Research Progress of Bioactive Peptides in Improving Type II Diabetes
Abstract
:1. Introduction
2. Overview of Bioactive Peptides
2.1. Characteristics and Sources of Bioactive Peptides
2.1.1. Properties of Bioactive Peptides
2.1.2. Sources of Bioactive Peptides
2.1.3. Classification of Bioactive Peptides
Antimicrobial Peptides (AMPs)
Bioactive Peptides of Plant Origin
Regulatory Peptides
Growth Factors
2.2. Common Bioactive Peptide Types
2.2.1. Whey-Protein-Derived Bioactive Peptides
2.2.2. C-Peptide
2.2.3. Yeast-Derived Bioactive Peptides
3. Effect of Bioactive Peptides on T2DM
3.1. Ameliorating Effect of Bioactive Peptides on T2DM
3.2. Bioactive Peptides Regulate the Pathway of Action in T2DM
3.2.1. Bioactive Peptides That Regulate Inflammation in T2DM
3.2.2. Regulation of the Midgut Mucosal Barrier by Bioactive Peptides in Patients with T2DM
3.2.3. Effect of Bioactive Peptides on the Improvement of Metabolic Disorders in Patients with T2DM
3.2.4. Regulation of Oxidative Stress by Bioactive Peptides in Patients with T2DM
3.2.5. Effect of Bioactive Peptides on Blood Glucose Regulation in Patients with T2DM
3.2.6. Effect of Bioactive Peptides on Enhanced Insulin Sensitivity in Patients with T2DM
Improved Insulin Signaling
Regulation of Metabolic Pathways
Antioxidant Effect
3.3. Novel Anti-T2DM Drugs Based on Bioactive Peptides That Are Under Development or Have Been Marketed
3.3.1. Glucagon-Like Peptide-1 Receptor Agonist (GLP-1 RA)
3.3.2. Sodium-Glucose Cotransporter 2 Inhibitor (SGLT-2i)
3.4. Prospects for the Application of Bioactive Peptides in T2DM
3.4.1. As a Functional Food and Nutritional Supplement
3.4.2. As a New Direction for Drug Development
3.5. Clinical Application of Drugs Based on Peptides in the Intervention of T2DM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001, 18, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Pérez B., F. Epidemiología y fisiopatología de la diabetes mellitus tipo 2. Rev. Médica Clínica Las Condes 2009, 20, 565–571. [Google Scholar]
- Ru, W. Advantage and Disadvantage of Insulin on Treatment with Type 2 Diabetes. 2009. Available online: https://www.semanticscholar.org/paper/Advantage-and-disadvantage-of-insulin-on-treatment-Ru/9617a2c4d33856dcdfb992518c1cb7d52c791a87 (accessed on 1 December 2024).
- Plank, J.; Bock, G.M. Drug treatment of type 2 diabetes. Wien. Med. Wochenschr. 2003, 153, 21–22. [Google Scholar]
- Qaseem, A.; Barry, M.J.; Humphrey, L.L.; Forciea, M.A.; Clinical Guidelines Committee of the American College of Physicians; Fitterman, N.; Horwitch, C.; Kansagara, D.; McLean, R.M.; Wilt, T.J. Oral Pharmacologic Treatment of Type 2 Diabetes Mellitus: A Clinical Practice Guideline Update From the American College of Physicians. Ann. Intern. Med. 2017, 166, 279–290. [Google Scholar] [CrossRef]
- Kaur, K. Current Strategies Used for Better Management of Type-2 Diabetes Mellitus. 2023. Available online: https://www.semanticscholar.org/paper/Current-strategies-used-for-better-management-of-Kaur/10e564d367157851998bfac0fe7251d8d20436ad (accessed on 1 December 2024).
