Enhancing Mezcal Production Efficiency by Adding an Inoculant of Native Saccharomyces cerevisiae to a Standardized Fermentation Must
<p>Effect of sugars and YAN on (<b>A</b>) maximum specific growth rate (μ<sub>max</sub>), (<b>B</b>) ethanol production (<span class="html-italic">EtOH</span>), (<b>C</b>) yield (<span class="html-italic">Y<sub>EtOH/S</sub></span>), and (<b>D</b>) productivity (<span class="html-italic">Q<sub>p</sub></span>) at laboratory level.</p> "> Figure 2
<p>Relative abundance of strains identified by MALDI-TOF from CDC fermentations in agave juice at 0 (<b>A</b>) and 48 h of fermentation (<b>B</b>). <span style="color:#002060">■</span> <span class="html-italic">Bacillos subtilis</span>, <span style="color:#FFC000">■</span> <span class="html-italic">Brevibacillus centrosporus</span>, <span style="color:#196B24">■</span> <span class="html-italic">Acinetobacter radioresistens</span>, <span style="color:#ED7D31">■</span> <span class="html-italic">Acetobacter cerevisiae</span>, <span style="color:#7030A0">■</span> <span class="html-italic">Gluconobacter oxydans</span>, and <span style="color:#404040">■</span> <span class="html-italic">Saccharomyces cerevisiae</span>.</p> "> Figure 3
<p>Relative abundance of volatile compounds determined for L-L extraction followed by concentration and GC/MS analysis of mezcals. Traditional fermentation (C3), fermentation with inoculum (C2), and fermentation with YAN and inoculum (C1).</p> "> Figure 4
<p>Relative abundance of strains identified by MALDI-TOF in spontaneous fermentation of agave at pilot plant level (<b>A</b>) and inoculated fermentation added with YAN (120 g/L and 0.227 g/L) at pilot plant level (<b>B</b>). <span style="color:#0F9ED5">■</span> <span class="html-italic">T. delbrueckii</span>, <span style="color:#FFC000">■</span> <span class="html-italic">Z. bailii</span>, <span style="color:#156082">■</span> <span class="html-italic">P. kluyveri</span>, <span style="color:#404040">■</span> <span class="html-italic">S. cerevisiae</span>.</p> "> Figure 5
<p>Relative abundance of <span class="html-italic">S. cerevisiae</span> strains analyzed by GTG5 for spontaneous fermentation at pilot plant level (<b>A</b>) and inoculated fermentation added with YAN (120 g/L and 0.227 g/L) at pilot plant level (<b>B</b>). <span style="color:#700000">■</span> <span class="html-italic">S. cerevisiae</span> (<span class="html-italic">native</span>), <span style="color:#404040">■</span> <span class="html-italic">S. cerevisiae</span> (<span class="html-italic">ITD-00185</span>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological Material and Chemicals
2.2. Raw Material
2.3. Effects of Sugar and YAN Concentrations
2.4. Agave Fermentations at Pilot Plant Level and Implantation of Inoculant
2.5. Analytical Techniques
2.6. Statistical Analysis
3. Results and Discussion
3.1. Fermentations at Laboratory Level
3.2. Fermentation at the Plant Pilot Level
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NOM-070-SCFI (2016). Bebidas Alcohólicas-Mezcal-Especificaciones. Norma Oficial Mexicana, Diario Oficial de la Federación. Available online: https://www.dof.gob.mx/normasOficiales/6437/seeco11_C/seeco11_C.html (accessed on 29 November 2024).
