adipose tissue and increased thermogenic factors in brown adipose tissue. Nutrients 2020, 12, 308. [Google Scholar] [CrossRef] [PubMed]
- Neto, R.T.; Marçal, C.; Queirós, A.S.; Abreu, H.; Silva, A.M.; Cardoso, S.M. Screening of Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima as Functional Ingredients. Int. J. Mol. Sci. 2018, 19, 2987. [Google Scholar] [CrossRef] [PubMed]
- Bito, T.; Teng, F.; Watanabe, F. Bioactive compounds of edible purple laver Porphyra sp. (Nori). J. Agric. Food Chem. 2017, 65, 10685–10692. [Google Scholar] [CrossRef] [PubMed]
- Park, C.K.; Kang, T.J.; Kim, K.S. The nutritional and functional constituents of laver. Bull. Fish. Sic. Inst. Yosu Nat’l Univ. 2000, 9, 133–137. [Google Scholar]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Aung, T.; Eun, J. Production and characterization of a novel beverage from laver (Porphyra dentata) through fermentation with kombucha consortium. Food Chem. 2021, 350, 129274. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.; Kim, S.; Ha, D.; Baek, J.; Kim, H.; Choi, H. DNA sequences and identification of Porphyra cultivated by natural seeding on the southwest coast of Korea. Algae 2005, 20, 183–196. [Google Scholar] [CrossRef]
- Lee, E.; Kim, G.; Lee, H.; Kwon, J. Monitoring microbiological contamination, pre-decontamination, and irradiation status of commercial dried laver (Porphyra sp.) products. Korean J. Food Sci. Technol. 2017, 49, 20–27. [Google Scholar] [CrossRef]
- Ying, R.; Zhang, Z.; Zhu, H.; Li, B.; Hou, H. The protective effect of mycosporine-like amino acids (MAAs) from Porphyra yezoensis in a mouse model of UV irradiation-induced photoaging. Mar. Drugs 2019, 17, 470. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Oceans and Fisheries (MOF). Statics News. 2017. Available online: https://www.mof.go.kr/statPortal/stp/cts/anr/statsAnlrpt.do (accessed on 1 January 2025).
- Choi, S.; Lee, S.Y.; Kim, H.G.; Jeong, J.C.; Batara, D.C.; Kim, S.; Cho, J. Shinorine and porphyra-334 isolated from laver (Porphyra dentata) inhibit adipogenesis in 3T3-L1 cells. FSB 2022, 31, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.Y.; Kim, S.J.; Kim, D.H.; Kim, M.R. Comparison of Quality Characteristics and Antioxidant Activities between Porphyra yezoensis and Porphyra dentata in Korea. J. Korean Soc. Food Sci. Nutr. 2019, 48, 1233–1243. [Google Scholar] [CrossRef]
- Kim, K.; Hwang, J.; Oh, M.; Kim, M.; Choi, M.; Park, W. Studies on the major nutritional components of commercial dried lavers (Porphyra yezoensis) cultivated in Korea. Korean J. Food Preserv. 2014, 21, 702–709. [Google Scholar] [CrossRef]
- Ryu, C.; Koo, J. Effect of Enzymatic Hydrolysate of Laver Pyropia on the Dough and Bread Making Properties of Wheat Flour. J. Fosh. Mar. Sci. Educ. 2015, 27, 467–475. [Google Scholar]
- Park, W.; Kim, K.; Kang, D.; Bae, T. Studies on Anion, Element, Chromaticity and Antioxidant Activities of Commercial Dried Lavers (Porphyra yezoensis) Cultivated in Korea. J. Korean Soc. Food Sci. Nutr. 2014, 43, 323–327. [Google Scholar] [CrossRef]
- Jeon, Y.; Park, S.; Choi, M.; Kang, M. Oxidation Stability of Lavers Made with Garlic-Salt and Their Characteristics during Storage. J. Korean Soc. Food Sci. Nutr. 2008, 37, 83–89. [Google Scholar] [CrossRef]
- Kim, W.; Kim, J.Y.; Jeong, S.J.; Yang, H.C.; Cho, J. Physicochemical characteristics and antioxidant activities of laver cultivars harvested at different times. Korean J. Food Preserv. 2021, 28, 705–715. [Google Scholar] [CrossRef]
- Jung, H.; Kim, D.; Jeong, M.; Lim, C.; Shim, K.; Cho, Y. Mineral Analysis and Nutritional Evaluation according to Production Area of Laver Porphyra tenera, Japanese kelp Saccharina japonicus, Sea mustard Undaria pinnatifida and Hijiki Sargassum fusiforme in Korea. KSFME 2017, 29, 1624–1632. [Google Scholar]
- Fleurence, J. Seaweed Proteins: Biochemicals, Nutritional Aspects and Potential Uses. Trend Food Sci. Publicers 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Ortiz, J.; Romero, N.; Robert, P.; Araya, J.; Lopez-Hernández, J.; Bozzo, C.; Navarrete, E.; Osorio, A.; Rios, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem. 2006, 99, 98–104. [Google Scholar] [CrossRef]
- Korea Laver Industry Association (KLIA). Laver Introduction. 2010. Available online: http://www.kolia.org/foodkim/foodkim1.php (accessed on 1 January 2025).