- Oudart, N. Antidiabetic agents. Rev. L’infirmiere 1999, 49, 20–26. [Google Scholar]
- Bailey, C.J. Safety of antidiabetes medications: An update. Clin. Pharmacol. Ther. 2015, 98, 185–195. [Google Scholar] [CrossRef]
- Rahman, A.; Islam, S. The complications of long time treatment of insulin therapy in type-2 diabetes patients: A Review. Mol. Mech. Res. 2024, 2, 6172. [Google Scholar] [CrossRef]
- Inkster, B.; Zammitt, N.N.; Frier, B.M. Drug-induced hypoglycaemia in type 2 diabetes. Expert. Opin. Drug Saf. 2012, 11, 597–614. [Google Scholar] [CrossRef]
- Philippe, J. Comment minimiser la prise de poids secondaire au traitement d’insuline? Rev. Médicale Suisse 2010, 6, 1199–1204. [Google Scholar]
- Kashi, Z.; Akha, O.; Borzouei, S.; Bahar, A. Insulin therapy: Side effects and their management. Clin. Excell. 2013, 1, 1–16. [Google Scholar]
- Antony, P.; Vijayan, R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 9059. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as al amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Li, J.; Xiong, R.G.; Wu, S.X.; Xu, X.Y.; Tang, G.Y.; Huang, S.Y.; Zhou, D.D.; Li, H.B.; Feng, Y.; et al. Effects and mechanisms of anti-diabetic dietary natural products: An updated review. Food Funct. 2024, 15, 1758–1778. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. Anti-Diabetic Effects and Mechanisms of Dietary Polysaccharides. Molecules 2019, 24, 2556. [Google Scholar] [CrossRef]
- Oh, Y.S.; Jun, H.S. Role of bioactive food components in diabetes prevention: Effects on Beta-cell function and preservation. Nutr. Metab. Insights 2014, 7, 51–59. [Google Scholar] [CrossRef]
- Meier, M.L.; Greenspan, P.; Keedy, C.A.; Misher, A. The Implications of Fruit and Vegetable Consumption in Patients with Diabetes. J. Pharm. Nutr. Sci. 2021, 11, 28–32. [Google Scholar] [CrossRef]
- Calvano, A.; Izuora, K.; Oh, E.C.; Ebersole, J.L.; Lyons, T.J.; Basu, A. Dietary berries, insulin resistance and type 2 diabetes:an overview of human feeding trials. Food Funct. 2019, 10, 6227–6243. [Google Scholar] [CrossRef]
- Monjiote, D.P.; Leo, E.E.; Campos, M.R. Functional and Biological Potential of Bioactive Compounds in Foods for the Dietary Treatment of Type 2 Diabetes Mellitus. In Functional Food—Improve Health Through Adequate Food; Intechopen: London, UK, 2017; pp. 143–163. [Google Scholar]
- Jiao, Z. Research Progress of α-glucosidase Inhibitors of Medicinal and Edible Homologous Plants and Their use in the Treatment of Diabetes. Highlights Sci. Eng. Technol. 2023, 54, 495–502. [Google Scholar] [CrossRef]
- Tessari, P.; Lante, A. A Multifunctional Bread Rich in Beta Glucans and Low in Starch Improves Metabolic Control in Type 2 Diabetes:A Controlled Trial. Nutrients 2017, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Trümper, K.; Trümper, A.; Trusheim, H.; Arnold, R.; Göke, B.; Hörsch, D. Integrative mitogenic role of protein kinase B/Akt in beta-cells. Ann. N. Y. Acad. Sci. 2000, 921, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Ahrén, B.; Pacini, G. Islet adaptation to insulin resistance: Mechanisms and implications for intervention. Diabetes Obes. Metab. 2005, 7, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Guang-xiang, Z. Advance of Study on Small Peptide with Biological Activity; Zhejiang Chemical Industry: Hangzhou, China, 2010. [Google Scholar]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M. Biologicznie aktywne peptydy pochodzące z białek mleka. Med. Weter. 2014, 70, 348–352. [Google Scholar]