- Salinas García, E.; Alcaraz Vera, J.V.; Durán Tovar, E.S.; Chávez Rivera, R. Alcances y limitaciones de la denominación de origen del mezcal en México. Agric. Soc. Desarro. 2023, 21, 51–63. [Google Scholar] [CrossRef]
- Nolasco-Cancino, H.; Santiago-Urbina, J.A.; Wacher, C.; Ruíz-Terán, F. Predominant yeasts during artisanal mezcal fermentation and their capacity to ferment maguey juice. Front. Microbiol. 2018, 9, 2900. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Terán, F.; Martínez-Zepeda, P.N.; Geyer-de la Merced, S.Y.; Nolasco-Cancino, H.; Santiago-Urbina, J.A. Mezcal: Indigenous Saccharomyces cerevisiae strains and their potential as starter cultures. Food Sci. Biotechnol. 2019, 28, 459–467. [Google Scholar] [CrossRef]
- Reyes-Valdés, M.H.; Palacios, R.; Rivas-Martínez, E.N.; Robledo-Olivo, A.; Antonio-Bautista, A.; Valdés-Dávila, C.M.; Villarreal-Quintanilla, J.Á.; Benavides-Mendoza, A. The Sustainability of Mexican Traditional Beverage Sotol: Ecological, Historical, and Technical Issues. In Processing and Sustainability of Beverages (103–137); Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- NOM-006-SCFI (2012). Bebidas Alcohólicas-Tequila-Especificaciones. Norma Oficial Mexicana, Diario Oficial de la Federación. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5282165&fecha=13/12/2012#gsc.tab=0 (accessed on 29 November 2024).
- NOM-159-SCFI (2004). Bebidas Alcohólicas-Sotol-Especificaciones y Métodos de Prueba. Norma Oficial Mexicana, Diario Oficial de la Federación. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=669378&fecha=16/06/2004#gsc.tab=0 (accessed on 29 November 2024).
- Castillo Nonato, J.; Montes de Oca Hernández, A. El mezcal y los productores: Prácticas culturales, agrobiodiversidad y estrategias de producción. Reg. Desplazamiento Geopolít. 2019, 4, 317–333. [Google Scholar]
- Pérez Hernández, E.; Chávez Parga, M.d.C.; González Hernández, J.C. Revisión del agave y el mezcal. Rev. Colomb. Biotecnol. 2016, 18, 148–164. [Google Scholar]
- Buzzini, P.; Di Mauro, S.; Turchetti, B. Yeasts as starter cultures. In Starter Cultures in Food Production; Wiley: Hoboken, NJ, USA, 2017; pp. 16–49. [Google Scholar]
- Figueroa-Hernández, C.; Mota-gutierrez, J.; Ferrocino, I. The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. Int. J. Food Microbiol. 2019, 301, 41–50. [Google Scholar] [CrossRef]
- Vinicius De Melo Pereira, G.; De Carvalho Neto, D.P.; Junqueira, A.C.D.O.; Karp, S.G.; Letti, L.A.; Magalhães Júnior, A.I.; Soccol, C.R. A Review of Selection Criteria for Starter Culture Development in the Food Fermentation Industry. Food Rev. Int. 2020, 36, 135–167. [Google Scholar] [CrossRef]
- Larralde-Corona, C.P.; De la Torre-González, F.J.; Vázquez-Landaverde, P.A.; Hahn, D.; Narváez-Zapata, J.A. Rational Selection of Mixed Yeasts Starters for Agave Must Fermentation. Front. Sustain. Food Syst. 2021, 5, 684228. [Google Scholar] [CrossRef]
- Querol, A.; Barrio, E.; Ramón, D. A Comparative Study of Different Methods of Yeast Strain Characterization. Syst. Appl. Microbiol. 1992, 15, 439–446. [Google Scholar] [CrossRef]