- Korea Industrial Standard (KIS). Dried Laver; Korean Agency for Technology and Standards: Chungbuk, Republic of Korea, 2014; pp. 1–3. [Google Scholar]
- Ishihara, K.; Oyamada, C.; Sato, Y.; Danno, H.; Kimiya, T.; Kaneniwa, M.; Kunitake, H.; Muraoka, T. Relationships between quality parameters and content of glycerol galactoside and porphyra-334 in dried laver nori Porphyra yezoensis. Fish. Sci. 2008, 74, 167–173. [Google Scholar] [CrossRef]
- Boominathan, M.; Mahesh, A. Seaweed carotenoids for cancer therapeutics. In Handbook of Anticancer Drugs from Marine Origin; Springer: Berlin/Heidelberg, Germany, 2015; pp. 185–203. [Google Scholar]
- Zhang, J.; Nagahama, T.; Ohwaki, H.; Ishibashi, Y.; Fujita, Y.; Yamazaki, S. Analytical approach to the discoloration of edible laver “Nori” in the Ariake Sea. Anal. Sci. 2004, 20, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Calvo, J.J.; Mazuelos, C.; Hermosín, B.; Sáiz-Jiménez, C. Chemical composition of Spirulina and eukaryotic algae food products marketed in Spain. J. Appl. Phycol. 1993, 5, 425–435. [Google Scholar] [CrossRef]
- Hwang, E.; Ki, K.; Chung, H. Proximate composition, amino acid, mineral, and heavy metal content of dried laver. Prev. Nutr. Food Sci. 2013, 18, 139. [Google Scholar] [CrossRef]
- Burtin, P. Nutritional value of seaweeds. Electron. J. Environ. Agric. Food Chem. 2003, 2, 498–503. [Google Scholar]
- Jung, S.; Kang, S.; Kim, K.; Lee, H.; Kim, A.; Shin, H. The analysis of proximate composition, minerals and amino acid content of red alga Pyropia dentata by cultivation sites. Korean J. Environ. Ecol. 2015, 29, 1–6. [Google Scholar] [CrossRef]
- Jeong, G.; Lee, C.; Cha, E.; Moon, S.; Cha, Y.; Yu, D. Determination of Optimum Processing Condition of High Protein Laver Chip Using Air-Frying and Reaction Flavor Technologies. Foods 2023, 12, 4450. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Kim, D.; Park, J.; Lee, T. Analysis of Biochemical Compositions and Nutritive Values of Six Species of Seaweeds. J. Life Sci. 2013, 23, 1004–1009. [Google Scholar] [CrossRef]
- Gressler, V.; Yokoya, N.S.; Fujii, M.T.; Colepicolo, P.; Mancini Filho, J.; Torres, R.P.; Pinto, E. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem. 2010, 120, 585–590. [Google Scholar] [CrossRef]
- Zellner, D.; Greene, N.; Jimenez, M.; Calderon, A.; Diaz, Y.; Sheraton, M. The effect of wrapper color on candy flavor expectations and perceptions. Food Qual. Prefer. 2018, 68, 98–104. [Google Scholar] [CrossRef]
- Ge, M.; Shen, J.; Liu, C.; Xia, W.; Xu, Y. Effect of acidification and thermal treatment on quality characteristics of high-moisture laver (Porphyra spp.). J. Food Process Preserv. 2022, 46, e16762. [Google Scholar] [CrossRef]
- Arias, R.; Lee, T.; Logendra, L.; Janes, H. Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 2000, 48, 1697–1702. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Jiang, M.; Zheng, H.; Jian, Y.; Huang, W.; Yuan, Q.; Zheng, A.; Chen, Q.; Zhang, Y.; Lin, Y. Color-related chlorophyll and carotenoid concentrations of Chinese kale can be altered through CRISPR/Cas9 targeted editing of the carotenoid isomerase gene BoaCRTISO. Hortic. Res. 2020, 7, 161. [Google Scholar] [CrossRef] [PubMed]
- Paciulli, M.; Palermo, M.; Chiavaro, E.; Pellegrini, N. Chlorophylls and colour changes in cooked vegetables. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 703–719. [Google Scholar]
- Wei, L.; Lu, L.; Shang, Y.; Ran, X.; Liu, Y.; Fang, Y. Can SPAD Values and CIE L* a* b* Scales Predict Chlorophyll and Carotenoid Concentrations in Leaves and Diagnose the Growth Potential of Trees? An Empirical Study of Four Tree Species. Horticulturae 2024, 10, 548. [Google Scholar] [CrossRef]