- González-Montoya, M.; Hernández-Ledesma, B.; Mora-Escobedo, R.; Martínez-Villaluenga, C. Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. Int. J. Mol. Sci. 2018, 19, 2883. [Google Scholar] [CrossRef]
- Singh, B.P.; Aluko, R.E.; Hati, S.; Solanki, D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 4593–4606. [Google Scholar] [CrossRef]
- Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial Peptides: Versatile Biological Properties. Int. J. Pept. 2013, 2013, 1–15. [Google Scholar] [CrossRef]
- Bhonsle, J.B.; Venugopal, D.; Huddler, D.P.; Magill, A.J.; Hicks, R.P. Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. J. Med. Chem. 2007, 50, 6545–6553. [Google Scholar] [CrossRef]
- Chi, C.F.; Wang, B. Marine Bioactive Peptides-Structure, Function and Application. Mar. Drugs 2023, 21, 275. [Google Scholar] [CrossRef]
- Zhu, Z.; Pan, F.; Wang, O.; Zhao, L.; Zhao, L. Antibacterial Effect of Sesame Protein-Derived Peptides against Escherichia coli and Staphylococcus aureus: In Silico and In Vitro Analysis. Nutrients 2024, 16, 175. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Jiao, P.; Xia, M.; Tang, B. Preparation and Evaluation of Antioxidant Activities of Bioactive Peptides Obtained from Cornus officinalis. Molecules 2022, 27, 1232. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.T.; Moon, J.; Lee, Y. Insights into Bioactive Peptides in Cosmetics. Cosmetics 2023, 10, 111. [Google Scholar] [CrossRef]
- Shea, Z.; Ogando do Granja, M.; Fletcher, E.B.; Zheng, Y.; Bewick, P.; Wang, Z.; Singer, W.M.; Zhang, B. A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health. Curr. Issues Mol. Biol. 2024, 46, 4203–4233. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Gavilá, E.; Abellán, A.; Bermejo, M.S.; Salazar, E.; Cayuela, J.M.; Prieto-Merino, D.; Tejada, L. Characterization of Proteolytic Activity of Artichoke (Cynara scolymus L.) Flower Extracts on Bovine Casein to Obtain Bioactive Peptides. Animals 2020, 10, 914. [Google Scholar] [CrossRef]
- Shukla, R. Studies on bioactive compounds from different microorganisms. Int. J. Sci. Eng. Res. 2015, 6, 1225–1233. [Google Scholar]
- Cunsolo, F.; Ruberto, G.; Amico, V.; Piattelli, M. Bioactive metabolites from Sicilian marine fennel, Crithmum maritimum. J. Nat. Prod. 1993, 56, 1598–1600. [Google Scholar] [CrossRef]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef]
- Jinshui, S.; Ying, L. Chapter2-Plants as a valuable source of bioactive peptides. In Handbook of Plant-Based Food and Drinks Design; Academic Press: Cambridge, MA, USA, 2024; pp. 19–43. [Google Scholar]
- Huang, X.; Liao, J.; Shi, P.; Pei, X.; Wang, C. Virtual screening and directional preparation of xanthine oxidase inhibitory peptides derived from hemp seed protein. Food Sci. Hum. Wellness 2024, 13, 3652–3660. [Google Scholar] [CrossRef]
- Hu, K.; Huang, H.; Li, H.; Wei, Y.; Yao, C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023, 15, 1096. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. [Google Scholar] [CrossRef]
- Friedrich, C.L.; Moyles, D.M.; Beveridge, T.J.; Hancock, R.E. Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive Bacteria. Antimicrob. Agents Chemother. 2000, 44, 2086–2092. [Google Scholar] [CrossRef] [PubMed]
- Emeka, O. Bifunctional Antidiabetic-Anticancer Dual-Active Phytochemicals: Adjuncts or Alternatives to Conventional Therapies. Adv. Bioeng. Biomed. Sci. Res. 2023. Available online: https://www.academia.edu/103673364/Bifunctional_Antidiabetic_Anticancer_Dual_Active_Phytochemicals_Adjuncts_or_Alternatives_to_Conventional_Therapies (accessed on 1 December 2024).