- Barrajón, N.; Arévalo-Villena, M.; Rodríguez-Aragón, L.J.; Briones, A. Ecological study of wine yeast in inoculated vats from La Mancha region. Food Control 2009, 20, 778–783. [Google Scholar] [CrossRef]
- Zhang, J.; Plowman, J.E.; Tian, B.; Clerens, S.; On, S.L.W. Genotyping and Phenotyping of Indigenous Saccharomyces cerevisiae from a New Zealand Organic Winery and Commercial Sources Using Inter-Delta and MALDI-TOF MS Typing. Microorganisms 2024, 12, 1299. [Google Scholar] [CrossRef] [PubMed]
- Patel, R. A moldy application of MALDI: MALDI-ToF mass spectrometry for fungal identification. J. Fungi 2019, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Castrillón, M.; Mendes, S.D.C.; Inostroza-Ponta, M.; Valente, P. (GTG)5 MSP-PCR fingerprinting as a technique for discrimination of wine associated yeasts? PLoS ONE 2014, 9, e105870. [Google Scholar] [CrossRef]
- Kaboré, B.; Ouédraogo, G.A.; Cissé, H.; Ouédraogo, H.S.; Sampo, E.; Zongo, K.J.; Zeba, B.; Traoré, Y.; Gnankiné, O.; Sanou, I.; et al. (GTG) 5-PCR fingerprinting of multi-drug resistant Escherichia coli bacteria isolates from hospital in Ouagadougou, Burkina Faso. BMC Microbiol. 2022, 22, 118. [Google Scholar] [CrossRef] [PubMed]
- Gschaedler, A.; Iñiguez Muñoz, L.E.; Flores Flores, N.Y.; Kirchmayr, M.; Arellano Plaza, M. Use of non- Saccharomyces yeasts in cider fermentation: Importance of the nutrients addition to obtain an efficient fermentation. Int. J. Food Microbiol. 2021, 347, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Roca-Mesa, H.; Sendra, S.; Mas, A.; Beltran, G.; Torija, M.J. Nitrogen preferences during alcoholic fermentation of different non-saccharomyces yeasts of oenological interest. Microorganisms 2020, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Gómez, A.A. Desarrollo de un Proceso de Obtención de Ácido Láctico a Partir de Residuos de Alimentos Tratados Por Medio de Hidrólisis Enzimática y Fermentación Bajo Distintos Coeficientes Carbono-Nitrogeno (C/N) y Contenido De Sólidos Totales (TS); Universidad de Costa Rica: San Jose, Costa Rica, 2023. [Google Scholar]
- Espinosa Vidal, E.; de Billerbeck, G.M.; Ardaillon Simões, D.; Schuler, A.; François, J.M.; de Morais, M.A., Jr. Influence of nitrogen supply on the production of higher alcohols/esters and expression of flavour-related genes in cachaça fermentation. Food Chem. 2013, 138, 701–708. [Google Scholar] [CrossRef]
- De los Rios-Deras, G.C.; Rutiaga-Quiñones, O.M.; López-Miranda, J.; Páez-Lerma, J.B.; López, M.; Soto-Cruz, N.O. Improving Agave duranguensis must for enhanced fermentation. C/N ratio effects on mezcal composition and sensory properties. Rev. Mex. Ing. Quim. 2015, 14, 363–371. [Google Scholar]
- Su, Y.; Origone, A.C.; Rodríguez, M.E.; Querol, A.; Guillamón, J.M.; Lopes, C.A. Fermentative behaviour and competition capacity of cryotolerant Saccharomyces species in different nitrogen conditions. Int. J. Food Microbiol. 2019, 291, 111–120. [Google Scholar] [CrossRef]