- Zhang, J.; Sun-Waterhouse, D.; Su, G.; Zhao, M. New insight into umami receptor, umami/umami-enhancing peptides and their derivatives: A review. Trends Food Sci. Technol. 2019, 88, 429–438. [Google Scholar] [CrossRef]
- Xu, X.; Xu, R.; Song, Z.; Jia, Q.; Feng, T.; Huang, M.; Song, S. Identification of umami-tasting peptides from Volvariella volvacea using ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry and sensory-guided separation techniques. J. Chromatogr. A 2019, 1596, 96–103. [Google Scholar] [PubMed]
- Keast, R.S.; Breslin, P.A. An overview of binary taste–taste interactions. Food Qual. Prefer. 2003, 14, 111–124. [Google Scholar] [CrossRef]
- Shin, J. Salt reduction in foods using protein hydrolysates. Food Sci. Ind. 2018, 51, 313–324. [Google Scholar]
- Rombach, M.; Botero, J.; Dean, D.L. Finding nori—Understanding key factors driving US consumers’ commitment for sea-vegetable products. Sustainability 2024, 16, 2107. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Asuero, A.G.; Sayago, A.; González, A.G. The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Gacesa, R.; Lawrence, K.P.; Georgakopoulos, N.D.; Yabe, K.; Dunlap, W.C.; Barlow, D.J.; Wells, G.; Young, A.R.; Long, P.F. The mycosporine-like amino acids porphyra-334 and shinorine are antioxidants and direct antagonists of Keap1-Nrf2 binding. Biochimie 2018, 154, 35–44. [Google Scholar] [CrossRef]
P-dent | P-yezo | |
---|---|---|
Moisture (%) | 7.99 ± 0.11 | 7.28 ± 0.12 *** |
Protein (%) | 34.03 ± 0.21 | 34.87 ± 0.33 * |
Weight (g) | 4.00 ± 0.03 | 2.68 ± 0.02 *** |
Chl-a (µL/g) | 74.39 ± 1.81 | 109.72 ± 1.21 *** |
Chl-b (µL/g) | 7.08 ± 0.21 | 8.53 ± 0.20 *** |
Carotenoids (µL/g) | 29.36 ± 0.84 | 40.78 ± 0.48 *** |
(g/100 g) | P-dent | P-yezo |
---|---|---|
C16:0 | 0.89 ± 0.01 | 0.91 ± 0.01 |
C18:0 | 0.03 ± 0.00 | 0.03 ± 0.00 * |
C23:0 | 0.16 ± 0.00 | 0.16 ± 0.00 |
C24:0 | 0.01 ± 0.00 | 0.01 ± 0.00 *** |
C20:1 | 0.09 ± 0.00 | 0.15 ± 0.00 *** |
C20:2 | 0.03 ± 0.00 | 0.04 ± 0.00 *** |
C18:1n-9 | 0.08 ± 0.00 | 0.09 ± 0.00 *** |
C18:2n-6 | 0.09 ± 0.00 | 0.07 ± 0.00 *** |
C22:1n-9 | 0.02 ± 0.00 | 0.02 ± 0.00 *** |
C20:4n-6 | 0.00 ± 0.00 | 0.00 ± 0.00 * |
C20:3n-6 | 0.06 ± 0.00 | 0.09 ± 0.00 *** |
C22:2n-6 | 0.02 ± 0.00 | 0.03 ± 0.00 *** |
C20:5n-3 | 1.66 ± 0.02 | 2.00 ± 0.02 *** |
Saturated fatty acid | 1.10 ± 0.06 | 1.11 ± 0.06 |
Unsaturated fatty acid | 2.06 ± 0.06 | 2.49 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-S.; Im, J.-H.; Yoon, Y.-S.; Kim, H.; Cho, J.-Y.; Ham, J.-R.; Heo, Y.-J.; Lee, H.-I. Analysis of Nutritional Composition and Flavor Patterns by Variety (Porphyra dentata and Porphyra yezoensis) in Dried Laver from Jeonnam, Korea. Foods 2025, 14, 335. https://doi.org/10.3390/foods14030335
Kim B-S, Im J-H, Yoon Y-S, Kim H, Cho J-Y, Ham J-R, Heo Y-J, Lee H-I. Analysis of Nutritional Composition and Flavor Patterns by Variety (Porphyra dentata and Porphyra yezoensis) in Dried Laver from Jeonnam, Korea. Foods. 2025; 14(3):335. https://doi.org/10.3390/foods14030335
Chicago/Turabian StyleKim, Bo-Seop, Ju-Hye Im, Young-Seung Yoon, Hyunggyun Kim, Jeong-Yong Cho, Ju-Ri Ham, Yu-Jin Heo, and Hae-In Lee. 2025. "Analysis of Nutritional Composition and Flavor Patterns by Variety (Porphyra dentata and Porphyra yezoensis) in Dried Laver from Jeonnam, Korea" Foods 14, no. 3: 335. https://doi.org/10.3390/foods14030335
APA StyleKim, B.-S., Im, J.-H., Yoon, Y.-S., Kim, H., Cho, J.-Y., Ham, J.-R., Heo, Y.-J., & Lee, H.-I. (2025). Analysis of Nutritional Composition and Flavor Patterns by Variety (Porphyra dentata and Porphyra yezoensis) in Dried Laver from Jeonnam, Korea. Foods, 14(3), 335. https://doi.org/10.3390/foods14030335