- Liu, C.; Xu, H.; Yuan, F.; Chen, H.; Sheng, L.; Chen, W.; Xie, H.; Xu, H.; Li, X. Evaluating the bioequivalence and safety of liraglutide injection versus Victoza in healthy Chinese subjects: A randomized, open, two-cycle, self-crossover phase I clinical trial. Front. Pharmacol. 2023, 14, 1326865. [Google Scholar] [CrossRef] [PubMed]
- Favaro, E.; Granata, R.; Miceli, I.; Baragli, A.; Settanni, F.; Cavallo Perin, P.; Ghigo, E.; Camussi, G.; Zanone, M.M. The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditions, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK)1/2 and cAMP/protein kinase A (PKA) signalling pathways. Diabetologia 2012, 55, 1058–1070. [Google Scholar] [PubMed]
- Lulli, V.; Romania, P.; Morsilli, O.; Cianciulli, P.; Gabbianelli, M.; Testa, U.; Giuliani, A.; Marziali, G. MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A 2013. PLoS ONE 2013, 8, e60436. [Google Scholar] [CrossRef] [PubMed]
- Evain-Brion, D. Facteurs de croissance et développement embryonnaire. Reprod. Nutr. Développement 1988, 28, 1681–1686. [Google Scholar] [CrossRef]
- MiguelPeña, J.; AgustínGóngora, O.; JoséEstrada, L. Growth factors in the follicular development, embryonic early and implantation. Implictions in the production of bovine embryos. Rev. Mvz Cordoba 2017, 12, 942–954. [Google Scholar]
- Melnik, B.C.; Schmitz, G. Milk consumption does not prevent but induces type 2 diabetes. Diabetes Metab. Res. Rev. 2019, 35, e3200. [Google Scholar] [CrossRef]
- Ryk, A.; Łosiewicz, A.; Michalak, A.; Fendler, W. Biological Activity of c-Peptide in Microvascular Complications of Type 1 Diabetes-Time for Translational Studies or Back to the Basics? Int. J. Mol. Sci. 2020, 21, 9723. [Google Scholar] [CrossRef]
- Nordquist, L.; Johansson, M. Proinsulin C-peptide: Friend or foe in the development of diabetes-associated complications? Vasc. Health Risk Manag. 2008, 4, 1283–1288. [Google Scholar] [CrossRef]
- Lian, X.; Qi, J.; Yuan, M.; Li, X.; Wang, M.; Li, G.; Yang, T.; Zhong, J. Study on risk factors of diabetic peripheral neuropathy and establishment of a prediction model by machine learning. BMC Med. Inform. Decis. Mak. 2023, 23, 146. [Google Scholar] [CrossRef]
- Mirzaei, M.; Shavandi, A.; Mirdamadi, S.; Soleymanzadeh, N.; Motahari, P.; Mirdamadi, N.; Moser, M.; Subra, G.; Alimoradi, H.; Goriely, S. Bioactive peptides from yeast: A comparative review on production methods, bioactivity, structure-function relationship, and stability. Trends Food Sci. Technol. 2021, 118, 297–315. [Google Scholar] [CrossRef]
- López-García, G.; Dublan-García, O.; Arizmendi-Cotero, D.; Gómez Oliván, L.M. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules 2022, 27, 1343. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, A.; Kiersnowska, K.; Ömeroğlu, B.; Gawlik-Dziki, U.; Tutaj, K.; Rybczyńska-Tkaczyk, K.; Szydłowska-Tutaj, M.; Złotek, U.; Baraniak, B. The Influence of Hypericum perforatum L. Addition to Wheat Cookies on Their Antioxidant, Anti-Metabolic Syndrome, and Antimicrobial Properties. Foods 2021, 10, 1379. [Google Scholar] [CrossRef] [PubMed]
- Cosson, A.; Oliveira Correia, L.; Descamps, N.; Saint-Eve, A.; Souchon, I. Identification and characterization of the main peptides in pea protein isolates using ultra high-performance liquid chromatography coupled with mass spectrometry and bioinformatics tools. Food Chem. 2021, 367, 130747. [Google Scholar] [CrossRef]
- Strowski, M.Z.; Li, Z.; Szalkowski, D.; Shen, X.; Guan, X.M.; Jüttner, S.; Moller, D.E.; Zhang, B.B. Small-molecule insulin mimetic reduces hyperglycemia and obesity in a nongenetic mouse model of type 2 diabetes. Endocrinology 2004, 145, 5259–5268. [Google Scholar] [CrossRef]
- Lu, J.; Zeng, Y.; Hou, W.; Zhang, S.; Li, L.; Luo, X.; Xi, W.; Chen, Z.; Xiang, M. The soybean peptide aglycin regulates glucose homeostasis in type 2 diabetic mice via IR/IRS1 pathway. J. Nutr. Biochem. 2012, 23, 1449–1457. [Google Scholar] [CrossRef]