- Arrizon, J.; Gschaedler, A. Effects of the addition of different nitrogen sources in the tequila fermentation process at high sugar concentration. J. Appl. Microbiol. 2007, 102, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Arrizon, J.; Gschaedler, A. Increasing fermentation efficiency at high sugar concentrations by supplementing an additional source of nitrogen during the exponential phase of the tequila fermentation process. Can. J. Microbiol. 2002, 48, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Gerőcs, A.; Nemes-Barnás, K.; Pál, S.; Szőke, B.; Májer, J.; Farkas, T.; Olasz, F. Isolation and characterization of yeast strains from Badacsony, Hungary. Indian J. Exp. Biol. 2020, 58, 461–473. [Google Scholar]
- Páez-Lerma, J.B.; Arias-García, A.; Rutiaga-Quiñones, O.M.; Barrio, E.; Soto-Cruz, N.O. Yeasts Isolated from the Alcoholic Fermentation of Agave duranguensis During Mezcal Production. Food Biotechnol. 2013, 27, 342–356. [Google Scholar] [CrossRef]
- Nuñez-Guerrero, M.E.; Salazar-Vázquez, E.; Páez-Lerma, J.B.; Rodríguez-Herrera, R.; Soto-Cruz, N.O. Physiological characterization of two native yeasts in pure and mixed culture using fermentations of agave juice. Cienc. Investig. Agrar. 2019, 46, 1–11. [Google Scholar] [CrossRef]
- Arellano-Plaza, M.; Paez-Lerma, J.B.; Soto-Cruz, N.O.; Kirchmayr, M.R.; Gschaedler Mathis, A. Mezcal Production in Mexico: Between Tradition and Commercial Exploitation. Front. Sustain. Food Syst. 2022, 6, 832532. [Google Scholar] [CrossRef]
- Burgos Montañez, L.J. Cuantificación de azúcares reductores del sustrato en residuos de piña con el método del ácido 3,5-dinitrosalicílico. Quest. Investig. Específica 2020, 7, 57–66. [Google Scholar] [CrossRef]
- De los Rios Deras, G.C. Efecto de la Concentración Inicial de Azúcares y la Relación C/N Sobre la Producción de Etanol en Jugo de Agave Duranguensis; Instituto Tecnológico de Durango: Durango, Mexico, 2010. [Google Scholar]
- Geisler, J.; Weiß, N. Free Amino Nitrogen (FAN) Measurement in Beer. Eppendorf 2015, 10–12. [Google Scholar]
- Reyes-Sanchez, F.J.; Soto-Cruz, N.O.; Rojas-Contreras, J.A.; López-Miranda, J.; Kirchmayr, M.R.; Gschaedler-Mathis, A.; Urtiz Estrada, N.; Paez-Lerma, J.B. Genetic Variability and Its Influence on the Fermentative Parameters of Kluyveromyces marxianus. Food Biotechnol. 2023, 37, 323–337. [Google Scholar] [CrossRef]
- Martínez-Estrada, S.C.; Soto-Cruz, N.Ó.; Rojas-Contreras, J.A.; López-Miranda, J.; Rodríguez-Herrera, R.; Páez-Lerma, J.B. Phylogenetic analysis in yeast population using microsatellites and simple sequence tandem repeats. In Microbial Biodiversity, Biotechnology and Ecosystem Sustainability; Springer: Singapore, 2023; pp. 409–426. [Google Scholar]
- Gallegos-Casillas, P.; García-Ortega, L.F.; Espinosa-Cantú, A.; Avelar-Rivas, J.A.; Torres-Lagunes, C.G.; Cano-Ricardez, A.; García-Acero, Á.M.; Ruíz-Castro, S.; Flores-Barraza, M.; Castillo, A.; et al. Yeast diversity in open agave fermentations across Mexico. Yeast 2024, 41, 35–51. [Google Scholar] [CrossRef]
- NMX-V-013-NORMEX (2013) Bebidas Alcohólicas-Determinación del Contenido Alcohólico (Por Ciento de Alcohol en Volumen a 20 °C) (%Alc. Vol.); Norma Mexicana: Mexico City, Mexico, 2013; pp. 1–22.