- Power, O.; Nongonierma, A.B.; Jakeman, P.M.; Fitzgerald, R.J. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proc. Nutr. Soc. 2013, 73, 34–46. [Google Scholar] [CrossRef]
- Sekar, D.S.; Sivagnanam, K.; Subramanian, S. Antidiabetic activity of Momordica charantia seeds on streptozotocin induced diabetic rats. Die Pharm. 2005, 60, 383–387. [Google Scholar]
- Poovitha, S.; Sai, M.S.; Parani, M. Protein extract from the fruit pulp of Momordica dioica shows anti-diabetic, anti-lipidemic and antioxidant activity in diabetic rats. J. Funct. Foods 2017, 33, 181–187. [Google Scholar] [CrossRef]
- Nasri, R.; Abdelhedi, O.; Jemil, I.; Daoued, I.; Hamden, K.; Kallel, C.; Elfeki, A.; Lamri-Senhadji, M.; Boualga, A.; Nasri, M.; et al. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats. Chem.-Biol. Interact. 2015, 242, 71–80. [Google Scholar] [CrossRef]
- Jahandideh, F.; Wu, J. A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance. Food Sci. Hum. Wellness 2022, 11, 1441–1454. [Google Scholar] [CrossRef]
- Wang, W.; Yang, W.; Dai, Y.; Liu, J.; Chen, Z.Y. Production of Food-Derived Bioactive Peptides with Potential Application in the Management of Diabetes and Obesity: A Review. J. Agric. Food Chem. 2023, 71, 5917–5943. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Yang, C.; Wai, S.T.C.; Zhang, Y.; Portillo, M.P.; Paoli, P.; Wu, Y.; San Cheang, W.; Liu, B.; Carpéné, C.; et al. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr. 2018, 59, 830–847. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Kong, X.; Xia, X.; Huang, X.; Mao, Z.; Han, J.; Shi, F.; Liang, Y.; Wang, A.; Zhang, F. Effects of ginseng peptides on the hypoglycemic activity and gut microbiota of a type 2 diabetes mellitus mice model. J. Funct. Foods 2023, 111, 105897. [Google Scholar] [CrossRef]
- Ding, L.; Zheng, X.; Zhao, L.; Cai, S. Identification of Novel Peptides in Distillers’ Grains as Antioxidants, α-Glucosidase Inhibitors, and Insulin Sensitizers: In Silico and In Vitro Evaluation. Nutrients 2024, 16, 1279. [Google Scholar] [CrossRef]
- Alam, M.M. Prospect of Marine Bioactive Peptides as DPP4 Inhibitor. Oceanogr. Fish. Open Access J. 2022, 14, 001–002. [Google Scholar] [CrossRef]
- Vasilakou, D.; Karagiannis, T.; Athanasiadou, E.; Mainou, M.; Liakos, A.; Bekiari, E.; Sarigianni, M.; Matthews, D.R.; Tsapas, A. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2013, 159, 262–274. [Google Scholar] [CrossRef]
- Friedrich, M.J. Benefits of gut microflora under study. JAMA 2008, 299, 162. [Google Scholar] [CrossRef]
- De Preter, V.; Verbeke, K. Metabolomics as a diagnostic tool in gastroenterology. World J. Gastrointest. Pharmacol. Ther. 2013, 4, 97–107. [Google Scholar] [CrossRef]
- Wu, L.; Lin, Z.H.; Lu, X.J.; Hu, X.; Zhong, H.J.; Lin, D.J.; Liu, T.; Xu, J.T.; Lin, W.Y.; Wu, Q.P.; et al. Washed Microbiota Transplantation Improves Patients with Overweight by the Gut Microbiota and Sphingolipid Metabolism. Biomedicines 2023, 11, 2415. [Google Scholar] [CrossRef]
- Knezevic, D.; Petković, M.R. Faecal transplantation and Clostridioides difficile infection. Scr. Medica 2021, 4, 97. [Google Scholar]
- Yang, G.; Wei, J.; Liu, P.; Zhang, Q.; Tian, Y.; Hou, G.; Meng, L.; Xin, Y.; Jiang, X. Role of the gut microbiota in type 2 diabetes and related diseases. Metab. Clin. Exp. 2021, 117, 154712. [Google Scholar] [CrossRef] [PubMed]
- Acquah, C.; Dzuvor, C.K.O.; Tosh, S.; Agyei, D. Anti-diabetic effects of bioactive peptides: Recent advances and clinical implications. Crit. Rev. Food Sci. Nutr. 2022, 62, 2158–2171. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Zhao, H.; Song, H. Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes. Crit. Rev. Food Sci. Nutr. 2024, 64, 5039–5056. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, D.; Hao, H.; Wu, X. Identification of the DPP-IV Inhibitory Peptides from Donkey Blood and Regulatory Effect on the Gut Microbiota of Type 2 Diabetic Mice. Foods 2022, 11, 2148. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, X. Purification, Identification and Evaluation of Antioxidant Peptides from Pea Protein Hydrolysates. Molecules 2023, 28, 2952. [Google Scholar] [CrossRef]
- Henaux, L.; Pereira, K.D.; Thibodeau, J.; Pilon, G.; Gill, T.; Marette, A.; Bazinet, L. Glucoregulatory and Anti-Inflammatory Activities of Peptide Fractions Separated by Electrodialysis with Ultrafiltration Membranes from Salmon Protein Hydrolysate and Identification of Four Novel Glucoregulatory Peptides. Membranes 2021, 11, 528. [Google Scholar] [CrossRef]
- Costa, I.S.; Medeiros, A.F.; Piuvezam, G.; Medeiros, G.C.B.S.; Maciel, B.L.L.; Morais, A.H.A. Insulin-Like Proteins in Plant Sources: A Systematic Review. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 3421–3431. [Google Scholar] [CrossRef]
- Barbuio, R.; Milanski, M.; Bertolo, M.B.; Saad, M.J.; Velloso, L.A. Infliximab reverses steatosis and improves insulin signal transduction in liver of rats fed a high-fat diet. J. Endocrinol. 2007, 194, 539–550. [Google Scholar] [CrossRef]
- Hill, T.G.; Hill, D.J. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int. J. Mol. Sci. 2024, 25, 4070. [Google Scholar] [CrossRef]
- Ganesan, P.; Arulselvan, P.; Choi, D.K. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus-current status. Int. J. Nanomed. 2017, 12, 1097–1111. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Han, W.; Zhang, J.; Zhang, Z.; Su, X. Advances in the Regulatory Effects of Bioactive Peptides on Metabolic Signaling Pathways in Tumor Cells. J. Cancer 2019, 10, 2425–2433. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shachar, M.; Rozenberg, K.; Skalka, N.; Wollman, A.; Michlin, M.; Rosenzweig, T. Activation of Insulin Signaling in Adipocytes and Myotubes by Sarcopoterium Spinosum Extract. Nutrients 2019, 11, 1396. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.Q.; Zhu, S.S.; He, M.J.; Luo, F.; Fu, C.Z.; Zou, T.B. Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus-A Prospect. Mar. Drugs 2017, 15, 88. [Google Scholar] [CrossRef]
- Bloch-Damti, A.; Bashan, N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid. Redox Signal. 2015, 7, 1553–1567. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karaś, M.; Rybczyńska-Tkaczyk, K.; Zielińska, E.; Zieliński, D. Current Trends of Bioactive Peptides-New Sources and Therapeutic Effect. Foods 2020, 9, 846. [Google Scholar] [CrossRef]
- Seksaria, S.; Dutta, B.J.; Kaur, M.; Gupta, G.D.; Bodakhe, S.H.; Singh, A. Role of GLP-1 Receptor Agonist in Diabetic Cardio-renal Disorder: Recent Updates of Clinical and Pre-clinical Evidence. Curr. Diabetes Rev. 2024, 20, 1–14. [Google Scholar] [CrossRef]
- Bethel, M.A.; Patel, R.A.; Merrill, P.; Lokhnygina, Y.; Buse, J.B.; Mentz, R.J.; Pagidipati, N.J.; Chan, J.C.; Gustavson, S.M.; Iqbal, N.; et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes:a meta-analysis. Lancet Diabetes Endocrinol. 2018, 6, 105–113. [Google Scholar]
- Vivian, E. Sodium-Glucose Cotransporter 2 Inhibitors in the Treatment of Type 2 Diabetes Mellitus. Diabetes Educ. 2015, 41, 5–18. [Google Scholar] [CrossRef]
- Yamamoto, T. Sodium-Glucose Cotransporter 2 Inhibitors Improve Pancreatic ß-Cell Function by the Relief of ß-Cell Distress in Japanese Type 2 Diabetes. Diabetes 2018, 67, 1829. [Google Scholar] [CrossRef]
- Tentolouris, A.; Vlachakis, P.; Tzeravini, E.; Eleftheriadou, I.; Tentolouris, N. SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. Int. J. Environ. Res. Public Health 2019, 16, 2965. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.; Mandal, S.; Tomar, S.K.; Anand, S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur. J. Nutr. 2015, 54, 863–880. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Bahadoran, Z.; Azizi, F. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications:A review. World J. Diabetes 2014, 5, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Bahadoran, Z.; Mirmiran, P. Potential Properties of Legumes as Important Functional Foods for Management of Type 2 Diabetes: A Short Review. Int. J. Nutr. Food Sci. 2015, 4, 6. [Google Scholar] [CrossRef]