- Acosta-García, E.D.; Páez-Lerma, J.B.; Martínez-Prado, M.A.; Soto-Cruz, N.O. Volatile compound analysis in mezcal based on multiple extraction/concentration methods, deconvolution software, and multivariate analysis. Food Control 2025, 168, 110852. [Google Scholar] [CrossRef]
- Acosta-García, E.D.; Soto-Cruz, N.O.; Valdivia-Hernández, E.A.; Rojas-Contreras, J.A.; Moreno-Jiménez, M.R.; Páez-Lerma, J.B. The Nutritional Quality of the Culture Medium Influences the Survival of Non-Saccharomyces Yeasts Co-Cultured with Saccharomyces cerevisiae. Fermentation 2024, 10, 400. [Google Scholar] [CrossRef]
- De León-Rodríguez, A.; Escalante-Minakata, P.; Barba de la Rosa, A.P.; Blaschek, H.P. Optimization of fermentation conditions for the production of the mezcal from Agave salmiana using response surface methodology. Chem. Eng. Process. Process Intensif. 2008, 47, 76–82. [Google Scholar] [CrossRef]
- Soto-García, E.; Rutiaga-Quiñones, M.; López-Miranda, J.; Montoya-Ayón, L.; Soto-Cruz, O. Effect of fermentation temperature and must processing on process productivity and product quality in mescal fermentation. Food Control 2009, 20, 307–309. [Google Scholar] [CrossRef]
- Alcazar-Valle, M.; Gschaedler, A.; Gutierrez-Pulido, H.; Arana-Sanchez, A.; Arellano-Plaza, M. Fermentative capabilities of native yeast strains grown on juices from different Agave species used for tequila and mezcal production. Braz. J. Microbiol. 2019, 50, 379–388. [Google Scholar] [CrossRef]
- Arrizon, J.; Morel, S.; Gschaedler, A.; Monsan, P. Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chem. 2010, 122, 123–130. [Google Scholar] [CrossRef]
- Martínez Jiménez, R.; Ruiz Vega, J.; Caballero Caballero, M.; Silva Rivera, M.E.; Montes Bernabé, J.L. Agaves silvestres y cultivados empleados en la elavoracion de mezcal en Sola de Vega, Oaxaca, México. Trop. Subtrop. Agroecosyst. 2019, 22, 477. [Google Scholar]
- Ávila Núñez, R.; Chirinos, M.; Hernández Motzezak, R.; Rivas Pérez, B. Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease. Multiciencias 2012, 12, 129–135. [Google Scholar]
- Santos Lopes, H.J.; Bonturi, N.; Johannes Kerkhoven, E.; Alaves Miranda, E.; Lahtvee, P.-J. C/N ratio and carbon source-dependent lipid production profiling in Rhodotorula toruloides. Appl. Microbiol. Biotechnol. 2020, 104, 2639–2649. [Google Scholar] [CrossRef] [PubMed]
- Sottil, C.; Salor-Torregrosa, J.M.; Moreno-Garcia, J.; Peinado, J.; Mauricio, J.C.; Moreno, J.; Garcia-Martinez, T. Using Torulaspora delbrueckii, Saccharomyces cerevisiae and Saccharomyces bayanus wine yeasts as starter cultures for fermentation and quality improvement of mead. Eur. Food Res. Technol. 2019, 245, 2705–2714. [Google Scholar] [CrossRef]
- Kessi-Pérez, E.I.; Molinet, J.; Martínez, C. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation. Biol. Res. 2020, 53, 2. [Google Scholar] [CrossRef] [PubMed]
- Navarrete-Bolaños, J.L.; Serrato-Joya, O.; Chávez-Mireles, H.; Vicente-Magueyal, F.J.; Jiménez-Islas, H. A validated strategy to design efficient fermentation-industrial processes: Agave spirit production. Bioprocess Biosyst. Eng. 2021, 44, 2245–2255. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.C.T.; Zuñiga, M.D.R.R.; Vargas-Maya, N.I. Levadura para Fermentaciones de Alta Gravedad en Jugo de Agave con Alto Rendimiento en la Producción de Etanol; Universidad de Guanajuato: Guanajuato, Mexico, 2021; pp. 1–20. [Google Scholar]