- Lombardo, M.; Ascione, A.; Feraco, A.; Camajani, E.; Gorini, S.; Armani, A.; Caprio, M.; Amoah, I. Promoting Legume Consumption: Strategies for Health, Nutrition, and Culinary Applications. Biol. Life Sci. Forum 2023, 26, 65. [Google Scholar] [CrossRef]
- Schapiro, D.; Meeks, A.; Liu, D.; Gelsey, F.; Juneja, R.; Perez-Nieves, M.; Huang, A. Progression of Position of Basal Insulin in the Treatment of Type 2 Diabetes—A Real-World Analysis. Diabetes 2022, 71, 107–LB. [Google Scholar] [CrossRef]
- Hjortebjerg, R.; Flyvbjerg, A.; Frystyk, J. Insulin growth factor binding proteins as therapeutic targets in type 2 diabetes. Expert. Opin. Ther. Targets 2014, 18, 209–224. [Google Scholar] [CrossRef]
- Jain, S.; Ruiz de Azua, I.; Lu, H.; White, M.F.; Guettier, J.M.; Wess, J. Chronic activation of a designer G(q)-coupled receptor improves β cell function. J. Clin. Investig. 2013, 123, 1750–1762. [Google Scholar] [CrossRef]
- Flint, A.; Kapitza, C.; Hindsberger, C.; Zdravkovic, M. The once-daily human glucagon-like peptide-1 (GLP-1) analog liraglutide improves postprandial glucose levels in type 2 diabetes patients. Adv. Ther. 2011, 28, 213–226. [Google Scholar] [CrossRef]
- Soheilipour, F.; Abbasi Kasbi, N.; Imankhan, M.; Eskandari, D. Complications and Treatment of Early-Onset Type 2 Diabetes. Int. J. Endocrinol. Metab. 2023, 21, 135. [Google Scholar] [CrossRef]
- Jo, S.; Fang, S. Therapeutic Strategies for Diabetes: Immune Modulation in Pancreatic β Cells. Front. Endocrinol. 2021, 12, 716692. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Quan, X.; Yang, Z.; Zeng, X.; Ji, L.; Sun, F.; Zhan, S. Efficacy and Acceptability of Glycemic Control of Glucagon-Like Peptide-1 Receptor Agonists among Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. PLoS ONE 2016, 11, 154–206. [Google Scholar] [CrossRef] [PubMed]
- Candeias, E.M.; Sebastião, I.C.; Cardoso, S.M.; Correia, S.C.; Carvalho, C.I.; Plácido, A.I.; Santos, M.S.; Oliveira, C.R.; Moreira, P.I.; Duarte, A.I. Gut-brain connection: The neuroprotective effects of the anti-diabetic drug liraglutide. World J. Diabetes 2015, 6, 807–827. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.Y.; Lee, C.G.; Choi, H.; Lee, H.K.; Lee, S.Y.; Kim, H.J.; Jung, K.Y.; Kim, J.T. Effects of once-weekly dulaglutide on juvenile type 2 diabetes mellitus and obesity in Korea: A pilot study. Ann. Pediatr. Endocrinol. Metab. 2023, 28, 296–301. [Google Scholar] [CrossRef]
Functional Categories | Description of the Function | References |
---|---|---|
Antimicrobial peptides | It has a broad-spectrum antibacterial effect, such as anti-Escherichia coli and Staphylococcus aureus. | [34] |
Antioxidant peptides | It has antioxidant function, can scavenge free radicals and reduce oxidative stress. | [35] |
Signal peptides | Stimulates collagen and elastin synthesis, promotes keratinocyte and epidermal cell proliferation, and regulates melanin production. | [36] |
Carrier peptides | Delivers trace elements to promote wound healing and enzymatic processes, improving skin elasticity. | [36] |
Neurotransmitter inhibitory peptides | Provides a moisturizing effect, stimulates collagen and elastin synthesis, and inhibits melanin synthesis. | [36] |
Enzyme inhibitory peptides | Reduces collagen and elastin breakdown to provide hydration. | [36] |
Antihypertensive peptides | Has antihypertensive functions, such as antihypertensive peptides identified from soybean protein hydrolysate. | [37] |
Anti-hyperlipidemic peptides | It has the function of lowering cholesterol and hyperlipidemia, such as plant-derived anti-hyperlipidemic peptides. | [34] |
Processed peptides for dairy products | Activated by proteases in dairy processing to improve the taste, texture, and microbial community of dairy products. | [38] |
Methods | Merit | Shortcoming | Application | References |
---|---|---|---|---|
Chemical hydrolysis | Low cost and simple operation | The hydrolysis conditions are difficult to control; amino acids are easy to destroy; and the product quality is unstable, which is not suitable for industrial production | It is mainly used for laboratory research | [40] |
Enzymatic digestion | The conditions are mild; the reaction time is short; there is no racemic effect, no destruction of amino acids; the product is of high purity, easy to separate; and there is no pollution. It is highly safe, easily digested and absorbed by the human body, and the production conditions are mild and easy to control | It is necessary to study the effects of enzyme types, dosages, substrate concentrations, temperatures, pH, time, and other parameters on the preparation of peptides, and the quality and purity of peptides prepared under different conditions are different | The most commonly used preparation method, suitable for a variety of raw materials, such as millet protein, egg white protein, soy protein, etc. | [41] |
Microbial fermentation | The cost of raw materials is low; the process is simple; the conditions are mild; and the protease yield is high. The mixed enzymes produced by microbial metabolic activities can release bioactive peptides in aqueous conditions, and at the same time, micro-organisms can improve their growth and enzyme production capabilities with the help of peptide hydrolysate, and they cooperate with each other for higher efficiency | The microbial fermentation and metabolic process is complex; the products are difficult to control; and many impurities will be generated, which is difficult for the later separation and purification | It is suitable for the preparation of soybean protein, konjac flour, sweet potato protein, and other raw materials | [42] |
Chemical synthesis via solid-phase method | High purity (>98%), suitable for large-scale production | The cost is high, and the time is long | Preparation of bioactive peptides, such as XOI inhibitory peptides | [43] |
Organic synthesis | Peptides with specific structures can be designed with high flexibility | Costly, time-consuming, and unsustainable | Preparation of marine bioactive peptides | [44] |
Subjects | Name of Bioactive Peptides | Research Results | References |
---|---|---|---|
STZ/HFD-induced diabetic BALB/c mice (50 mg/kg/day, 4 weeks) | Soy peptides | BG↓ p-Akt, OGTT, insulin tolerance, p-IR↑ p-IRS1, GLUT4, glucose uptake↑ | [61] |
Mice | Donkey milk protein peptides | Blood sugar levels↓ insulin sensitivity, insulin resistance↑ | [61] |
High-fat diet and streptozotocin (dose 1000 mg/kg BW) were induced in mice | Pea protein peptides | Insulin sensitivity in T2DM mice↓ food intake and blood glucose↓ | [57] |
A rat model of obese type II diabetes | Whey protein bioactive peptides | Fasting blood glucose, glycosylated hemoglobin↓insulin secretion, insulin resistance↑diversity of intestinal flora and number of beneficial bacteria↑ | [62] |
Streptozotocin (STZ)-induced diabetic rats | Bitter melon polypeptide | Body weight↓ oral carbohydrate tolerance↑ blood sugar levels, glycosylated hemoglobin, lactate dehydrogenase↓ hemoglobin levels, glycogen and hexokinase and glycogen synthase activity↑ | [63,64] |
A high-fat, high-fructose diet induced in rats | Goby muscle protein hydrolysate | α-Amylase levels, blood glucose, liver glycogen content↓ | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Chen, G.; Jin, Y.; Zhang, M.; Wu, T. Research Progress of Bioactive Peptides in Improving Type II Diabetes. Foods 2025, 14, 340. https://doi.org/10.3390/foods14030340
Yu J, Chen G, Jin Y, Zhang M, Wu T. Research Progress of Bioactive Peptides in Improving Type II Diabetes. Foods. 2025; 14(3):340. https://doi.org/10.3390/foods14030340
Chicago/Turabian StyleYu, Jiaxin, Guoxing Chen, Yan Jin, Min Zhang, and Tao Wu. 2025. "Research Progress of Bioactive Peptides in Improving Type II Diabetes" Foods 14, no. 3: 340. https://doi.org/10.3390/foods14030340
APA StyleYu, J., Chen, G., Jin, Y., Zhang, M., & Wu, T. (2025). Research Progress of Bioactive Peptides in Improving Type II Diabetes. Foods, 14(3), 340. https://doi.org/10.3390/foods14030340