- Torres-Velázquez, D.S.; Rojas-Contreras, J.; Soto-Cruz, N.O.; Urtiz-Estrada, N.; López-Miranda, J.; Kirchmayr, M.R.; Páez-Lerma, J.B. Bacterial population monitoring during alcoholic fermentation of mezcal in Durango by DGGE. Int. J. Agric. Nat. Resour. 2022, 49, 112–122. [Google Scholar] [CrossRef]
- Molina-Guerrero, J.A.; Botello-Álvarez, J.E.; Estrada-Baltazar, A.; Navarrete-Bolaños, J.L.; Jiménez-Islas, H.; Cárdenas-Manríquez, M.; Rico-Martínez, R. Compuestos volátiles en el mezcal. Rev. Mex. Ing. Química 2007, 6, 41–50. [Google Scholar]
- Durán Guerrero, E.; Castro, R.; García-Moreno, M.d.V.; Rodríguez-Dodero, M.d.C.; Schwarz, M.; Guillén-Sánchez, D. Aroma of Sherry Products: A Review. Foods 2021, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Gil-Díaz, M.; Valero, E.; Cabellos, J.M.; García, M.; Arroyo, T. The impact of active dry yeasts in commercial wineries from the Denomination of Origen “Vinos de Madrid”, Spain. 3 Biotech 2019, 9, 382. [Google Scholar] [CrossRef] [PubMed]
- Lange, J.N.; Faasse, E.; Tantikachornkiat, M.; Gustafsson, F.S.; Halvorsen, L.C.; Kluftinger, A.; Ledderhof, D.; Durall, D.M. Implantation and persistence of yeast inoculum in Pinot noir fermentations at three Canadian wineries. Int. J. Food Microbiol. 2014, 180, 56–61. [Google Scholar] [CrossRef] [PubMed]
Experiment | Sugar (g/L) | YAN (g/L) |
---|---|---|
1 | 90 | 0.168 |
2 | 120 | 0.084 |
3 | 98.7 | 0.108 |
4 | 141.2 | 0.108 |
5 | 120 | 0.168 |
6 | 150 | 0.168 |
7 | 120 | 0.252 |
8 | 141.2 | 0.227 |
9 | 120 | 0.168 |
10 | 98.7 | 0.227 |
11 | 120 | 0.168 |
No. | Conditions | S0 (g/L) | Sf (g/L) | Sugar Consumption (%) | Mezcal (L) | Ykg agave/L mezcal | ||
---|---|---|---|---|---|---|---|---|
Sugar (g/L) | YAN (g/L) | Inoculum (Cells/mL) | ||||||
C1 | 120 | 0.227 | 1 × 106 | 118.67 ± 7.94 | 21.23 ± 3.65 | 82.10 ± 3.07 | 0.36 | 11.61 |
C2 | 120 | 0.227 | - | 110.85 ± 5.52 | 141.24 ± 0.26 | - | - | - |
C3 | 120 | - | - | 113.53 ± 5.64 | 136.20 ± 5.17 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holguín-Loya, A.H.; Salazar-Herrera, A.E.; Soto-Cruz, N.O.; Kirchmayr, M.R.; Lopes, C.A.; Rojas-Contreras, J.A.; Páez-Lerma, J.B. Enhancing Mezcal Production Efficiency by Adding an Inoculant of Native Saccharomyces cerevisiae to a Standardized Fermentation Must. Foods 2025, 14, 341. https://doi.org/10.3390/foods14030341
Holguín-Loya AH, Salazar-Herrera AE, Soto-Cruz NO, Kirchmayr MR, Lopes CA, Rojas-Contreras JA, Páez-Lerma JB. Enhancing Mezcal Production Efficiency by Adding an Inoculant of Native Saccharomyces cerevisiae to a Standardized Fermentation Must. Foods. 2025; 14(3):341. https://doi.org/10.3390/foods14030341
Chicago/Turabian StyleHolguín-Loya, Armando H., Adriana E. Salazar-Herrera, Nicolas O. Soto-Cruz, Manuel R. Kirchmayr, Christian A. Lopes, Juan A. Rojas-Contreras, and Jesús B. Páez-Lerma. 2025. "Enhancing Mezcal Production Efficiency by Adding an Inoculant of Native Saccharomyces cerevisiae to a Standardized Fermentation Must" Foods 14, no. 3: 341. https://doi.org/10.3390/foods14030341
APA StyleHolguín-Loya, A. H., Salazar-Herrera, A. E., Soto-Cruz, N. O., Kirchmayr, M. R., Lopes, C. A., Rojas-Contreras, J. A., & Páez-Lerma, J. B. (2025). Enhancing Mezcal Production Efficiency by Adding an Inoculant of Native Saccharomyces cerevisiae to a Standardized Fermentation Must. Foods, 14(3), 341. https://doi.org/10.3390/foods14030341